Pergamon

Neural Networks, Vol. 9, No. 1, pp. 83-97, 1996
Copyright © 1996 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0893-6080/96 $15.00 +.00

0893-6080(95)00096-8

CONTRIBUTED ARTICLE

Training MLPs Layer by Layer Using an Objective Function

for Internal Representations

REGIS LENGELLE AND THIERRY DENGEUX
Université de Technologie de Compiégne and Lyonnaise de Eaux/Laboratoire d’Informatique Avancée de Compiégne
(Received 26 January 1993; accepted 21 June 1995)

Abstract—A new constructive algorithm for designing and training multilayer perceptrons is proposed. This
algorithm involves the optimization of an objective function for internal representations, which does not require any
computation of the network’s outputs. Coupled with a strategy for recruiting units during the learning process, this
concept provides a scheme for training a multilayer network layer by layer, until self-encoding of the pattern
categories is achieved in the final, highest-level representations. Two objective functions are proposed. For
discrimination problems, recent experimental and theoretical results concerning back-propagation training of
networks with one hidden layer and linear outputs suggest the introduction of a particular measure of class
separability. For problems involving the approximation of a continuous function, we show that the minimization of
the mean squared output error can be achieved by maximizing a statistical measure (the sample coefficient of
multiple determination) in the last hidden layer. Simulations are used to illustrate the process of network
construction, and to demonstrate the improvements brought by this approach over back-propagation in terms of
performance and robustness.

Keywords—Multilayer perceptrons, Learning algorithm, Internal representation, Architecture, Constructive

algorithm, Classification, Approximation, Discriminant analysis.

1. INTRODUCTION

The back-propagation algorithm owes much of its
success in challenging real-world applications to its
ability to form complex internal representations
(Rumelhart et al., 1986). Whereas simple two-layer
associative networks can only map similar inputs to
similar outputs, the recoding of input patterns in a
layer of non-linear hidden units considerably extends
the class of implementable mappings. Some time after
the introduction of back-propagation as a powerful
learning procedure (Rumelhart et al., 1986), this
argument received its most striking confirmation
from a series of theorems showing that networks

Acknowledgements: This work has been supported by EEC
funded Esprit II project nr. 5433 (NEUFODI); partners: BIKIT,
ARIAI Elorduy Sancho y Cia, LABEIN, Lyonnaise des Eaux
Dumez. The authors wish to express their thanks to the
Foundation for Applied Neuroscience Research in Psychiatry
(CHS de Rouffach, 68250 Rouffach, France) for providing the
sleep analysis data.

Requests for reprints should be sent to T. Denceux, Université,
de Technologie de Compiégne, U.R.A. CNRS 817 Heudiasyc, BP
649 F-60206 Compiégne cedex, France; E-mail: tdenoeux@hds.u-
niv-compiegne.fr

83

with only one layer of non-linear units could
approximate virtually any desired mapping with
arbitrary accuracy (see, for example, Hornik, 1991).

In the original back-propagation algorithm, the
number of hidden units and the connectivity are
predetermined, and internal representations are
constructed automatically by a gradient descent
procedure which attempts to minimize the squares
of the differences between the actual and the desired
output values summed over the output units and all
pairs of input/output vectors (Rumelhart et al., 1986).
Although it represents a considerable improvement
over previous models in which the hidden layer
weights could not be adapted at all (Rosenblatt, 1958),
this approach leaves open the question of the optimal
dimensionality of the representation space onto which
the input patterns are projected as a result of the
learning process. The design of a suitable architecture
for a neural network in view of performing a given
task has been found to be both critical with regard to
generalization ability (Hinton, 1990), and extremely
difficult to handle more efficiently than through a
time-consuming process of trial and error.

In this paper, a novel approach to this problem is
proposed. This approach is based on direct optimiza-

84

tion of an objective function for internal representa-
tions, which can be computed given a set of examples
without specifying the network’s outputs. Coupled
with a strategy for recruiting units during the learning
process, this concept provides a scheme for training a
multilayer network layer by layer, until a simple
correspondence can be found between the final,
highest-level representations and a simple target
coding scheme. Two objective functions are pro-
posed. For classification problems, recent experi-
mental and theoretical results (Webb & Lowe, 1990)
concerning back-propagation training of networks
with one hidden layer and linear outputs suggest the
introduction of a measure of class separability
commonly used in statistical pattern recognition.
For problems involving the approximation of a
continuous function, we show that the minimization
of the mean squared output error can be achieved by
maximizing the sample coefficient of multiple
determination in the last hidden layer, which can be
done without explicit calculation of the hidden-to-
output weights.

