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Abstract In the Transferable Belief Model, belief functions are usually combined us-

ing the unnormalized Dempster’s rule (also called the TBM conjunctive rule). This

rule is used because of its intuitive appeal and because it has received formal justifi-

cations as opposed to the many other rules of combination that have been proposed

in the literature. This article confirms the singularity of the TBM conjunctive rule by

presenting a new formal justification based on (1) the canonical decomposition of belief

functions, (2) the least commitment principle and (3) the requirement of having the

vacuous belief function as neutral element of the combination. A similar result is also

presented for the TBM disjunctive rule. Eventually, the existence of infinite families of

rules having similar properties as those two rules is pointed out.

Keywords Transferable Belief Model · Dempster-Shafer theory · Information fusion ·
Evidence theory · Belief functions · Uncertain reasoning · Combination rules

1 Introduction

The last thirty years have seen the emergence of the Dempster–Shafer theory of belief

functions [4,33,35], which has gained increasing interest as a conceptual framework for

This paper is an extended and revised version of [25].
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2 F. Pichon, T. Denœux

modeling partial knowledge and reasoning under uncertainty. Different interpretations

of this theory have been proposed [38]. In particular, the Transferable Belief Model

(TBM) interpretation, which will be adopted in this paper, views belief functions as

representing beliefs held by rational agents. In contrast to other interpretations (based,

e.g., on random sets or imprecise probabilities), the TBM does not assume any under-

lying probability concepts [42,43]. It has been successfully applied to various problems

such as pattern recognition [5,7], classifier fusion [28,24], and military applications [2,

31,1]. Most of these applications involve fusing belief functions and rely critically on

combination rules. Although many such rules have been proposed in the literature (see

[32,41] for recent surveys), it appears that belief functions are usually combined in the

TBM using the unnormalized version of Dempster’s rule [4], referred to as the TBM

conjunctive rule in this paper. An explanation to this fact is that this rule has received

formal justifications for its origin and uniqueness [9,36,18,19,16]1. It seems indeed rea-

sonable to favor a principled rule over “ad hoc” ones [41], hence the necessity for such

justifications.

A limitation, which applies to both Dempter’s rule and the TBM conjunctive rule,

is the requirement that the items of evidence combined be distinct, or in other words,

that the information sources be independent. Some authors [22,14,3,8] have attempted

to address this issue. However, those proposals are either restricted to particular classes

of belief functions or do not possess desirable properties such as associativity. Recently,

Denœux [6] proposed a rule, called the cautious rule, for the combination of nondistinct

bodies of evidence. The term cautious is reminiscent of the derivation of the rule,

which is based on the least commitment principle (LCP) [37]. The LCP stipulates

that one should never give more beliefs than justified by the available information,

hence it promotes a cautious attitude. The cautious rule is based on the conjunctive

weight function [39], which is an equivalent representation of a nondogmatic belief

function arising from its canonical decomposition. The TBM conjunctive rule can also

be expressed using the conjunctive weight function, which makes it interesting to study

rules based on this rarely exploited function.

One of the main differences between the cautious rule and the TBM conjunctive

rule is that the former has no neutral element, whereas the latter admits the vacuous

belief function as neutral element. This last property is quite natural for a conjunctive

operator, as the vacuous belief function encodes ignorance. Hence, rules based on the

conjunctive weight function and that admit the vacuous belief function as neutral

element are of particular interest. The main result presented in this paper is that,

among those rules, the TBM conjunctive rule is the least committed one. This can be

seen as a new justification of the TBM conjunctive rule for combining nondogmatic

belief functions, as this rule respects a central principle of the TBM. A counterpart to

this result is also obtained for the TBM disjunctive rule [10,37].

Despite the importance of formal justifications, one should note that some rules of

combination that are not completely well founded theoretically may still be useful for

some problems, such as classifier fusion (see, e.g., [29,30]). In [9], Dubois and Prade

emphasize this idea by arguing that having only one rule is “not very fortunate in the

scope of AI, where one tries to simulate the human mind rather than force behavior

rules issued from formal arguments” [9]. Indeed, the “descriptive nature of AI” [9] calls

1 One should note that, although those justifications use loosely the expression “Dempster’s
rule”, they actually prove the unicity of the unnormalized version of Dempster’s rule. Further-
more, they are not based on probability concepts, hence they can readily be used to justify
the TBM conjunctive rule as already remarked by Smets [44,41].
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The Unnormalized Dempster’s Rule of Combination: a New Justification 3

for more flexibility in the choice of combination rules, provided that those other rules

satisfy at least a few basic and reasonable requirements. Interestingly, it is possible to

cast the main result of this paper and the differences between the TBM conjunctive

rule and the cautious rule in a more general context: the cautious rule can be seen as

a member of an infinite family of combination rules based on t-norms [20] on (0,+∞],

whereas the TBM conjunctive rule belongs to an infinite family of combination rules

based on uninorms [47] on (0,+∞] having one as neutral element. Furthermore, both

rules have a special position in their respective family: they are the least committed

elements. The relevance of the introduction of those families of rules in this paper may

thus be seen as twofold. First and foremost, it allows the main result of the paper

to be put in a broader perspective. Second, it also provides an answer to the need

for flexibility in terms of combination rules. Demonstrating the practical usefulness of

those families of rules is nonetheless beyond the scope of this paper. References [29,30]

may be cited as encouraging preliminary steps in this direction.

The rest of this paper is organized as follows. Necessary notions, such as the con-

junctive and disjunctive weight functions, the LCP, and the cautious rule are first

recalled in Section 2. The main result of this paper is presented in Section 3. Section

4 introduces infinite families of combination rules based on generalized t-norms and

uninorms. Section 5 concludes the paper.

2 Fundamental Concepts

For the reader’s convenience, this paper is self-contained. Section 2.1 summarizes basic

concepts and terminology related to belief functions. The conjunctive and disjunctive

canonical decompositions of belief functions and the resulting conjunctive and dis-

junctive weight functions are then recalled in Section 2.2. This section reviews only

necessary material, further recent findings on the weight functions may be found in [6].

Section 2.3 focuses on the relative informational content of belief functions. Finally,

Section 2.4 summarizes the relevant parts of [6] related to the cautious rule and its

dual, the bold rule.

2.1 The TBM: Basic Definitions and Notations

In this paper, the TBM [42,43] is accepted as a model to quantify uncertainties based

on belief functions [33]. In this model, the beliefs held by an agent Ag on a finite frame

of discernment Ω = {ω1, ..., ωK} are represented by a basic belief assignment (BBA)

m defined as a mapping from 2Ω to [0, 1] verifying
∑
A⊆Ωm (A) = 1. Subsets A of

Ω such that m(A) > 0 are called focal sets of m. The vacuous BBA, denoted mΩ , is

defined by mΩ(Ω) = 1: it corresponds to complete ignorance. A BBA is said to be

dogmatic if Ω is not a focal set.

A BBA m is said to be normal2 if ∅ is not a focal set, and subnormal otherwise. A

subnormal BBA m can be transformed into a normal BBA m∗ by the normalization

2 Although the terms “normal” and “Gaussian” are used interchangeably in probability
theory, the notion of normal belief function recalled here should not be confused with that of
Gaussian belief function [23], which is a generalization of a Gaussian probability distribution.
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4 F. Pichon, T. Denœux

operation defined as follows:

m∗(A) =

{
k ·m(A) if A 6= ∅,
0 otherwise,

(1)

for all A ⊆ Ω, with k = (1−m(∅))−1.

