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ABSTRACT

Denoeux, T., Einfalt, T. and Jacquet, G., 1991. Determination in real time of the reliability of radar
rainfall forecasts. J. Hydrol., 122: 353-371.

Quantitative rainfall forecasts obtained from interpretation of radar data can be of great
interest in urban hydrology, provided their reliability is known in real time. The aim of this study
was to examine the feasibility of an a priori estimation of forecast reliability from characteristics
of rainfall areas and atmospheric vertical structure. The first step has been to design a method to
check the relevance of a criterion of forecasting quality to a particular application of the forecasts.
This method was applied to the case of real-time control of a drainage network in a suburban area
of Paris, and led to the definition of a new quality criterion, consistent with the user’s utility
function. Potential predictors of forecasting quality were then defined, to be calculated in real time
from radar and rawinsonde data. In the final step, statistical and heuristic techniques, applied to
a learning set of examples taken from 46 rainfall events, provided decision rules which can be used
in real time to estimate the quality of radar forecasts. Although these rules are valid only in a
specific operational context, the methodology is general, and can be transferred to other forecast-
ing-problems in hydrology, as well as in other domains.

INTRODUCTION -

Since the 1950s, weather radar has increased in importance as a tool for
precipitation nowcasting (i.e. forecasting with a lead time of up to 6 h). At the
end of the 1960s the development in electronics and computers led to the
operational availability of fast digital processing systems, which provided the
possibility for the development of automatic rainfall forecasting systems, based
on radar echo advection (see Collier (1978), Austin (1985) and Einfalt (1988) for
reviews on these methods).

Users’ needs in urban and rural areas have encouraged further development
of these systems for hydrological use. In the U.K., for instance, river flooding
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problems were a source of collaboration between hydrologists and meteorolo-
gists (Dee Project Final Report, 1977; Collier et al., 1980). Elsewhere,
increasing urbanization caused problems for sewer system managers, leading
to considerably higher flow volumes for heavy rains. One possible solution to
this problem is an optimized control of the sewer system, depending on the time
and space distribution of rainfall (Schilling, 1989). The usefulness of a very
short-term rainfall forecast in this context has already been demonstrated (e.g.
Austin and Austin, 1974; Frérot, 1987; Schilling and Petersen, 1987; Frérot and
Jacquet, 1989).

The importance of these needs and the availability of these solutions should
have led to the operational use of the optimal forecasting methods in urban
hydrology. However, in spite of very encouraging pilot projects (Huff et al.,
1980; Damant et al., 1983), the number of operationally working systems in
sewer management is extremely limited. In addition to the institutional
problems caused by moving away from a ‘static’ management of sewer systems
(Denoeux et al., 1987), a number of unsolved technical problems remain.
Important points are, in particular, the lack of knowledge of forecast reliability
and of the sensitivity of the hydrological system. Perfect forecasts are not an
operational necessity, as long as the hydrological users know which types of
errors may occur, and the possible consequences on their decisions (Einfalt and
Denoeux, 1989). This holds for any application of weather radar, as the
accuracy of a radar-based forecast is dependent on the features of the precipita-
tion systems (Wilson, 1966; Austin and Bellon, 1974; Ciccione and Pircher,
1984). Frontal systems yield a higher reliability, as they are stable for a long
time, whereas systems of a convective type may result in hardly any predic-
tability, because of the very short life-time of the rainfall structures. For this
reason, rainfall volumes provided by an automatic forecasting system should
be used only if their accuracy is well known.

This paper presents a method to design rules for the estimation of the
reliability of rainfall forecasts in real time. Each set of rules will be valid in
given climatological conditions, and for a precisely defined application of the
forecasts. The method itself consists of three steps, which will be described in
detail. These steps are:

(1) the definition of an application-dependent criterion of forecast quality,

(2) the selection of meteorological parameters as reliability predictors,

(3) the generation of decision rules relating the predictors to the expected
quality of the forecasts.