The remainder of this paper is organized as
follows. In Section 2, some previous approaches to
the design of minimal size multilayer networks are
briefly reviewed. Section 3 explains why back-
propagation networks trained on classification tasks
can be viewed as performing non-linear discriminant
analysis, which justifies the introduction of class
separability as an objective function for internal
representations. Our constructive algorithm is then
presented in detail in Section 4, after which an
extension to the continuous case is proposed (Section
5). Finally, simulation results are presented and
discussed in Section 6.

2. DESIGNING THE ARCHITECTURE OF
MULTILAYER PERCEPTRONS

As mentioned in the introduction, we know from the
so-called “approximation theorems” (Hornik, 1991)
that neural networks with sufficiently many units in
one hidden layer are in principle capable of
performing any approximation task. Although these
results have had a tremendous impact from a
theoretical point of view, they have not been of
much help to the practitioners who want to know
which architecture (number of layers, number of
units in each layer) is needed for a given application.
An important step in this direction has been made by
research work which has provided upper bounds of
the number of threshold or sigmoidal hidden units
needed to either dichotomize, or approximately
interpolate any set of n data points (Sontag, 1991).
However, these bounds, resulting from a worst case
analysis, lead to considerable overestimation when
applied to most of the tasks encountered in practice.

R. Lengellé and T. Denaux

The size determination problem appears to be even
more complicated when neural net training is
considered from the point of view of inductive
inference. In that case, the focus is not on how well
the network has been able to memorize a set of input—
output patterns, but on the extent to which it will be
able to generalize to unseen cases. In that framework,
the function implemented by a network trained on a
particular data set can be viewed as a hypothesis which
accounts for this data. Since a large number of such
hypotheses usually exist, there is a need for an
inductive bias (Haussler, 1988) whereby some
hypotheses are preferred a priori over others.
Following the assumption that the simplest explana-
tion is the most plausible, the inductive bias is often
related to some measure of complexity. One statistical
approach to this problem has been provided by
Vapnik’s framework (Vapnik, 1983), which has been
used to propose upper bounds of the probability that a
network trained on a number of samples will perform
poorly on unseen samples drawn from the same
distribution (Baum & Haussler, 1989; Burton &
Farris, 1991). These results suggest in particular
that, for classification problems, the number of
samples needed to achieve a generalization error rate
of ¢ is roughly the number of weights divided by ¢
(Baum & Haussler, 1989). These considerations, which
are also supported by empirical evidence indicating
that small networks are less prone to overfitting than
large networks, justify the search for the minimal size
network capable of performing a given task.

Having recognized the importance of size determi-
nation, we are faced with the problem of building
networks which are at least close to the minimal one.
One strategy for solving this problem is the
constructive approach in which a small initial
network is gradually expanded until the task is
considered to be solved. In Mézard and Nadal
(1989), Marchand et al. (1990) and Zollner et al.
(1992), such schemes are described in the particular
case of networks of binary threshold units trained to
evaluate Boolean functions. A more general-purpose
algorithm is Fahlman and Lebiere’s “Cascade-
correlation™ algorithm (Fahlman & Lebiere, 1990),
in which each new unit is trained independently so as
to maximize the covariance between its output and
the residual error signal. A specific cascaded
architecture is generated, in which each newly-
recruited unit is connected both to the original
inputs and to every pre-existing unit. Hirose et al.
(1991) have proposed a comparatively simple variant
of back-propagation which allows one to vary the
number of units in a single hidden layer during a
growing phase, followed by a reduction phase.

In this paper, we describe a new approach based
on optimization of an objective function for internal
representation, the calculation of which does not

Training Multilayer Networks

require any explicit calculation of the network’s
outputs. Because it allows training a network layer
by layer, this idea lends itself naturally to a
constructive strategy; however, mixed strategies,
involving e.g., pruning unnecessary units in a layer
after the expansion phase, have been considered as
well (Section 6).