Equivalent representations of a BBA m exist. In particular the belief, implicability,

plausibility and commonality functions are defined, respectively, as:

bel (A) =
∑
∅6=B⊆A

m (B) ,

b (A) = bel(A) +m(∅),

pl (A) =
∑

B∩A6=∅

m (B) ,

and

q (A) =
∑
B⊇A

m (B) ,

for all A ⊆ Ω. We note that functions b and bel coincide when m(∅) = 0. However,

these two functions need to be distinguished in the subnormal case: bel has easier

interpretation in terms of degrees of belief, whereas b plays a more technical role. The

BBA m can be recovered from any of these functions. In particular, we have:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), (2)

for all A ⊆ Ω and where |A| denotes the cardinality of A.

The negation (or complement) m of a BBA m is defined as the BBA verifying

m(A) = m(A), ∀A ⊆ Ω, where A denotes the complement of A [10]. It can be shown

that the implicability function b associated to m and the commonality function q

associated to m are linked by the following relation:

b(A) = q(A), ∀A ⊆ Ω.

The TBM conjunctive rule is noted ∩©. It is defined as follows. Let m1 and m2 be

two BBAs, and let m1 ∩©2 be the result of their combination by ∩©. We have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) , ∀A ⊆ Ω.

Dempster’s rule, noted ⊕, is just the equivalent to the TBM conjunctive rule followed

by normalization using (1). Both rules are commutative, associative and admit a unique

neutral element: the vacuous BBA. The TBM conjunctive rule has a simple expression

in terms of commonality functions. We have:

q1 ∩©2(A) = q1 (A) · q2 (A) , ∀A ⊆ Ω. (3)

Let us now assume that m1 ∩©2 has been obtained by combining two BBAs m1 and

m2, and then we learn that m2 is in fact not supported by evidence and should be
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The Unnormalized Dempster’s Rule of Combination: a New Justification 5

“removed” from m1 ∩©2. This operation is called decombination [39] or removal [34]. It

is well defined if m2 is nondogmatic. Let 6∩© denote this operator. We can write:

m1 ∩©2 6∩©m2 = m1.

Let q1 and q2 be the commonality functions of two BBAs m1 and m2, the decombina-

tion is defined as follows:

q1 6∩©2 (A) =
q1(A)

q2(A)
, ∀A ⊆ Ω.

Note that q2(A) > 0 for all A as long as m2 is nondogmatic.

A disjunctive rule ∪© also exists [10,37]. It is defined as:

m1 ∪©2 (A) =
∑

B∪C=A

m1 (B)m2 (C) , ∀A ⊆ Ω.

This rule, called the TBM disjunctive rule in this paper, has a simple expression in

terms of implicability functions, which is the counterpart of (3):

b1 ∪©2(A) = b1 (A) · b2 (A) , ∀A ⊆ Ω.

The TBM disjunctive rule is commutative, associative and admits a unique neutral

element: the BBA which assigns the total mass of belief to the empty set, i.e., m(∅) = 1.

This BBA, which we note m∅, is the negation of the neutral BBA mΩ of the TBM

conjunctive rule and is sometimes called the or-vacuous BBA [40]. As for the TBM

conjunctive rule, an inverse operation may be defined for the TBM disjunctive rule:

b1 6∪©2 (A) =
b1(A)

b2(A)
, ∀A ⊆ Ω.

This operation is well-defined as long as m2 is subnormal (in which case we have

b2(A) > 0 for all A). However, it does not necessarily produce a belief function. Its

interpretation is similar to that of 6∩©: it removes, or “decombines”, evidence which has

been combined disjunctively with prior knowledge.

The dual nature of ∩© and ∪© becomes apparent when one notices that these oper-

ators are linked by De Morgan’s laws [10]:

m1 ∪©m2 = m1 ∩©m2

m1 ∩©m2 = m1 ∪©m2

As remarked by Smets [37], the TBM conjunctive rule is based on the assumption

that the belief functions to be combined are induced by reliable sources of information,

whereas the TBM disjunctive rule only assumes that at least one source of informa-

tion is reliable, but we do not know which one (see also [15]). Both rules assume the

sources of information to be independent (i.e., they are assumed to provide distinct,

non overlapping pieces of evidence).
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6 F. Pichon, T. Denœux

2.2 Canonical Decompositions of Belief Functions

2.2.1 Conjunctive Weight Function

According to Shafer [33], a BBA is said to be simple if it has the following form

m(A) = 1− w0

m(Ω) = w0,

for some A ⊂ Ω and some w0 ∈ [0, 1]. Let us denote such a BBA as Aw0 . The vacuous

BBA may thus be noted A1 for any A ⊂ Ω. It is clear that

Aw0 ∩©Aw
′
0 = Aw0w

′
0 .

A BBA may be called separable if it can be obtained as the result of the combination

of simple BBAs using the TBM conjunctive rule. It can then be written:

m = ∩©A⊆ΩA
w(A),

with w(A) ∈ [0, 1] for all A ⊂ Ω.

Smets [39] showed that any nondogmatic BBA m may be uniquely expressed as

the decombination of two separable BBAs:

m =
(
∩©A⊂ΩA

wC(A)
)
6∩©
(
∩©A⊂ΩA

wD(A)
)

(4)

with wC(A) ∈ (0, 1], wD(A) ∈ (0, 1] and max(wC(A), wD(A)) = 1 for all A ⊂ Ω.

Equation (4) is referred to as the conjunctive canonical decomposition of m. Let w

denote the mapping from 2Ω \Ω to (0,+∞) defined as

w(A) =
wC(A)

wD(A)
, ∀A ⊂ Ω.

Function w is called the conjunctive weight function3 associated to m [6]. If m is

separable, then wD(A) = 1 and w(A) ≤ 1 for all A ⊂ Ω. Otherwise, w(A) > 1 for some

A ⊂ Ω. For any nondogmatic BBA m, we may write

m = ∩©A⊆ΩA
w(A),

where Aw(A) is a simple BBA if w(A) ≤ 1, and a “generalized simple BBA” (which

is not a BBA) if w(A) > 1. The conjunctive weight function is a new equivalent

representation of a nondogmatic BBA, which may be computed directly from m as

follows:

lnw(A) = −
∑
A⊆B

(−1)|B|−|A| ln q(B), ∀A ⊂ Ω.

We notice the similarity with (2). Hence, as pointed out in [6], any procedure suitable

for transforming q to m can be used to compute lnw from − ln q.

Finally, we note that function w has a simple property with respect to the TBM

conjunctive rule. Let w1 and w2 be two weight functions, and let w1 ∩©2 denote the

result of their ∩©-combination. Then the following relation holds:

w1 ∩©2(A) = w1(A)w2(A), ∀A ⊂ Ω.

3 We note that function w is only defined for strict subsets of Ω, as the notation Ωw0

corresponds to the vacuous BBA no matter the value assigned to w0: consequently, w(Ω)
could be fixed arbitrarily. In [17], the authors propose a particular way to extend function w
to 2Ω . However, this extension will not be needed in this paper.
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The Unnormalized Dempster’s Rule of Combination: a New Justification 7

2.2.2 Disjunctive Weight Function

Using a similar reasoning as in Section 2.2.1, Denœux [6] showed that any subnormal

BBA m can be uniquely decomposed as follows:

m =
(
∪©A⊃∅AvC(A)

)
6∪©
(
∪©A⊃∅AvD(A)

)
,

where vC(A) ∈ (0, 1], vD(A) ∈ (0, 1] and max(vC(A), vD(A)) = 1 for all A ⊆ Ω such

that A 6= ∅, and the notation Ax denotes the negation of A
x
. Let v denote the mapping

from 2Ω \ ∅ to (0,+∞) defined as

v(A) =
vC(A)

vD(A)
, ∀A ⊃ ∅.