DEFINITION OF AN APPLICATION-DEPENDENT CRITERION OF FORECAST QUALITY

A criterion of forecast quality must be defined to compare different forecast-
ing techniques (Elvander, 1976; Carpenter and Owens, 1981; Tsonis and Austin,
1981; Ciccione and Pircher, 1984; Einfalt et al., 1989), or the performance of one
particular technique applied to different rainfall events (Austin and Bellon,
1974); the latter is the specific concern in this paper. The principal criteria used
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to assess the quality of radar forecasts (Denoeux, 1989; Denoeux et al., 1989) are
based on

(1) the movement of rainfall areas, e.g. the absolute and relative difference
between observed and forecast movement (Austin and Bellon, 1974);

(2) the rainfall field, e.g. the critical success index (Bellon and Austin, 1978);

(3) the hyetographs, such as the mean absolute error (AH) and the mean
relative error (AH/H), taken by comparing the measured and the forecast
rainfall depths over particular catchments (Huff et al., 1980; Damant et al.,
1983; Bellon and Austin, 1984).

The choice of any one of these criteria is based on hypotheses which are
rarely specified. For example, the use of the AH and AH/H criteria, often
preferred by hydrologists, relies on the three following conditions:

(1) the temporal rainfall distribution has not to be forecast precisely (thus,
one can consider only rainfall depths, instead of complete hyetographs);

(2) the overestimation of a rainfall volume has the same impact as its un-
derestimation (allowing for an error calculation regardless of sign);

(3) the average adequately represents, from the user’s viewpoint, the error
distribution for the catchment basins considered (i.e. an error of 50% on two
basins is equivalent to an error of 0% on the first one and an error of 100% on
the second one).

If these conditions are not satisfied, it is not possible to state that criteria AH
and AH/H are consistent with the user’s conception of forecast quality, i.e. that
a forecast f, which is superior to a forecast f, in terms of AH or AH/H would
actually be preferred by the user. This lack of exactness is dangerous, because
it has been shown (Denoeux, 1989; Denoeux et al., 1989) that different quality
criteria usually are not equivalent: a forecast f; that is better than a forecast
f, according to some criterion C,, may, with a high probability, be worse
according to some other criterion C,.

These considerations show the need for a method to verify the relevance of
a quality criterion to a given application.

General approach

If a forecast is used for decision-making, an initial hypothesis has to be
verified:

Hypothesis 1. There exists a decision function f,; defining an action «, on the
basis of a forecast p and n other decision criteria (x;); -, »:

[ (@) X1yeeesXy) = @

Such a function can be defined independently from the source of the
decision, be it a human being, an optimization procedure, or an expert system.

Each action a implies, on the other hand, some consequences also dependent
on the actual value r to be forecast and on m other influencing factors (;); - 1, m.
The ¢ consequences of an action «, noted (k;);_,,, are related to a, 7 and (¥;);-1m
by a function f,:
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fc: (a,r’yl""’ym) d (kl,-",kq.)
This leads us to the second hypothesis.

Hypothesis 2. There is a user who is capable of deciding which of any two
series of consequences (k;); _ 1, q and (), - ; , is preferable.

This second hypothesis actually describes the fact that there is a user able
to decide a posteriori which of two decisions applied to the same situation is
preferable in terms of their consequences. This corresponds to what Von
Neumann and Morgenstern (1953) described as “the picture of an individual
whose system of preferences is all-embracing and complete, i.e. who, for any
two objects ... possesses a clear intuition of preference”. This hypothesis im-
mediately implies the existence (Montgolfier and Bertier, 1978) of an ordinal
utility function f,, associating a positive real number u (called a utility index)
with any object, i.e. in the present case with any set of consequences (&, ,...,k,):

fu: (Ryyky) > u e R,

and such that, for any two sets of consequences (k;);_,, and (k));.,,:
(ky, .., ky) is preferred to (&, ..., k;) <> f,(ky, ..., k) > f,(Ki, ..., k)
and

(Ry, -...k,) 1s equivalent to (i, ..., &) < f(k,, ..., k) = [ (B, ..., k'})

It should be noted that:
(1) £, is defined up to a monotonic transformation: consequently, there are an
_infinity of ordinal utility functions corresponding to the same system of
preferences; .

(2) the definition of a function f, does'not give any meaning to differences in
utility numbers: in other terms, hypothesis 2 alone is not sufficient to guarantee
the existence of a measurable, or cardinal utility function. The problem of the
measurement of utility, which has been a major research area in economics
(e.g. Ellsburg, 1954), will not be addressed here; it is assumed only that some
ordinal utility function f, can be approximated, providing a sufficient un-
derstanding of the user’s preference structure.