The concept of direct optimization of internal
representations has been previously investigated by
several authors, albeit from a different perspective.
For example, the CHIR algorithm (Grossman et al.
1989) also treats the internal representations as the
basic independent variable of the learning process,
but in the context of a fixed architecture, and without
explicit identification of an objective function. Krogh
et al. (1990) have proposed such a function, which
however depends on both the internal representations
and the connections to the output layer.

3. AN OBJECTIVE FUNCTION FOR INTERNAL
REPRESENTATIONS

3.1. Relationships between Discriminant Analysis and
Multilayer Classifier Networks

Investigations into the nature of the transformations
performed by a multilayer classifier network trained
by the least mean squares procedure have revealed
interesting connections with what is known in the
statistical literature as ‘‘discriminant analysis”.

Numerical simulations suggest that a network with
non-linear hidden units performs more severe feature
extraction than linear discriminant analysis, by
finding a non-linear transformation which returns a
larger value (with no maximization) of a separability
criterion involving the scatter matrices of the training
vectors (Asoh & Otsu, 1990; Gallinari et al., 1991). It
has been shown that, from one layer to the next,
internal representations tend to be more and more
separated, as clusters become more and more
compact, due to the compression effect of the
sigmoid function (Gallinari et al., 1991).

Theoretical studies have helped to explain and
clarify these experimental results. The linear case was
first examined by Gallinari et al. (1988) who proved
the formal equivalence between a one hidden layer
perceptron and linear discriminant analysis. In this
case, it has been shown that minimizing the quadratic
error criterion amounts exactly to maximizing the
ratio of the between-class to the within-class
covariance of the data in the space spanned by the
hidden units.

This striking result has been recovered as a special
case by Webb and Lowe (1990) who have demon-
strated that minimizing the sum-squared error at the
output of a network with non-linear hidden nodes is
in fact equivalent to maximizing a particular norm,

85

the “network discriminant function”, under the
condition that the output layer transfer function is
linear. In the case of the often used 1 bit encoding, the
network discriminant function becomes equal to the
trace of the product of the weighted between-class
covariance matrix (the weighting being determined by
the square of the number of patterns in each class),
and the inverse of the total covariance matrix. As a
consequence, it was pointed out that, for this
particular coding scheme, network classifiers bias
strongly in favour of the classes with the largest a
priori probabilities.

In this paper, we propose to train each hidden layer
of a multilayer perceptron independently, by max-
imizing the ratio of the between-class to the total
covariance in that layer. In the following, the objective
function which has been chosen will be presented in
greater detail, after which the methodology for
optimizing the network structure will be described.

3.2. The Objective Function

Let Y be a p-dimensional random vector representing
the states of the units in a hidden layer, defined as:

Y =f(W-X))

where X is a random vector containing the outputs of
the previous layer, W a weight matrix, and f a
transfer function. Following a common convention,
the bias terms are considered as weights from a unit
that is always on, and are therefore included in W; X
will be referred to as the “input” vector and Y as its
“internal representation’.

Assuming the data to be partitioned in N, classes,
we consider the problem of measuring the ‘“‘separ-
ability” of these classes in the space of internal
representations. Note that the term ‘‘separability”
must be understood here as the extent to which the
samples from different classes can be separated when
projected linearly onto a subspace of the original
feature space. It should not be confused with the
definition of linear separability as the existence of a
hyperplane perfectly separating two clusters (see
Appendix A).

Noting »; the a priori probability of class w;, the
total, between-class and within-class scatter matrices
can be defined respectively as:

T= E{Y -~ E{Y)(¥Y - E{Y})"} @
B=Y" m(E(Y|w} - EQYN(E{YIw} - BV} (3)

U= mE{(Y - E{Y|w:})(Y - E{¥|wi})'|w}, (4)

86

where E{Y} represents the expected value of random
vector Y, and E{Y|w;} the expected value of Y
assuming w; (as usual, ¢ denotes transposition). It is
straightforward to show that T = U + B, and that the
maximum rank of Bis the minimum of N; — 1 and p.