This new function, referred to as the disjunctive weight function associated to m, may

be recovered from b as follows [6]:

ln v(A) = −
∑
B⊆A

(−1)|A|−|B| ln b(B), ∀A ⊃ ∅.

It is related to the conjunctive weight function w associated to the negation m of m

by the equation:

v(A) = w(A), ∀A 6= ∅. (5)

The TBM disjunctive rule has a simple expression using the disjunctive weight

function. Let m1 and m2 be two subnormal BBAs with disjunctive weight functions

v1 and v2, and let v1 ∪©2 be the disjunctive weight function associated to m1 ∪©m2. We

have:

v1 ∪©2(A) = v1(A)v2(A), ∀A ⊃ ∅.

2.3 Informational Comparison of Belief Functions

The least commitment principle (LCP) of the TBM postulates that, given a set of BBAs

compatible with a set of constraints, the most appropriate BBA is the least informative

[37]. It is similar to the principle of minimal specificity in possibility theory [45]. This

principle becomes operational through the definition of partial orderings allowing the

informational comparison of BBAs. Such orderings, generalizing set inclusion, were

proposed by Yager [46] and Dubois and Prade [10]. Their interpretations are discussed

from a set-theoretical perspective in [10] and from the point of view of the TBM in

[12]. They are defined as follows:

– pl-ordering: m1 vpl m2, iff pl1 (A) ≤ pl2 (A) for all A ⊆ Ω ;

– q-ordering: m1 vq m2, iff q1 (A) ≤ q2 (A) for all A ⊆ Ω;

– s-ordering: m1 vs m2, i.e., m1 is a specialization of m2, iff m1 can be obtained

from m2 by transferring each mass m2(A) to subsets of A.

A BBA m1 is said to be x-more committed than m2, with x ∈ {pl, q, s}, if we have

m1 vx m2. It was shown in [10] that those definitions are not equivalent: m1 vs m2

implies m1 vpl m2 and m1 vq m2, but the converse is not true. Furthermore, the

orderings vpl and vq are not comparable. The vacuous BBA mΩ is the unique greatest

element for partial orderings vx with x ∈ {s, q, pl}, i.e., we have m vx mΩ for all
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8 F. Pichon, T. Denœux

m. Informally, this latter property means that all beliefs are more informative than

ignorance, as should be.

In [6], Denœux defined a new partial ordering based on the conjunctive weight func-

tion. Given two nondogmatic BBAs m1 and m2, m1 is said to be w-more committed,

which is noted m1 vw m2, iff w1(A) ≤ w2(A), for all A ⊂ Ω. The vacuous BBA mΩ is

not a greatest element for vw, but it is only a maximal element (actually the unique

maximal element), i.e., we have mΩ vw m⇒ m = mΩ , for all nondogmatic bba m. It

was shown in [6] that the w-ordering is strictly stronger than the s-ordering, i.e., we

have, for any two nondogmatic BBAs m1 and m2, m1 vw m2 ⇒ m1 vs m2.

Let us reproduce a lemma related to the w-ordering, which will be needed later.

Lemma 1 ([6]) Let m be a nondogmatic BBA with conjunctive weight function w,

and let w′ be a mapping from 2Ω\ {Ω} to (0,+∞) such that w′(A) ≤ w(A) for all

A ⊂ Ω. Then w′ is the conjunctive weight function of some nondogmatic BBA m′.

In [6], Denœux also defined yet another partial ordering, which is the disjunctive

counterpart of vw. This ordering, called the v-ordering, is based on the disjunctive

weight function. It is defined as follows: given two subnormal BBAs m1 and m2, m1 vv
m2 iff v1 (A) ≥ v2 (A) for all A 6= ∅. The v-ordering is strictly stronger than the s-

ordering. However, vv and vw are not comparable.

As explained in [6], all these partial orderings seem equally well justified and rea-

sonable. The choice of a particular partial ordering for a given problem is then guided

by different considerations such as existence of a solution or tractability of calculations.

In the following section, we review how the vw and vv orderings can be used to derive

two rules of combination.

2.4 Two Idempotent Rules Based on the Weight Functions

We have seen that the TBM conjunctive and disjunctive rules are based on pointwise

combination of conjunctive and disjunctive weights, respectively, using the product.

Recently, Denœux [6] proposed two other rules, called the cautious and bold rules of

combination, in which the product is replaced by the minimum. This section summa-

rizes necessary material on those two rules.

2.4.1 The Cautious Rule of Combination

The TBM conjunctive rule is justified only when it is safe to assume that the items

of evidence combined be distinct or, in other words, that the information sources be

independent. When this assumption does not hold, an alternative consists in adopting

a cautious, or conservative, attitude to the merging of belief functions by applying the

LCP [6,8,13]. Let us now recall the building blocks of the cautious merging of belief

functions.

As remarked in [10], it is possible to think of vx as generalizing set inclusion.

This reasoning can be used to see conjunctive combination rules as generalizing set

intersection. Let us consider the following situation. Suppose we get two reliable sources

of information. One states that ω is in A ⊆ Ω, whereas the other states that it is in

B ⊆ Ω. It is then certain that ω is in C such that C ⊆ A and C ⊆ B. The largest

subset C satisfying those constraints is A∩B. Now, suppose we get two reliable sources

of information that provide two BBAs m1 and m2. Upon receiving those two pieces
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of information, the agent’s state of belief should be represented by a BBA m12 more

informative than m1 and m2. Let Sx (m) be the set of BBAs m′ such that m′ vx m,

with x ∈ {v, w, s, q, pl}. Hence m12 ∈ Sx (m1) and m12 ∈ Sx (m2), or equivalently

m12 ∈ Sx (m1) ∩ Sx (m2). According to the LCP, the x-least committed BBA should

be chosen in Sx (m1) ∩ Sx (m2). This defines a conjunctive combination rule if the

x-least committed BBA exists and is unique. When m1 and m2 are nondogmatic,

choosing the w-ordering yields an interesting solution [6, Proposition 4] which Denœux

uses to define the so-called cautious rule of combination.

Definition 1 ([6]) Let m1 and m2 be two nondogmatic BBAs, and let m1 ∧©2 =

m1 ∧©m2 denote the result of their combination by the cautious rule. The nondogmatic

BBA m1 ∧©2 has the following conjunctive weight function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω,

where ∧ is the minimum operator.

We thus have:

m1 ∧©2 = ∩©A⊂ΩA
w1(A)∧w2(A).

The cautious rule is commutative, associative, idempotent and monotonic with respect

to vw. This last property means that if a nondogmatic BBA m1 is less informative than

a nondogmatic BBA m2 according to the vw ordering, then this order is unchanged

after combination by ∧© with a third nondogmatic BBA. Of interest for Section 4 of

this paper is the fact that all of these properties are due to similar properties of the

minimum on (0,+∞], much as the properties of the TBM conjunctive rule may be seen

as consequences of the properties of the product on (0,+∞].