FORECAST DECISION CRITERIA
wm (xl...xn) -

<o A motdos us gaanndh 3 gl 4

| T SRR
~ ACTION
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17 REALYARUE i fe . CONSEQUENCES
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Fig. 1. Notations introduced in this section.
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The definitions of functions f,, f, and f, are summarized in Fig. 1. From these
functions, it is possible to build a function g projecting a forecast p, a measured
value r, the n decision criteria (x;); - ,, and the m influencing factors (y;); - 1,
onto a real value u:

g: (p’xl’ "'7xn’r’y1’ "'9ym) d fu[fc(fd(p,xl’ ---oxn)yr’yl’ 9ym)] = U

If (x;);- ., and (¥;); -, are supposed to remain constant, it is therefore

possible to use g to rank any pair of forecasts (p,p’) correspohding to the same
real value r:

p > pl had g(P,xn ---vxn’ r9y19 '-'9ym) > g(p’axls ru ,yl’ "’ym)

Thus, the supposition that the functions f,, fc and f, exist, leads to a
‘subjective’ quality criterion based on the user’s concerns, which can be
compared with any ‘objective’ criterion. A method which allows comparison of
different criteria is the random generation of a large number of forecasts for a
number of known values of (x;);.,, and (¥;);-.,. For each situation, the
correlation between any criterion and the function g can be evaluated; this
leads to the choice of the most application-oriented criterion.

Application to the real-time control of an urban drainage system

The above-defined general approach can be applied to the problem of rainfall
forecasting for the real-time control (RTC) of an urban drainage system. The
problem is to forecast a set of hyetographs (I, ...,I;,); _ 15, Wwhere I; is the
intensity at time j on catchment i, p is the number of time steps and k& is the
number of catchments. The different actions to take are settings of control
devices (valves, pumps, etc.) at certain time steps. The decision depends on
some criteria in addition to the forecast itself, namely

the previous rainfall,

the measured flow at different points of the sewer system,

the measured water level in the retention basins,

the known availability of the control devices.

The result of a control strategy can be measured, for instance, in overflow
volume or quality change in the receiving waters. These consequences also
depend on such influencing factors as the actual availability and rehablhty of
the control and measuring devices during the event.

These considerations have been applied to the RTC of the Morée sewer
system, situated in the northern part of Seine-Saint-Denis, a surburban area of
Paris. Two retention basins are controlled: Blanc-Mesnil and Pont-Yblon, with
capacities of 95000 and 65 000 m?®, respectively. The Pont-Yblon basin comprises
two parts, one of which is considered as -a recreational area to be used in
extreme cases. Three overflow points are situated just downstream of the inlet
points of the Garonor, Bourget and Croult catchments (Fig. 2).

A computer program for the optimization of the control actions has been
operational since 1987 (Frérot et al., 1986; Frérot, 1987). This program, based on
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Fig. 2. Schematic description of the part of the drainage system controlled in real time in the
Seine-Saint-Denis project.

forecast inflows calculated by rainfall-runoff models (using the measured and
forecast hyetographs on each catchment), generates control strategies for the
next 6h with a time step of 15min.

The cost function to be minimized expresses the following three hierarchical
control goals:

(1) overflow reduction,

(2) preservation of water quality in the recreational part of the Pont-Yblon
basin,

(3) limitation of control device operations.

The cost C of a control strategy was defined as

i=3

T
C=73Ya j deb? (t)dt
i=1 0

k=N

+ o, Y. [sup(Vpy,-15000, 0)F
k=1

k=N k=N
+ B ,Z:l (Qemy@sn) + ‘szg'x (Qev—Qey )’

where deb;(2) is the overflow at time ¢ (¢ € [0, T']) and at overflow point i (i=1,3);
Vpy . is the water volume in the Pont-Yblon basin, at time step k; Qg and Qpy
are the outflows at time step k& from the Blanc-Mesnil and Pont-Yblon basins,
respectively; @ gy and @'py are the default maximum values for the outflows
from these two basins; N is the total number of time steps considered by the
decision procedure; and («;);-,, and (8,);_,, are weights reflecting the relative
importance of the different goals.

The decision procedure chooses the strategy for which C, calculated with the
forecast inflow, is minimum. Once the real inflow is known, the value of C,

(3
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Fig. 3. Sequence of computer programs used to compute the cost of a forecast, in terms of the
user-defined objective function.
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calculated with the observed inflow, can serve to evaluate the applied control
strategy. .