In classical linear discriminant analysis, the
problem of finding a discriminant axis is solved by
determining a vector u such that

u'Bu
uw'Uu

is maximum. Using the fact that T = U + B, this is
equivalent to maximizing

u'Bu
wTu’

Noting that u is defined up to a multiplicative
constant, u‘Bu can be maximized under the
constraint w'7u=1. The vector u is determined
accordingly as the eigenvector of matrix T-'B
associated with its largest eigenvalue. Consequently,
we can define rank(B) discriminant axes associated
with the decreasing eigenvalues of T-!B. Therefore,
linear discriminant analysis can be used as a tool for
extracting a limited number of linear features while
maximizing the ratio of between-class scatter to
within-class scatter.

In the case of two classes, the criterion which is
maximized is the eigenvalue of 7~! B, which is always
bounded by 1. When N, is greater than 2, one has to
define a criterion which takes into account the
effectiveness of each discriminant axis in showing
class separability. In order to formulate such a
criterion, we need to convert the scatter matrices
into a single number. This number must be larger
when the between-class scatter is larger or the within-
class scatter smaller. Several criteria have been
proposed (Fukunaga, 1972), such as:

Jy =tr(T'B)

Jy = tr(B) — p(tr(T) - c)
_tr(B)

T

where u is a Lagrange multiplier, and ¢ a constant.

Note that, in the linear case, maximizing J; or J,
can be shown to be equivalent. However, in the non-
linear case, the maximization of tr(B) under the
constraint tr(7) = c is not entirely relevant because
there is no longer any reason to fix up the total inertia
of the training set after a non-linear transformation.
Since on the other hand J3 depends on the coordinate
system while J; does not, the latter has been adopted
in this study.

R. Lengelle and T. Deneux

4. THE ALGORITHM

Our basic assumption, supported by empirical and
theoretical evidence, is that maximizing the separ-
ability of representations in a hidden layer renders
discrimination easier in the next layer. If enough
hidden units are available, or additional hidden layers
are added, it is expected that the internal representa-
tions will eventually become separable by a single
output layer. Since no target value is used, the process
of adding hidden layers can be iterated until class
labels can be assigned to particular activation
patterns, which can be regarded as a kind of self-
encoding. If a conventional output coding scheme is
preferred, the final representations can optionally be
mapped onto imposed target values, using, for
example, a standard least mean squares procedure.
Our approach can be described as follows (Figure
1). The initial architecture consists of an input layer
and a hidden layer of py units. The weight matrix
between this layer and the input layer can be
initialized randomly (with, for example, py = 2), or
can be taken as the optimal transformation matrix
resulting from linear discriminant analysis of the
input data (in that case, po=N.—1). A new
randomly initialized unit is then added to the layer,
and the weights are iteratively updated so as to
increase the value of the objective function. If the
goal of building a standard multilayer architecture
(i.e., without any intra-layer or cross-cut connections)
is pursued, each new unit is connected to each unit in
the previous layer. Alternatively, a ‘“cascaded”
architecture can be obtained by connecting each
new unit to the previous layer and the existing units in
the current layer. Several schemes can be applied for
adapting the network after a unit has been added.
For example, a computationally effective but very
sub-optimal procedure consists of adapting the new
unit only, while maintaining the others clamped. It is
also possible to apply an alternate direction scheme in
which each unit is trained in turn while global
optimization is achieved by iterating several times
over the set of units. However, we have not found any
approach working better on average than the simplest
scheme which consists of optimizing the weights in
the whole layer simultaneously, starting from the
previous configuration. The layer is expanded until
the addition of a new unit fails to increase the value
of the objective function by a significant amount. The
process can then be repeated with a new layer, until
again no further improvement in the class separ-
ability criterion can be gained. However, it must be
noted that a single hidden layer has proved sufficient
in all the simulations on the various learning tasks
carried out so far. The hidden-to-output weights can
be initialized as the eigenvectors of 7! B and refined
using, for example, a standard LMS procedure.