2.4.2 The Bold Rule of Combination

We have seen that the cautious rule of combination extends set intersection, and that

it supposes the sources of information to be reliable. Let us now consider another

situation. Suppose we get two sources of information and that it is known that at

least one of the two sources is reliable, but we do not know which one. One of them

states that ω is in A ⊆ Ω, whereas the other one states that it is in B ⊆ Ω. The

smallest set containing both A and B is A ∪B. This reasoning is used in [6] to derive

a disjunctive merging of belief functions based on the LCP, which can be summarized

as follows. Suppose we get two sources of information that provide two BBAs m1 and

m2, and that at least one of the sources is reliable but it is not known which one.

Then, the BBA m12 resulting from the merging of m1 and m2 should be the x-most

committed BBA amongst the BBAs which are x-less committed than m1 and m2, with

x ∈ {v, w, s, pl, q} [6]. Denœux showed that when m1 and m2 are subnormal, using the

v-ordering yields an interesting solution [6, Proposition 13], from which he defined the

so-called bold rule of combination.

Definition 2 ([6]) Let m1 and m2 be two subnormal BBAs, and let m1 ∨©2 = m1 ∨©m2

denote the result of their combination by the bold rule. The disjunctive weight function

of the subnormal BBA m1 ∨©2 is:

v1 ∨©2(A) = v1(A) ∧ v2(A), ∀A 6= ∅.
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10 F. Pichon, T. Denœux

We thus have:

m1 ∨©2 = ∪©A6=∅Av1(A)∧v2(A).

The bold rule has similar properties as the cautious rule since they are both based on

the minimum. Eventually, let us remark that the cautious and bold rules are related

by De Morgan’s laws [6]. We have:

m1 ∨©m2 = m1 ∧©m2, (6)

m1 ∧©m2 = m1 ∨©m2. (7)

3 Singularity of the TBM Conjunctive and Disjunctive Rules

As shown above, the cautious and TBM conjunctive rules share a remarkable property:

they are based on pointwise combination of conjunctive weights using a binary operator

on (0,+∞]. This binary operator is the minimum in the former case, and the product

in the latter. As a consequence, the vacuous BBA is a neutral element for the TBM

conjunctive rule, whereas it is not for the cautious rule. This property of the cautious

rule seems difficult to interpret, as the vacuous BBA expresses total ignorance: as such,

it could be expected to have no impact when combined conjunctively with any other

BBA. We may thus wonder whether there exists a rule

1. based on pointwise combination of conjunctive weights (such a rule will be hereafter

referred to as w-based);

2. having the vacuous BBA as neutral element, and

3. w-less committed than the TBM conjunctive rule.

As will be shown in Section 3.1, such a rule does not exist. We will demonstrate

that the TBM conjunctive rule is less committed according the vw ordering and,

consequently, according to the orderings vx with x ∈ {s, pl, q} as well, than any other

w-based rule having the vacuous BBA as neutral element. Section 3.2 will provide a

counterpart to this result for the TBM disjunctive rule. Eventually, our justification of

the TBM conjunctive rule will be compared in Section 3.3 to the other ones proposed

in the literature.

3.1 Justification of the TBM conjunctive rule

Let us consider a w-based rule based on a binary operator ◦ on (0,+∞]. It is clear that

this rule has the vacuous BBA as neutral element if and only if 1 is a neutral element

of ◦. We may remark that the product on (0,+∞] satisfies this property, whereas the

minimum on (0,+∞] does not, hence the difference between the TBM conjunctive rule

and the cautious rule.

However, not all binary operators on (0,+∞] correspond to a w-based rule, as the

combination of two weight functions should yield a valid weight function associated to

some BBA. The set of binary operators allowing the definition of a w-based rule with

the vacuous BBA as neutral element is completely characterized by Proposition 1 and

Theorem 1 below. We may already remark that this characterization is essential since

it will lead to the justification of the TBM conjunctive rule.
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Proposition 1 Let ◦ be a binary operator on (0,+∞] such that 1 ◦ x = x ◦ 1 = x for

all x ∈ (0,+∞) and x◦y ≤ xy for all x, y ∈ (0,+∞). Then, for any conjunctive weight

functions w1 and w2, the function w1◦2 defined by:

w1◦2(A) = w1(A) ◦ w2(A), ∀A ⊂ Ω,

is a conjunctive weight function associated to some nondogmatic BBA m1◦2.

Proof We have

w1◦2(A) ≤ w1 ∩©2(A), ∀A ⊂ Ω.

From Lemma 1, w1◦2 is a conjunctive weight function since w1 ∩©2 is a conjunctive

weight function. ut

Proposition 1 has shown that if a binary operator is below the product and has 1

as neutral element, then it can be used to define a w-based rule that has the vacuous

BBA as neutral element. One may wonder if the constraint of being below the product

can be relaxed. The answer is provided by the following theorem.

Theorem 1 Let ◦ be a binary operator on (0,+∞] such that

– 1 ◦ x = x ◦ 1 = x for all x ∈ (0,+∞) and

– x ◦ y > xy for some x, y ∈ (0,+∞).

Then, there exist two nondogmatic BBAs m1 and m2 on a frame Ω such that the

function obtained by pointwise combination using ◦ of the conjunctive weight functions

associated to m1 and m2 is not a conjunctive weight function.

Proof See Appendix A. ut

The immediate corollary of this theorem constitutes one of the main results of this

paper.

Corollary 1 The TBM conjunctive rule ∩© is the x-least committed rule, with x ∈
{w, s, pl, q}, among the w-based rules that have the vacuous BBA mΩ as neutral ele-

ment.

Proof From Theorem 1 and Proposition 1, it is clear that any w-based rule ◦© that has

the vacuous BBA as neutral element is based on a binary operator ◦ on (0,+∞] with 1

as neutral element and such that x◦y ≤ xy for all x, y ∈ (0,+∞). For all nondogmatic

BBAs m1 and m2, we thus have

w1(A) ◦ w2(A) ≤ w1 ∩©2(A), ∀A ⊂ Ω.

Consequently, m1 ◦©m2 vw m1 ∩©m2, and m1 ◦©m2 vx m1 ∩©m2 for x ∈ {s, pl, q}. ut

According to this corollary, the TBM conjunctive rule thus respects a central prin-

ciple of the TBM: the least commitment principle, under the two requirements of being

based on pointwise combination of conjunctive weights and having the vacuous BBA

as neutral element. Corollary 1 further implies that it is the only rule satisfying these

properties. We thus have provided a new formal justification of the TBM conjunctive

rule for combining nondogmatic belief functions.

In Section 3.3, this justification will be compared to the other ones proposed in the

literature. Before that, we will first state a corresponding result for the TBM disjunctive

rule, which is a consequence of the duality between these two rules.
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3.2 The Disjunctive Case

The bold and TBM disjunctive rules are based on pointwise combination of disjunc-

tive weights using a binary operator on (0,+∞] (respectively, the minimum and the

product). The difference between these two rules is that the or-vacuous BBA m∅ is a

neutral element for the TBM disjunctive rule, whereas it is not for the bold rule. This

property is important in the context of a disjunctive merging. Indeed, it is a direct

consequence of generalizing set union, as is the use of the principle of maximal com-

mitment (instead of the LCP). The study of rules based on pointwise combination of

disjunctive weights (v-based rules for short) and which admits the or-vacuous BBA as

neutral element leads to the following conclusion.

Corollary 2 The TBM disjunctive rule ∪© is the x-most committed rule, with x ∈
{v, s, pl, q} among the v-based rules that have the or-vacuous BBA m∅ as neutral ele-

ment.

Proof Let ◦ be a binary operator on (0,+∞] having 1 as neutral element. Let v1 and

v2 be the disjunctive weight functions associated to two subnormal BBAs m1 and m2.