As it is based on the sewer managers’ concerns, the cost function (with
changed sign) can be considered as an approximation of the user’s utility
function. It can therefore be used to compare rainfall forecasts, applied to that
particular RTC scheme.

Figure 3 shows the links between the different programs that were used, in
this particular case, to compute the function g introduced in the previous
section. The hydrological module calculates a forecast inflow for the decision
time ¢,, taking into account historical rainfall (before ¢,) and forecast rainfall.
On this basis, the optimization module determines an optimal control strategy
for the following 6 h. A flow simulation module then calculates the cost of this
strategy applied to the ‘real’ inflow, i.e. the simulated inflow corresponding to
the measured hyetographs. The final result of these calculations is the cost of
the chosen strategy, which, by definition, is high for bad forecasts, and low for
good forecasts, in terms of the users’ concerns.

Consequently, the AH/H criterion (averaged over the four catchments) can
be compared with the value of cost C. For this purpose, two historical events
have been selected, which have caused flooding in the observed area. For each
event, two forecast situations have been chosen: one at the beginning and the
other in the middle of the event. Two hundred forecasts have been randomly
and independently generated for each forecast situation. The results of
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Fig. 4. Plot of AH/H vs. C for 200 randomly generated rainfall forecasts.
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comparing AH/H and C for one set of 200 forecasts (Fig. 4) show no obvious
relationship between the two criteria. Similar results have been observed for
the other three sets of 200 forecasts.

A more thorough analysis of these results showed that only overestimations
of > 150% for the two upstream catchments (Morée and Garonor), and underes-
timations of > 50%, for the two downstream catchments (Bourget and Croult)
result in ‘bad’ control strategies, i.e. produce costs which are >20% higher
than that produced by a perfect forecast. Thus, two of the three hypotheses for
the use of the AH/H criterion mentioned above are not verified in this case,
namely the equivalence of over- and underestimations, and the representativ-
ity of the mean error for several catchments.

This finding has led to the definition of the application-specific criterion
NMP (*Nombre de Mauvaises Prévisions’ — number of bad forecasts), as the
number of cases including either an overestimation of > 150% upstream, or an
underestimation of > 50% downstream. As four catchments are considered in
our example, the values of NMP range from zero to four for excellent and very
bad forecasts, respectively.

Figure 5 shows, for the same situation as in Fig. 4, the mean cost, + 18D,
corresponding to each NMP value. For that situation as well as for the three
others, the NMP appears to be far better correlated than AH/H with the costs
of control strategies. Hence, it can reasonably be considered as a better
criterion for this application of the forecasts.

DEFINITION OF METEOROLOGICAL PARAMETERS

From convective cells to'large frontal rainbands, precipitation systems show
a great variety of sizes, durations, and behaviours in development and motion
(e.g. Harrold and Austin, 1974; Browning, 1985). These factors can be expected
to determine the predictability of the rainfall systems, i.e. the possibility of
forecasting the amount of precipitation for a specific area and a specific time
interval. Many arguments support this assertion:

(1) Point forecasts are more sensitive to errors arising from the determina-
tion of advection, as rainfall areas are smaller (Newton and Frankhauser,
1964).

(2) If T is the maximum life-time of the precipitation systems perceived by
radar at time ¢,, no forecast can be made beyond ¢, + 7. Moreover, the deforma-
tion of a rainfall area in time, which can be expected to be related to its
duration, has been recognized as a major source of forecast error (Bellon and
Austin, 1984; Denoeux et al., 1989).

(3) All radar rainfall forecasting techniques are based on the estimation of
the motion of rainfall areas. This motion may be too slow to be measured
accurately; it may also differ greatly from the traditional linearity assumption,
or contain a more complex propagation term which may not easily be modelled
(Boucher and Wexler, 1961).

(4) The dynamics of the formation of precipitation systems determine not
only all their characteristics, but also the speed at which they grow and decay.
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For example, the presence of wind shear has been shown to play an important
role in the evolution of a convective cell into the form of an ordinary cell, or
a supercell (Chalon, 1978).