Training Multilayer Networks

87

start
repeat
add 1 layer

use output of previous layer as input (add bias term)

repeat
add 1 unit in the layer
optimize the layer

store weights, value of objective function, and layer output
until objective function (on learning or cross-validation set) stops increasing
until objective function (on learning or cross-validation set) stops increasing

stop

FIGURE 1. The algorithm.

An important remark is that, in real-world
problems, the training set is usually contaminated
by noise, so that the expansion of the network must
be stopped before perfect classification of the training
data is achieved. For that reason, it is necessary to
test the significance of each new unit by computing
the resulting gain in the objective function C
computed on an independent cross-validation set.
Note that this does not imply the calculation of the
hidden-to-output weights since the test is made on the
objective function and not on the output error.

In order to obtain smaller networks, it may be
useful to eliminate the least relevant hidden units
after the growing of a layer has been completed. A
simple way of pruning the network consists of testing
the influence of each hidden unit on the objective
function C after a whole layer has been trained. This
can be done by removing in turn each unit in the layer
and computing the resulting value of C. The unit
whose removal causes the least degradation of the
objective function is tentatively removed, after which
the layer is retrained. If this operation has decreased
the value of C by less than some predetermined
threshold s, the modification is accepted, and the
process is iterated. The modified algorithm with
pruning is described in Figure 2.

Different types of search procedures can be used in
the optimization phase of the algorithm. Since the
analytical expression of the gradient of J; with
respect to the weights W can be computed (see
Appendix B), gradient-based optimization methods
can be used, and are probably the most computa-
tionally efficient. However, global search algorithms
such as simulated annealing or genetic algorithms can
be of interest for very hard problems. Good results
have been obtained with the evolutionary distributed
search algorithm recently proposed by Courrieu
(1991). The algorithm has been found to be efficient
for hard optimization, and depends only on a very
small number of parameters (Figure 3). It has been

used successfully in early tests of our method
(Lengellé & Denoeux, 1992), but the BFGS second
order algorithm has been preferred in subsequent
versions.

The complexity of our algorithm scales rather
badly with the number p of hidden units, since the
computation of the objective function necessitates the
inversion of the covariance matrix of size p, which
requires O(p>) operations. For learning tasks
requiring large networks, it may therefore be
preferable to add new layers rather than to let the
number of units in one layer grow indefinitely.

5. EXTENSION TO THE APPROXIMATION OF
CONTINUOUS FUNCTIONS

Up to now, we have restricted ourselves to the
approximation of decision (Boolean) functions. For
this kind of problem, we have proposed to increase,
from one layer to the next, a measure of class
separability. A similar strategy can readily be
proposed for the approximation of any continuous
function F : R"—jt.

In that case, the goal assigned to each layer can be
to increase a measure of linearity between the internal
representations and the desired output. A common
measure of the linear dependency between a
dependent variable F and a set of p controlled
variables Yi,...,Y, is given by the sample coeffi-
cient of multiple determination p?%:

pl=1-arv (5)

with arv, the average relative variance (Weigend et
al., 1991), defined by:

arv = (6)

88

R. Lengellé and T. Deneux

start
L0
repeat
add 1 layer ; L « L +1

use output of previous layer as input (add bias term)

p<0
repeat

add 1 unit in the layer ; p — p+1

optimize the layer

store weights, value C of objective function, and layer output
until objective function stops increasing

repeat
for: =1topdo

compute the difference AC; between the objective with and without unit 2

endfor
select i, = argming=; , AC;

optimize the layer without unit %,

compute the new value C’ of the objective function

if C —C’' < s then

accept modification ; go-on « true

else

restore previous state ; go-on « false ; endif

until go-on

until objective function (on learning or cross-validation set) stops increasing

stop

FIGURE 2. The algorithm with pruning.

where F(!) is the value of F for a particular input X,
F® is the linear mean square estimate of F given the
internal representations Yﬁl), . Y,(,I), F the average
of F on the learning set and N the total number of
learning examples. '

Therefore, p? is close to 1 when FO is a good
predictor of F, and close to 0 when F© is a bad
predictor. It is interesting to remark (Der Megre-
ditchian, 1983) that p? can be expressed as:

p2=rtR_lr (7)
with
R’_I_: COV(Yh Y]) s j7j:l,.--,P
Veov(Y,, Y;) cov(Y,, ;)
and
Yo, F
COV(ky) k=1,’p