Let w1 and w2 be the conjunctive weight functions associated to m1 and m2. We have:

∪©A6=∅Av1(A)◦v2(A) = ∩©A6=∅Av1(A)◦v2(A)

= ∩©A6=∅Ā
v1(A)◦v2(A)

since Ax denotes the negation of A
x
. Furthermore, we have from (5):

∩©A6=∅Ā
v1(A)◦v2(A) = ∩©A6=∅Ā

w1(Ā)◦w2(Ā)

= ∩©A⊂ΩA
w1(A)◦w2(A). (8)

From Theorem 1 and Lemma 1, (8) is guaranteed to be a BBA iff ◦ is such that

x ◦ y ≤ xy. For any operator ◦ on (0,+∞] having 1 as neutral element and such that

x ◦ y ≤ xy for all x, y ∈ (0,+∞), we have

v1 (A) ◦ v2 (A) ≤ v1 ∪©2 (A) , ∀A 6= ∅.

Consequently, the disjunctive rule based on ◦ is at most as v-committed as the rule ∪©.

This result can be extended to weaker orderings vx with x ∈ {s, pl, q}. ut

This corollary shows that the TBM disjunctive rule respects the principle of maxi-

mal commitment, which is the one to be followed in the context of disjunctive merging.

It may thus be seen as a new justification for the TBM disjunctive rule.

3.3 Discussion

The justification of the TBM conjunctive rule proposed in this article as well as the ones

proposed in [9,36,18,19,16] completely fit the TBM since they are obtained without

introducing any underlying probability concepts. However, it is interesting to remark

that our approach is completely different from the other ones. Indeed, the justifications

presented in [36,18,19,16] result essentially from the associativity and commutativity

properties required of the combination operator, as rightfully remarked by Smets in
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[44], and the justification of Dubois and Prade [9] is based on the requirement that the

combination should satisfy the so-called separability property.

In comparison, our justification is based on two other requirements: the combi-

nation should be w-based and it should have the vacuous BBA as neutral element.

Whereas the latter requirement is intuitively appealing, the former may seem more

difficult to interpret. However, some justification may be found in the meaning of the

canonical decomposition of a belief function, which breaks down a belief function into

elementary pieces of evidence pertaining to single propositions. It may be argued that

the combination of two belief functions should be performed by considering in turn

each proposition and combining the two elementary pieces of evidence pertaining to

it, which leads to the w-based requirement. As a further motivation for introducing

this requirement, we may notice that w-based combinations offer a rarely considered,

yet promising outlook on the combination of belief functions, as demonstrated by the

recent introduction of the cautious rule.

As the arguments developed in this paper are based on the canonical conjunctive

decomposition, which is rigorously defined only for nondogmatic belief functions, our

justification of the TBM conjunctive rule is formally restricted to this particular class

of belief functions. As noted in [39], it seems possible to extend this decomposition to

any belief function using an infinitesimal discount rate. However, this idea remains to

be fully investigated from a mathematical point of view. In any case, it may be argued

that the restriction to nondogmatic belief functions is of little practical significance, as

any belief function can always be discounted by an arbitrarily small amount, resulting

in a more conservative representation of a piece of evidence [6].

In summary, all the justifications proposed for the TBM conjunctive rule seem

reasonable and have their merits, even though the requirements on which they are

based can always be subject to discussion. Globally, however, there seems to be a

convergence of arguments in favor of this particular rule, even if other rules may be

valuable in some situations as explained in the introduction of this paper. As a matter

of fact, Section 4 below will reveal the existence of infinite families of combination rules

in which the TBM conjunctive rule and the cautious rule are particular members.

4 Four Infinite Families of Combination Rules

As discussed in Section 1, having only one rule is not the ideal situation to cope

with real-world problems. It could thus be useful to have other rules of combination.

Such rules should at least satisfy a few basic properties such as commutativity or

associativity. This section shows that the cautious and TBM conjunctive rules can

be seen as particular members of two distinct families of combination rules. It thus

provides an answer to the need for more flexibility in terms of combination rules, and

sheds some new light on the fundamentally different behaviors of the cautious and

TBM conjunctive rules. It also allows us to put the result of the preceding section in

a broader perspective.

The key to the introduction of those families of rules is to remark that the cautious

and TBM conjunctive rules are based on the minimum and the product, respectively,

and that these two operators on (0,+∞] essentially differ by the position of their neutral

element. Indeed, on the one hand, the minimum on (0,+∞] is commutative, associative,

and monotonic. In addition, the upper bound of (0,+∞] serves as neutral element for

the minimum. The minimum on (0,+∞] has thus similar properties as triangular norms
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(t-norms for short) [20], except that t-norms are usually defined on [0, 1]. On the other

hand, the product on (0,+∞] is commutative, associative, monotonic and has one

as neutral element. It has thus similar properties as uninorms [47], which are usually

defined as commutative, associative, monotonic operators on [0, 1] that admit a number

e ∈ [0, 1] as neutral element. This comparison between the minimum and the product

leads us to extend the definitions of t-norms and uninorms on (0,+∞] as follows.

Definition 3 A t-norm on (0,+∞] is a binary operator on (0,+∞], which is commu-

tative, associative, monotonic, and which admits +∞ as neutral element.

Definition 4 A uninorm on (0,+∞] is a binary operator on (0,+∞], which is commu-

tative, associative, monotonic, and which admits some positive real number e ∈ (0,+∞]

as neutral element.

The construction of such generalized t-norms and generalized uninorms being out

of the scope of this paper, the interested reader is referred to [26], where means are

provided to obtain such operators out of t-norms on [0, 1]. Example 1 below gives

nonetheless an example of a t-norm on (0,+∞] different from the minimum and an

example of a uninorm on (0,+∞] different from the product (the operators of Example

1 were obtained using the construction mechanisms provided in [26]).

Example 1 The operator ? defined by

x ? y =

{(
1
x + 1

y −
1
x ·

1
y

)−1

if x ∧ y > 1,

x ∧ y otherwise,

for all x, y ∈ (0,+∞] is a t-norm on (0,+∞].

The operator ◦ defined by

x ◦ y =

x · y if x ∨ y ≤ 1,

((1/x) ∧ (1/y))−1 if x ∧ y ≥ 1,

x ∧ y otherwise,

for all x, y ∈ (0,+∞] is a uninorm on (0,+∞] having 1 as neutral element. We may

further remark that this uninorm verifies x ◦ y ≤ xy for all x, y ∈ (0,+∞].

4.1 Conjunctive T-rules

As previously mentioned, the minimum is a t-norm on (0,+∞]. The cautious rule thus

belongs to a family of rules based on pointwise combination of conjunctive weights

using t-norms on (0,+∞]. In order to characterize this family, we need to remark that

the minimum is the largest t-norm on (0,+∞], much as it is the largest t-norm on

[0, 1].

Lemma 2 The minimum is the largest t-norm on (0,+∞].

Proof Any t-norm ? on (0,+∞] has by definition +∞ as neutral element and is mono-

tonic, hence we have x ? y ≤ x ?+∞ = x and x ? y ≤ +∞ ? y = y, so x ? y ≤ x∧ y, for

all x, y ∈ (0,+∞]. ut

We may then show the following.
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Proposition 2 Let ? be a t-norm on (0,+∞]. Then, for any conjunctive weight func-

tions w1 and w2, the function w1 ?©w2 defined by:

w1 ?©w2(A) = w1(A) ? w2(A), ∀A ⊂ Ω,

is a conjunctive weight function associated to some nondogmatic BBA m1 ?©w2.