These remarks guided us in the search, among the many possible candidates,
for potential predictors of the quality of radar rainfall forecasts. Thirty-three
parameters were defined to be calculated from either radar data or rawinsonde
data.:

Definition of parameters from radar data

Precipitation systems appear on a PPI radar image as groups of precipitation
areas. These areas can be described mathematically as ‘echoes’, i.e. sets of
connected pixels with a reflectivity above some threshold ¢ (Einfalt et al., 1989).
Two categories of echoes have been defined:

(1) lower echoes, composed of pixels with a reflectivity > 13dBZ; dBZ is the
unit of the radar reflectivity Z, defined as the summation per unit volume of the
sixth power of the diameter of spherical water drops

Z mm® m‘3>

1mm® m™3

dBZ = 10 logm(

(2) upper echoes, for which the threshold ¢ has been set so that there remain
at least 1500 pixels of reflectivity > ¢.

These definitions had been introduced previously in the SCOUT forecasting
method (Einfalt, 1988; Einfalt et al., 1989).

TABLE 1

Parameters defined from radar data

Names e Units Definitions

N (or N') — ' Number of lower (or upper) echoes

S(rS) ’ km? Average area of lower (or upper) echoes

I(orl) mm h™? Average intensity of lower (or upper) echoes

o (or ¢') mm h™! . Standard deviation of intensities, for lower (or
upper) echoes

ST km? Total area covered by lower (or upper) echoes

E — Surface-weighted mean of elongations (quo-

tients of the principal moments of inertia), for
e lower (or upper) echoes
AN (or AN") — Absolute variation of N (or N’)

AST (or AST") km? Absolute variation of ST (or ST")
Al (or AI) mm h™! Absolute variation of I (or I')
ANy (or ANR') % Relative variation of N (or N')
ASTy, (resp.
ASTY) % Relative variation of ST (or ST")
Al (resp. ALR) % Relative variation of I (or I')
C — Maximum cross-correlation coefficient between
the two images used in the forecasting process
VA km h™! Advection speed of lower echoes, estimated by

the cross-correlation method

b ' "'

*
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The echo concept served as a basis for the definition of 26 parameters (see
Table 1), which can be classified in two categories.

(1) geometrical parameters (N, S, I, o, ST, E, and their equivalents for upper
echoes), which describe echo structure, both in space and reflectivity;

(2) evolution parameters (AN, AST, AI, ANy, ASTy;, AL; and their
equivalents for upper echoes, plus C and VA), which are related to the
transformation of the rainfall field.

Definition of parameters from rawinsonde data

The influence of temperature, humidity and wind profiles in the troposphere
on the formation of precipitation systems has been studied by meteorologists
for a long time (see e.g. Triplet and Roche, 1977; Wallace and Hobbs, 1977).
These profiles can be obtained from the upper-air measurements regularly
performed by meteorological services. Interpretation of the full profiles is often
necessary to make accurate weather forecasts, but other parameters can also
be calculated and provide some valuable information. Table 2 shows the
definition of seven of these parameters, which have been chosen as features to
predict forecast reliability. Wind speed (V) in the 3500-5000-m layer is well
correlated with the advection speed of convective cells (Battan, 1973). The
Showalter index (SI) is used by meteorologists to evaluate the probability of
storm occurrence (Jarmuzynski, 1978), and the Convective Available Potential
Energy (CAPE), the Convective Inhibition (CIN) and the Energy Index (EI)
can be used to measure the degree of instability, as well as to discriminate
between different types of .convective systems (Bluestein and Jain, 1985).
Lastly, the vertical wind shear (WS) and the bulk Richardson number (Ri) have

TABLE 2

Parameters defined from rawinsonde data

Names Units Definitions

| % km h™? Pressure-weighted mean of wind in the 3500-5000-m layer
wSs km h-!? Pressure-weighted vertical wind shear

SI K Difference between the temperature at 500 hPa and the

temperature of an air parcel originally at 850 hPa and
lifted at 500 hPa

CIN J kg! Net work per unit mass required to lift a negatively buo-
yant air parcel from the surface to the level of free con-
vection

CAPE Jkg! Energy per unit mass gained by an air parcel which
rises from the level of free convection to the equilibrium
level

ET Jkg! Change in kinetic energy per unit mass of an air parcel
moving from the level of greatest wet bulb potential tem-
perature in the lowest 150 hPa of the sounding, to the
400-hPa level

Ri — Ratio of the total energy available because of buoyancy
to the total energy available from vertical wind shear
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been related to the number and size of convective cells (Chalon, 1978; Bluestein
and Jain, 1985).