Iy =]
. veov(Yy, Yi) - cov(F, F)

The equivalence between (5) and (7) can easily be
demonstrated considering the regression of
F=(FO ... F™)' on the internal representations

Y =(Y,...Y,), with Y; = (YO .. Y™ The re-
gression coefficients minimizing || F — Y A || are given
by the product of the pseudo-inverse of Y by F:

A= (YY)'Y'F (8)

Introducing this expression for 4 in ||F — YA||? and
using the definition of p? in eqn (5) leads after
transformation to eqn (7), which completes the proof.

An immediate consequence of eqns (5) and (6) is
that, for a network with one hidden layer and linear
outputs, maximizing the sample coefficient of multi-
ple determination between the internal representa-
tions and the target values is strictly equivalent to
minimizing the sum-squared output error. Conse-
quently, the usual error function of the back-
propagation algorithm can be minimized without
explicitly introducing the hidden-to-output weights,
using eqn (7). The obvious gain is a smaller number
of free parameters in the optimization process, from
which one can expect a reduction in the number of
local minima. However, it must also be noted that
this approach requires the inversion of a matrix of

Training Multilayer Networks

89

0. start

1. Generate a population of K points in weight space according to a

preselected “visiting” probability law.

Calculate the value of the objective function for each of these points
and the mean M of those values for the population.

2. do K times:

Take a sample pair of points in the current population by making a random
equiprobable choice. Of these two points, select the one that gives the
largest value of the objective function, call it the father.

Replace the other by a realization of a multidimensional Gaussian variable
with mean equal to the father and variance 0?7 .

Calculate the objective function for the new point and update M.

.1if M has improved, goto 2.
. Decrease o.

. goto 2
.stop

=~ O O i~ W

. if the end of search criterion is verified, goto 7.

FIGURE 3. The evolutionary distributed search algorithm

size p at each evaluation of the objective function or
its gradient, which is given in Appendix B.

These considerations can easily be extended to the
approximation of a function G: /"— ;™. In this
case, the global sum-squared error is the sum over all
output neurons of the individual sum-squared errors.
If the function G has the same dispersion over all its
components (which can always be achieved by
normalization), maximizing the sum of the p,?
between the internal representations and the ith
component of G is equivalent to minimizing the
global sum-squared output error.

As a consequence, the same strategy as described
in the previous section can be used for training a
network and determining its structure layer by layer,
when approximating a continuous function. Once the
objective function cannot be increased any longer
from one layer to the next, the last layer of weights
can be computed by solving a least squares problem
between the vector of states in the last layer and the
target output. With linear output units the solution is
obtained in one step using a pseudo-inverse
approach.

6. EXPERIMENTS

The various issues discussed in this paper will now be
illustrated using a series of numerical experiments.
The first learning task that will be considered is the
so-called ““two spirals” problem, which consists in
separating two interlocking spirals as shown in
Figure 4. The complexity of this learning task is
such that the standard back-propagation algorithm

fails to solve it using as many as 50 randomly
initialized hidden units (Baum & Lang, 1991).
Successful results have been reported with the
cascade-correlation algorithm (Fahlman & Lebiere,
1990) which generates for this problem between 12
and 19 (mean: 15.2) partially interconnected hidden
units corresponding to at least 114 connection
weights.

Results with our method are displayed in Figure 5.
An interesting fact about these results is the
remarkably small variability of the learning curves
from one run of the algorithm to the other. With 33
hidden units, all the networks generated correctly
classified each of the 192 data points (see one solution
in Figures 4 and 6).

A comparison with cascade-correlation (CC) has
been performed on this learning task (Table 1). Each
algorithm was run 10 times. The statistics reported in
Table 1 were computed using the successful trials
only, i.e., eight trials for CC and the 10 trials for our
algorithm (runs of the CC algorithm which had not
converged with 30 hidden units have been classified as
unsuccessful). The simulations were performed in the
MATLAB language on a Sun workstation. The
execution times given in Table 1 must be interpreted
with great caution, as the program codes have not
been optimized with respect to execution speed. As
can be seen, our algorithm most of the time generated
smaller networks, in terms of number of connections.
However, it was about three times slower (in our
implementation), mainly because of the matrix
inversion needed for each computation of the
objective function.