Proof From Lemma 2, we have

w1 ?©w2(A) ≤ w1 ∧©2(A), ∀A ⊂ Ω.

From Lemma 1, w1 ?©w2 is a conjunctive weight function since w1 ∧©2 is a conjunctive

weight function. ut

Proposition 2 allows us to define combination rules for nondogmatic belief functions

which can be formally defined as follows.

Definition 5 (T-norm-based conjunctive combination rule) Let ? be a t-norm

on (0,+∞]. Let m1 and m2 be two nondogmatic BBAs. Their combination using the

t-norm-based conjunctive combination rule, or conjunctive t-rule for short, is noted

m1 ?©w2 = m1 ?©wm2. It is defined as a nondogmatic BBA with the following conjunc-

tive weight function:

w1 ?©w2(A) = w1(A) ? w2(A), ∀A ⊂ Ω.

We thus have:

m1 ?©w2 = ∩©A⊂ΩA
w1(A)?w2(A).

Proposition 3 Any conjunctive t-rule ?©w has the following properties:

– Commutativity: for all nondogmatic BBAs m1 and m2, m1 ?©wm2 = m2 ?©wm1;

– Associativity: for all nondogmatic BBAs m1,m2 and m3,

m1 ?©w(m2 ?©wm3) = (m1 ?©wm2) ?©wm3;

– Monotonicity with respect to vw: for all nondogmatic BBAs m1, m2 and m3, we

have m1 vw m2 ⇒ m1 ?©wm3 vw m2 ?©wm3;

Proof These properties follow directly from corresponding properties of the t-norm ?.

ut

Finally, the following proposition situates the cautious rule in the family of con-

junctive t-rules.

Proposition 4 Among all conjunctive t-rules, the cautious rule is the x-least commit-

ted, with x ∈ {w, s, pl, q}:

m1 ?©wm2 vx m1 ∧©m2,

for all nondogmatic BBAs m1 and m2.

Proof Since the minimum is the largest t-norm on (0,+∞], we have, for all nondog-

matic BBAs m1 and m2, m1 ?©wm2 vw m1 ∧©m2, and m1 ?©wm2 vx m1 ∧©m2 for

x ∈ {s, pl, q}. ut



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 F. Pichon, T. Denœux

4.2 Conjunctive U-rules

We have seen that the TBM conjunctive rule is based on the product and that the

product is a uninorm on (0,+∞] with 1 as neutral element (1-uninorm for short).

Hence, the TBM conjunctive rule belongs to a family of rules characterized by pointwise

combination of conjunctive weights using 1-uninorms. From Proposition 1 and Theorem

1, the condition that those uninorms must respect is known, i.e., they must satisfy

x ◦ y ≤ xy for all x, y ∈ (0,+∞). New combination rules based on uninorms may thus

be defined as follows.

Definition 6 (Uninorm-based conjunctive combination rule) Let ◦ be a 1-

uninorm, such that x ◦ y ≤ xy for all x, y ∈ (0,+∞). Let m1 and m2 be two non-

dogmatic BBAs. Their combination using the uninorm-based conjunctive combination

rule, or conjunctive u-rule for short, is noted m1 ◦©w2 = m1 ◦©wm2. It is defined as a

nondogmatic BBA with the following conjunctive weight function:

w1 ◦©w2(A) = w1(A) ◦ w2(A), ∀A ⊂ Ω.

We thus have:

m1 ◦©w2 = ∩©A⊂ΩA
w1(A)◦w2(A).

Proposition 5 Any conjunctive u-rule ◦©w is commutative, associative, monotonic

with respect to vw, and such that: m ◦©wmΩ = m, for all nondogmatic BBA m.

Proof These properties follow directly from corresponding properties of the uninorm

◦. ut

The next proposition shows that the TBM conjunctive rule has a special position

in the family of the conjunctive u-rules.

Proposition 6 Among all conjunctive u-rules, the TBM conjunctive rule is the x-least

committed, with x ∈ {w, s, pl, q}:

m1 ◦©wm2 vx m1 ∩©m2,

for all nondogmatic BBAs m1 and m2.

Proof From the definition of the conjunctive u-rules, we have, for all nondogmatic BBAs

m1 and m2, m1 ◦©wm2 vw m1 ∩©m2, and m1 ◦©wm2 vx m1 ∩©m2 for x ∈ {s, pl, q}. ut

Finally, we complete the characterization of the conjunctive u-rules by the following

proposition.

Proposition 7 Conjunctive u-rules are not idempotent.

Proof This follows from the fact that idempotence and having the vacuous BBA as

neutral element are incompatible properties for w-based rules. Indeed, from Proposition

1 and Theorem 1, a w-based rule that has the vacuous BBA as neutral element is based

on a binary operator ◦ satisfying x ◦ y ≤ xy, for all x, y > 0. Let z ∈ (0, 1), we have

z ◦ z ≤ z2 < z, hence ◦ is not idempotent. ut
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4.3 Disjunctive T-rules and U-rules

For the sake of completeness, this section presents results corresponding to the previ-

ous ones for v-based rules. Obvious results are stated succinctly, whereas De Morgan

relations between conjunctive and disjunctive rules are more detailed.

4.3.1 Disjunctive T-rules

The bold rule is based on the minimum. Hence, it belongs to a family of rules based

on pointwise combination of disjunctive weights using t-norms on (0,+∞]. The coun-

terpart of Proposition 2 for disjunctive weights allows us to define a belief function

combination rule ?©v, called a disjunctive t-rule, as

m1 ?©v2 = ∪©A6=∅Av1(A)?v2(A),

where ? is a t-norm on (0,+∞], and m1 and m2 are two subnormal BBAs.

Any disjunctive t-rule ?©v is commutative, associative and monotonic with respect

to vv. Furthermore, it may easily be shown, using similar arguments as developed

in Section 4.1, that the bold rule is the x-most committed disjunctive t-rule, with

x ∈ {v, s, pl, q}.
Finally, the following proposition shows that the ?©w and ?©v operations are dual

to each other with respect to complementation, i.e., they are linked by De Morgan laws

analogous to (6) and (7).

Proposition 8 Let ?©w and ?©v be respectively, conjunctive and disjunctive t-rules

based on a t-norm ? on (0,+∞]. We have:

m1 ?©vm2 = m1 ?©wm2,

for all subnormal BBAs m1 and m2, and

m1 ?©wm2 = m1 ?©vm2, (9)

for all nondogmatic BBAs m1 and m2.

Proof Let m1 and m2 be two subnormal BBAs. We have

m1 ?©vm2 = ∪©A6=∅Av1(A)?v2(A)

= ∩©A6=∅Av1(A)?v2(A)

= ∩©A6=∅Ā
w1(Ā)?w2(Ā)

= ∩©A⊂ΩA
w1(A)?w2(A)

= m1 ?©wm2.

The proof of (9) is similar. ut
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4.3.2 Disjunctive U-rules

The TBM disjunctive rule is based on the product of disjunctive weights. Hence, it

belongs to a family of rules defined by pointwise combination of disjunctive weights

using 1-uninorms. From Corollary 2, the condition that those uninorms must respect is

known. We may thus define a belief function combination rule ◦©v, called a disjunctive

u-rule, as

m1 ◦©v2 = ∪©A6=∅Av1(A)◦v2(A),

where ◦ is a 1-uninorm, such that x ◦ y ≤ xy for all x, y ∈ (0,+∞), and where m1 and

m2 are two subnormal BBAs.