All of these predictors can easily be calculated from sounding data, for
example using the algorithms described by Stackpole (1967).

'~ GENERATION OF DECISION RULES

Having defined a criterion of forecast quality and a list of predictors, the
next step was to assemble a data set large enough for the use of statistical
(discriminant analysis) or heuristic (machine learning) methods, to generate
decision rules relating the values of the predictors to forecast reliability.

Such a data set has been constituted from archive data of the C-band radar
in Trappes (near Paris), operated by the French National Weather Service.
Among the 46 available rainfall events, 619 30-min periods were selected, for
which there were at least 10 1.6 x 1.6km?areas, < 100 km away from the radar,
where the rainfall depth, measured by radar, was >1mm.

At the beginning of each of these 30-min periods, a forecast 30 min ahead has
been simulated, using two different forecasting methods:

(1) a cross-correlation method (CROS), very similar to that described by
Austin and Bellon (1974), and

(2) an echo-tracking method (SCOUT), described by Einfalt (1988) and
Einfalt et al. (1989).

Because it is only applicable to cases of heavy rainfall over the Seine-Saint-
Denis catchments, the above-defined NMP criterion could not be applied to
evaluate all of these forecasts. It was therefore generalized so as to take into
account the forecast rainfall depths over 10 areas, chosen at random among the
1.6 x 1.6km? areas where the measured rainfall depth was >1mm. The
generalized NMP criterion (denoted NMP in this section) was defined as the
number of cases, out of 10, including either an overestimation of > 150%, or an
underestimation of > 50%. This new index (the possible values of which range
from zero for very good forecasts to 10 for very poor forecasts) keeps the main
properties that were found in the first part of the study, to be desirable, i.e.

(1) it concentrates on the evaluation of forecasts over areas where rainfall
was hydrologically significant;

(2) it does not take into account errors below certain thresholds, and

(3) it distinguishes between over- and underestimations, by applying
different thresholds.

Because point rain-gauge measurements cannot be easily compared with the
areal measurements provided by radar (e.g. Collier, 1986), and considering the
sparseness of rain-gauge data, radar measurements were used as a reference to
assess the quality of the forecasts. The bias introduced by this choice can
reasonably be expected to affect only the absolute performance values, and not
the relative values which are needed in this study.

For each 30-min period, the above-defined parameters have been calculated

ath

e
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from radar data, and from rawinsonde measurements performed in Trappes two
to four times a day by the French National Weather Service.

The final data set thus consisted of 619 ‘examples’, each composed of the
values of the 33 predictors, and of the NMP values of the forecasts performed
by CROS (NMPCR) and SCOUT (NMPSC). This data set has been randomly
divided into a learning set, and a test set of equivalent size.

To make the learning process easier, only three levels of forecast quality
have been considered, corresponding to

1 NMP =0
2 0< NMP <2
3 NMP >3

Two learning methods have been used:

(1) a statistical method: Bayes discriminant analysis, with hypotheses of
normality and of equality of the covariance matrices in the different classes
(Anderson, 1958);

(2) an heuristic method: the generation of production rules from decision
trees (Quinlan, 1986, 1987),

Let us suppose that an observation is described by a vector of attributes
X = (X, ..., X,), and that it has to be classified in one of two classes C, and C,.
The first method is based on the Bayes rule:

dX) = C, < PQ|X = P2|X

where d(X) is the predicted class, and P(i | X) is the conditional probability that
an observation belongs to class C;, if its representation is X.

If classes C, and C, are assumed to contain multivariate normal populations
with equal covariance matrices, the Bayes rule becomes

dX) = Creo — (X = ) ¥ 1 EX =) + (X = ) Y (X — ) = 2ln<§z>

where Y is the matrix of variances and covariances of each population, y; is the
vector of means of the ith population (i = 1,2), and p; is the prior probability of
class C;(i = 1,2).