90

Li PR
- +
2+ . . RPN 4
DU . .
* - =
+ + AN
15} T T A .]
4T T .
» * . * o, Lo+ * +
1k .. . ¢+ ?'..:*: .]
* N *. + * 4 . . +
. e IR . +
S G . o+ : L
L. . : : . P N : 4
- . - R PO L :
- . . N
-tk T S O
> or iy . M + . o
+ M] M 47 e e - ;
‘ + . o+ : *
L Lt + . +
05 . I T LR -
+ X tre+ Lt B
" o IR . N
* L+ . . N
* . . .
. o B I T N +
-1+ . W e + . 1
s + +
= + L SR P, ¢
‘AA . - '-.'»' ‘._._'." . L -
-1.5} P S B _
* Y
. VSRR Ly
2 + + .
. -
1 Ld <- i 1

FIGURE 4. The spirals data, with one of the decision boundaries
obtained (class 1: +; class 2:*).

The ability of our algorithm to discover interesting
solutions to discrimination problems using a
comparatively small number of hidden units has
been confirmed by several other experiments. For
example, Figure 7 represents a two-class problem in
which the data points are arranged along two sine
curves. At least two obvious solutions to this
problem, which are easily found by the back-
propagation algorithm, make use of five hidden
units. Shown in Figures 7 (hidden layer weights and
decision boundary) and 8 (network output) is a rather
unexpected solution with only three hidden units
which is discovered by our algorithm most of the
time, starting from random initial conditions. After
running the back propagation algorithm many times,
no comparable solution has been obtained. Among
other things, this example demonstrates that the
common interpretation of hidden units as performing
piecewise linear discrimination is not always relevant.

A totally different example is taken from Kohonen
et al. (1989). In this problem, the samples to be
classified are assumed to be taken from two
symmetrical bidimensional normal distributions
having the same mean and square root of variance
equal to 1 and 2, respectively (Figure 9). In this case,
the optimal decision boundary corresponding to the
Bayes classifier is a circle. Therefore, the complexity
of the task arises this time not so much from the
complexity of the decision boundary, but from the
very strong overlap between the two distributions. In
such a situation, it is necessary to use a resampling or
cross-validation method to estimate the class separ-
ability criterion to avoid the over-learning effect.
Figure 10 shows the means for 10 trials of the
estimated criteria on the training set and two

R. Lengellé and T. Deneux

separability criterion

0 5 10 15 20 25 30 35
number of hidden units

FIGURE 5. Tr(T~'B) as a function of the number of hidden units
for the spirals problem (four consecutive runs).

independent data sets (which can be considered as a
cross-validation set and a test set), as a function of
the number of hidden units. Figure 11 reports the
corresponding estimated error rates. As can be seen a
network with 3—4 hidden units would be selected by
this method, yielding an estimated error rate of
approximately 0.29, i.e., slightly more than the Bayes
error rate (0.26).

As an example of a complex real-world classifica-
tion problem, the application to automatic analysis
of human sleep was considered. Sleep research
has considerably improved in the last 10 years. In
humans, polygraphic sleep techniques have per-
mitted the definition of five sleep stages, described

ﬂ““; e

it “I
:fl)"“ "\' ._':" i

‘“

I

network output

input space
FIGURE 6. Output of a network trained on the spirals data.

Training Multilayer Networks

TABLE 1
Comparison between Cascade-correlation (CC) and our
Algorithm (IRO) on the Spirals Problem

Hidden Units Connections Execution Time

(x10*s)

cc

Min. 13 133 0.14
Max. 20 273 3.77
Mean 15.63 181.75 1.00
Std 2.13 23.90 1.15
IRO

Min. 30 121 1.65
Max. 42 169 434
Mean 36.60 147.40 2.93
Std 403 16.13 0.84

The statistics have been computed using 8 trials for CC and
10 trials for IRO

in a standard manual (Rechstschaffen & Kales,
1968). Each sleep stage is usually hand scored by an
expert using 30-s epochs, for the whole night.
Representation of sleep stage versus time is called a
hypnogram. A neural network approach to auto-
matic analysis of sleep has been recently proposed
(Schaltenbrand et al, 1993). In this study, 17
parameters were extracted from the time-frequency
analysis of three electro-physiological signals: elec-
tro-encephalogram (EEG), electro-myogram
(EMG) and electro-oculogram (EOG), and were
used as inputs to a multilayer perceptron. The
architecture of the network, optimized using a
cross-validation data set, consisted in a single
hidden layer 17-10-6 network (the output layer was