Any disjunctive u-rule ◦©v is commutative, associative, monotonic with respect to

vv and has the BBA m∅ as neutral element. Furthermore, the TBM disjunctive rule

is the x-most committed disjunctive u-rule, with x ∈ {v, s, pl, q}.
Finally, the following proposition shows that the ◦©w and ◦©v operations are dual

to each other with respect to complementation.

Proposition 9 Let ◦©w and ◦©v be respectively, conjunctive and disjunctive u-rules

based on a 1-uninorm ◦. We have:

m1 ◦©vm2 = m1 ◦©wm2, (10)

for all subnormal BBAs m1 and m2, and

m1 ◦©wm2 = m1 ◦©vm2, (11)

for all nondogmatic BBAs m1 and m2.

Proof The proof of (10) is direct using the proof of Proposition 2. The proof of (11) is

similar. ut

5 Conclusion

In this paper, it has been shown that the unnormalized Dempster’s rule of combina-

tion is the least committed rule among the rules based on pointwise combination of

conjunctive weights and that have the vacuous belief function as neutral element. This

constitutes a new justification for this rule as a mechanism for combining distinct and

nondogmatic belief functions.

It has also been brought forward that the unnormalized Dempster’s rule ∩© and

the more recent cautious rule ∧© have fundamental different algebraic properties: the

former is based on a uninorm on (0,+∞] and has a neutral element while the latter is

based on a t-norm on (0,+∞] and has no neutral element. Similar properties hold for

the disjunctive duals of these two rules, namely the TBM disjunctive rule ∪© and the

bold rule ∨©.

In addition, it was revealed that to each of those four basic rules corresponds one

infinite family of combination rules. Indeed, there exist two t-norm-based families that

are based, respectively, on the conjunctive and disjunctive weight functions. There

exist also two uninorm-based families that are based, respectively, on the conjunctive

and disjunctive weight functions. It was also shown that t-norm-based conjunctive and
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Fig. 1 The four families of combination rules studied in this paper, and the singular positions
of the four basic rules ∩©, ∧©, ∪© and ∨©.

disjunctive rules, as well as uninorm-based conjunctive and disjunctive rules, are related

by De Morgan laws. The existence of such families of rules suggests that Dempster-

Shafer theory is not poorer than Possibility theory [11] in terms of fusion operators, as

already noted in [6].

Of particular interest is that the four basic rules occupy a special position in each of

their respective family: the ∩© and ∧© rules are the least committed elements, whereas

the ∪© and ∨© rules are the most committed elements. This is summarized in Figure 1.

To conclude, it is worth mentioning that, despite the numerous properties shared

by the unnormalized Dempster’s rule and the conjunctive u-rules, it was shown in [27]

that the unnormalized Dempster’s rule is the only conjunctive u-rule that satisfies a

particular axiom of the valuation algebra framework [21]. This property further singles

out this rule among uninorm-based conjunctive combination rules.

Acknowledgements The authors would like to thank the anonymous referees of the special
track Uncertain Reasoning of the FLAIRS’08 conference, as well as the anonymous referees of
this special issue on Uncertain Reasoning of the Journal of Automated Reasoning, for their
constructive comments that helped us to improve this paper.

A Proof of Theorem 1

The proof of Theorem 1 requires the two following technical lemmas (Lemmas 3 and 4).

Lemma 3 Let m be a BBA. For B ⊂ Ω, the following equality holds:∑
A⊆B

(−1)|A| q (A) =
∑

A∩B=∅

m (A) .
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Proof Let mB denote a BBA with single focal element B ⊂ Ω. Let m be a BBA and m′ =
m ∩©mB . We have

m′(∅) =
∑

A∩B=∅

m (A)

Let qB denote the commonality function associated to mB .

qB(A) =

{
1 if A ⊆ B,
0 otherwise.

Let q′ and q denote the commonality functions associated to m′ and m, respectively. We have:

q′(A) = q(A) · qB(A) ∀A ⊆ Ω

Hence

q′(A) =

{
q(A) if A ⊆ B,
0 otherwise.

Consequently, using (2), we have

m′(∅) =
∑
C⊆Ω

(−1)|C| q′ (C)

=
∑
A⊆B

(−1)|A| q (A) ,

which completes the proof. ut

Lemma 4 Let m be a normal, nondogmatic BBA and such that m(C) > 0, for a proper
subset C ⊂ Ω. Let w be the conjunctive weight function associated to m. Further, let m′ =
m 6∩©Bw(B) ∩©Bw(B)+ε, with B ⊂ Ω, C ∩B = ∅ and ε > 0. m′ is not a BBA.

Proof The proof consists in showing that m′(∅) < 0. Let B be a strict subset of Ω such that
C ∩B = ∅. The following equality holds:

m′(∅) =
∑
A⊆Ω

(−1)|A|
q(A)

qB(A)
q′B(A),

where q, qB and q′B are the commonality functions associated to m, Bw(B) and Bw(B)+ε,
respectively. We have:

qB(A) =

{
1 if A ⊆ B,
w (B) otherwise,

(12)

q′B(A) =

{
1 if A ⊆ B,
w (B) + ε otherwise.

(13)

Using (12) and (13), one can obtain:

m′(∅) =
∑
A⊆B

(−1)|A|q(A) +
∑
A6⊆B

(−1)|A|q(A)
w (B) + ε

w (B)
.

As

m(∅) =
∑
A⊆Ω

(−1)|A|q(A)

=
∑
A⊆B

(−1)|A|q(A) +
∑
A6⊆B

(−1)|A|q(A),
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then

m′(∅) = m(∅) +
ε

w (B)

∑
A6⊆B

(−1)|A|q(A).

We can thus remark that m′(∅) is equal to m(∅), which is itself equal to 0, plus another term.
Let us prove that this term is always strictly smaller than 0. We have

ε

w (B)

∑
A6⊆B

(−1)|A|q(A) =
ε

w (B)

(
m(∅)−

∑
A⊆B

(−1)|A|q(A)

)
= −

ε

w (B)

∑
A⊆B

(−1)|A|q(A).

We thus have from Lemma 3:

m′(∅) = −
ε

w (B)

∑
A∩B=∅

m (A) . (14)

As m(C) > 0 for C such that C ∩B = ∅, the sum in the right-hand side of (14) is strictly
greater than zero. Further we have ε > 0 and w (B) > 0. Hence m′(∅) < 0, thus m′ is not a
BBA. ut

Theorem 1 can then be proved as follows.

Proof Let x and y be any two numbers such that x ◦ y > xy. Obviously, as 1 is assumed to be
a neutral element of ◦, we have x 6= 1 and y 6= 1. Let ε = x ◦ y− xy > 0. The proof consists in
choosing two logically consistent BBAs m1 and m2, i.e., m1 ∩©2(∅) = 0, such that:

– ∃B ∈ 2Ω\ {Ω} such that w1 (B) = x and w2 (B) = y;
– ∀A ∈ 2Ω\ {Ω,B}, w1 (A) = 1 or w2 (A) = 1;
– ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅.