The second learning procedure that was used in this study is a classical
technique in Artificial Intelligence. Compared with the former method, it has
the advantages of requiring no particular hypotheses, and of producing more
intuitive results. The basic algorithm starts by partitioning the learning set
with respect to the most discriminatory variable (or test). Following Quinlan
(1986), a measure of entropy was used to assess the discriminatory power of
each variable. Each subset can then be partitioned in a similar way, unless it
is too small or contains only examples of one class. The process repeats itera-
tively until no subset can be divided. The result is a recursive structure called
a decision tree, where each leaf denotes a class, and each interior node denotes
a test. Such a tree can be transformed into a set of production rules (,Qumlan
1987).
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The rules obtained for the recognition of ‘good’ forecasts (NMP = 0) and
‘bad’ forecasts (NMP > 3) are presented in Table 3, together with the corres-
ponding error rate (¢) and, for comparison, the error rate (¢’) of a random
estimation of reliability, based only on the frequencies of the different classes
in the learning set. From these results, it is apparent that:

(1) except in one case, the error rate reduction owing to the application of
the decision rules, compared with chance, is significant (22.1-56.8%);

(2) the best rule for the recognition of good forecasts by SCOUT (R7) is more
efficient than the best rule for the recognition of bad forecasts by this same
method (R9), whereas the inverse tendency is observed in the case of CROS (R4
is better than R1 and R2);

(8) only three rules, out of 10, make use of parameters calculated from
upper-air measurements; a closer analysis of the results tends to show that
these parameters do provide some valuable predictive information, but that
this information is, to some extent, duplicated by the information provided by
the radar data alone;

(4) the heuristic method gave consistently better results than the statistical
one, probably because the very restrictive hypotheses imposed by this last
method were only approximately verified in this case.

Additionally, the combination of two rules R and R’, for the recognition of
‘good’ and ‘bad’ forecasts, respectively, allows for a more precise determination
of forecast reliability using the trivial rules contained in Table 4. Tables 5 and
6 show the results of such a classification in three classes, obtained by the
combination of R2/R4 and R7/R10, respectively. What should be noticed is the
very small percentage of cases (4.5 and 3.2%) where a ‘bad’ forecast has been
classified as ‘good’, or a ‘good’ forecast has been classified as ‘bad’.

The best rules obtained in this study will soon be integrated in the real-time
control system in the Seine-Saint-Denis project, where the SCOUT forecasting
method has been operational since May 1988. They will be refined progressive-
ly, as new radar data and forecast results become available and are analysed
by the learning algorithm.

TABLE 4

Combination of two decision rules R and R’ for a more precise determination of forecast reliability

R
NMP =0 v NMP > 0
R :
NMP < 2 , NMP = 0 _ 0 < NMP < 2

NMP > 2 . ? NMP > 2
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TABLE 5

Performance table of rules R2 and R4 combined to determine the reliability of CROS forecasts

Forecast

NMP =0 0 < NMP < 2 ; NMP > 3 ) ?
Observed
NMP = 0 47 51 7 0
0 < NMP< 2 35 58 17 0
NMP > 3 7 26 62 0
TABLE 6

Performance table of rules R7 and R10 combined to determine the reliability of SCOUT forecasts

Forecast

NMP =0 0 < NMP < 2 NMP > 3 ?
Observed
NMP = 0 40 42 0 0
0 < NMP < 2 19 : 76 1 2
NMP > 3 10 S 92 26 2
CONCLUSIONS

The study presented in this paper has led, on the one hand, to very specific
decision rules, and, on the other hand, to a general methodology.

The decision rules obtained are very specific because they are linked to:

(1) a given region (~150km around Paris), with particular climatic and
microclimatic conditions (influence of urbanized areas, of the Seine river, etc.),
and

(2) a given operational context: the real-time control of a large urban
drainage system, with well-defined objectives.

Another main interest of the study is nevertheless the generality of the
methodology which has been designed; it can be transferred to other hydrologi-
cal applications of radar rainfall forecasts, provided two conditions are met:

(1) the decision process must have been formalized and the user’s utility
function approximated, so that a criterion of forecast quality can be defined
rigorously;

(2) radar data corresponding to a representative set of rainfall events must
be available, to allow for the identification of statistically significant relations
between the quality of the forecasts and characteristics of rainfall.
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This approach can be extended in many directions. For example, cases where
no utility function can be defined (because the user is not able to choose
between any two sets of consequences) could be studied. New meteorological
parameters could also be defined, e.g. from results of simulations performed by
mesoscale atmospheric models.

The transfer of this approach to a completely different context, even outside
hydrology, is also an interesting possibility.
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