For those BBAs, we thus have:

w1 ∩©2(B) = w1(B) · w2(B),

w1 ∩©2(A) =

{
w1(A) if w2(A) = 1,
w2 (A) otherwise,

for all A 6= B, and

w1(B) ◦ w2(B) = w1 ∩©2(B) + ε,

w1(A) ◦ w2(A) = w1 ∩©2(A),

for all A 6= B. Hence, we have:

∩©A⊂ΩA
w1(A)◦w2(A) = ∩©A ⊂ Ω,

A 6= B

Aw1 ∩©2(A) ∩©Bw1 ∩©2(B)+ε

= ∩©A⊂ΩA
w1 ∩©2(A) 6∩©Bw1 ∩©2(B) ∩©Bw1 ∩©2(B)+ε

= m1 ∩©2 6∩©Bw1 ∩©2(B) ∩©Bw1 ∩©2(B)+ε, (15)

and ∃C ∈ 2Ω such that m1 ∩©2(C) > 0 and C ∩B = ∅. By Lemma 4, (15) is not a BBA, hence
w1 ◦ w2 is not a conjunctive weight function of some nondogmatic BBA.

Let us now provide the BBAs m1 and m2 which verify the above scheme. Since the
considered numbers x and y take their values in (0,+∞)\ {1}, we consider in the remainder
of this proof the following cases:

– Case 1: x ∨ y < 1;
– Case 2: x ∧ y > 1;



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 F. Pichon, T. Denœux

– Case 3: x ∨ y > 1 and x ∧ y < 1.

We must thus provide a pair of BBAs m1 and m2 verifying the above scheme for each of the
three possible cases.

– Case 1:
Let Ω = {a, b, c} and let m1 and m2 be two BBAs defined on Ω as follows, for α, β ∈
(0, 0.5):

m1(A) =

{
α if A = {a, b} or A = {b, c} ,
1− 2α if A = Ω,
0 otherwise.

m2(A) =

{
β if A = {a, c} or A = {b, c} ,
1− 2β if A = Ω,
0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α)

if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α)
if A = {b} ,

1 otherwise.

w2(A) =


(1−2β)
(1−β)

if A = {a, c} or A = {b, c} ,
(1−β)2

(1−2β)
if A = {c} ,

1 otherwise.

For those two BBAs, we have:
– m1 ∩©2(∅) = 0,
– ∃B = {b, c} such that w1 (B) = x, x ∈ (0, 1) as w1 (B) = f(α) with f a surjective

function from (0, 0.5) to (0, 1), and w2 (B) = y, y ∈ (0, 1), as w2 (B) = g(β) with g a
surjective function from (0, 0.5) to (0, 1).

– ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,
– ∃C = {a} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

– Case 2:
Let Ω = {a, b, c, d, e} and let m1 and m2 be two BBAs defined on Ω as follows, for
α ∈ (0, 0.5) and β ∈ (0, 1/3):

m1(A) =

{
α if A = {a, b} or A = {b, c} ,
1− 2α if A = Ω,
0 otherwise.

m2(A) =

{
β if A ∈ {{a, b, c} , {a, c, e} , {b, d, e}} ,
1− 3β if A = Ω,
0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α)

if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α)
if A = {b} ,

1 otherwise.

w2(A) =


1−3β
1−2β

if A ∈ {{a, b, c} , {a, c, e} , {b, d, e}} ,
(1−β)3(1−3β)

(1−2β)3
if A = {∅} ,

(1−2β)2

(1−β)(1−3β)
if A ∈ {{b} , {e} , {a, c}} ,

1 otherwise.

For those two BBAs, we have:
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– m1 ∩©2(∅) = 0,
– ∃B = {b} such that w1 (B) = x, x ∈ (1,+∞) as w1 (B) = f(α) with f a surjective

function from (0, 0.5) to (1,+∞), and w2 (B) = y, y ∈ (1,+∞), as w2 (B) = g(β) with
g a surjective function from (0, 1/3) to (1,+∞).

– ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,
– ∃C = {a} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

– Case 3:
Let Ω = {a, b, c, d} and let m1 and m2 be two BBAs defined on Ω as follows, for α ∈ (0, 0.5)
and β ∈ (0, 1/3):

m1(A) =

{
α if A = {a, b} or A = {b, c} ,
1− 2α if A = Ω,
0 otherwise.

m2(A) =

{
β if A ∈ {{a, b, c} , {a, b, d} , {a, c, d}} ,
1− 3β if A = Ω,
0 otherwise.

The conjunctive weight functions associated to those BBAs are:

w1(A) =


(1−2α)
(1−α)

if A = {a, b} or A = {b, c} ,
(1−α)2

(1−2α)
if A = {b} ,

1 otherwise.

w2(A) =


1−3β
1−2β

if A ∈ {{a, b, c} , {a, b, d} , {a, c, d}} ,
(1−β)3(1−3β)

(1−2β)3
if A = {a} ,

(1−2β)2

(1−β)(1−3β)
if A ∈ {{a, b} , {a, c} , {a, d}} ,

1 otherwise.

For those two BBAs, we have:
– m1 ∩©2(∅) = 0,
– ∃B = {a, b} such that w1 (B) = x, x ∈ (0, 1) as w1 (B) = f(α) with f a surjective

function from (0, 0.5) to (0, 1), and w2 (B) = y, y ∈ (1,+∞), as w2 (B) = g(β) with g
a surjective function from (0, 1/3) to (1,+∞).

– ∀A ∈ 2Ω\ {B,Ω}, w1 (A) = 1 or w2 (A) = 1,
– ∃C = {c} such that m1 ∩©2(C) > 0 and C ∩B = ∅.

ut
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médical. PhD thesis (in French), Université Libre de Bruxelles, Brussels, Belgium (1978)

36. Smets, Ph.: The Combination of Evidence in the Transferable Belief Model. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 12(5), 447–458, (1990)

37. Smets, Ph.: Belief functions: the disjunctive rule of combination and the generalized
Bayesian theorem. Int. J. Approximate Reasoning 9, 1–35 (1993)

38. Smets, Ph.: What is Dempster-Shafer’s model ? In: Yager, R. R., Kacprzyk, J., Fedrizzi,
M. (eds.) Advances in the Dempster-Shafer theory of evidence, pp 5–34. Wiley, New-York
(1994)

39. Smets, Ph.: The canonical decomposition of a weighted belief. In: Proceedings of the 14th
Int. Joint Conf. on Artificial Intelligence (IJCAI’95), San Mateo, California, USA, 1995, pp
1896–1901. Morgan Kaufmann (1995)

40. Smets, Ph.: The α-junctions: combination operators applicable to belief functions. In: Gab-
bay, D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.), Proceedings of the First Interna-
tional Joint Conference on Qualitative and Quantitative Practical Reasoning (ECSQARU-
FAPR’97), Bad Honnef, Germany, 1997. Lecture Notes in Computer Science, vol. 1244, pp
131–153. Springer (1997)

41. Smets, Ph.: Analyzing the combination of conflicting belief functions. Information Fusion
8(4), 387–412 (2007)

42. Smets, Ph.: The Transferable Belief Model for quantified belief representation. In: Gabbay,
D. M., Smets, Ph. (eds.), Handbook of Defeasible Reasoning and Uncertainty Management
Systems, vol. 1, pp 267–301. Kluwer, Dordrecht (1998)

43. Smets, Ph., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66, 191–243
(1994)

44. Smets, Ph., Kruse, R.: The Transferable Belief Model for Belief Representation. In: Motro,
A., Smets, Ph. (eds.) Uncertainty Management in Information Systems: From Needs to
Solution, pp 343–368. Kluwer Academic Publishers, Boston (1996)

45. Yager, R. R.: An Introduction to Applications of Possibility Theory. Human Systems
Management 3, 246–269 (1983)

46. Yager, R. R.: The entailment principle for Dempster-Shafer granules. Int. J. Intell. Syst.
1, 247–262 (1986)

47. Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80,
111–120 (1996)