1.5+ 8
+ + .'j+

1- A. * ‘: 7
05, o . 1

3 T+ e
> (= B 4
05F T + e .
1k R + 4_: |
-15F){ 4
-1.5 1 0.5 0 0.5 1 1.5

FIGURE 7. The two sine curves data, with a particular solution
(weights and corresponding decision boundary) involving only
three hidden neurons (class 1: +; class 2: *).

91

network output

input space

FIGURE 8. Output of a network trained on the two sine curves
data.

composed of six units corresponding to five sleep
stages and wakeness). The network was trained
on a data set composed of 12,455 30-s epochs
corresponding to the analysis of 12 all-night sleep
recordings, and tested on an independent test set
of 11,906 30-s epochs. Each night of the training
set was analysed by a single expert. The test set
was labelled by a pool of 10 experts and observa-

2t %

6 " . . . n
-6 -4 2 0 2 4 6

FIGURE 9. The data set for the third problem: two symmetrical
bidimensional normal distributions with the same mean and
square root of variance equal to 1 and 2, respectively (class 1:
+; class 2: *). The Bayes boundary and the boundary obtained
are indicated by solid and dotted lines, respectively.

92

tions were assigned class labels according to the
majority rule (notice that the average inter-expert
agreement was shown to be 87.9% in this study).
The authors have reported an average misclassifica-
tion rate of 14.9% on the training set and 19.4%
on the test set.

We have applied our internal representation
optimization algorithm to this problem, using the
same data sets. The network architecture was
optimized accordingly, consisting of a single hidden
layer of 12 wunits, i.e., slightly more than the
network reported by Schaltenbrand. We noticed a
training set error rate of 19.6% (to compare with
149%) and a test set error rate of only 17.1%,
i.e.,, smaller than the error probability reported by
Schaltenbrand (19.4%), and also smaller than the
error rate obtained on the training set. This is
certainly due to a regularization effect of the
labelling process on the solution, but however
indicates that our algorithm seems to be less
sensitive to overfitting.

As a case study for the approximation of a
continuous function, let us now consider the
function:

F(x, y) =sin(y/x2 + y?)

in the domain [-5, 5]* (Figure 12).

The evolution of p? as a function of the number
of hidden units when training five networks on
the function F starting from different initial
conditions is reported in Figure 13. Once again,

09+ 4
0.8 4
0.7 1

0.6F 1

04F]

separability criterion

03+

02f

0.1r

number of hidden cells
FIGURE 10. Tr(T~'B) as a function of the number of hidden units
for the third problem (average over 10 trials), on the training set
(upper curve) and two independent sets {lower curves).

R. Lengellé and T. Deneux

09 4

0.8

T
1

0.7 4

0.5} .

0.4r

probability of error

021 b

0.1 J

0 1 2 3 4 S 6 7
number of hidden cells

FIGURE 11. Misclassification error rate on the learmning set
(lower curve) and two independent test sets (upper curves), as a
function of the number of hidden units, for the third problem
(average over 10 trials).

robustness appears to be a noticeable feature of
the algorithm. A sample coefficient of multiple
determination of 0.99 is always attained with 21
hidden units. In order to evaluate the influence
of the objective function on the efficiency of the
algorithm, the same constructive procedure has
been applied while minimizing the mean-squared
output error mse instead of maximizing p2. Since
it has been shown in Section 5 that the maximiza-
tion of p? and the minimization of mse are
equivalent, the only difference lies in the number of
free parameters of the optimization problem. As
expected, the performance of the algorithm was
significantly worse when mse was taken as the
objective function, with a maximum value of p?
equal to 0.95 with 21 hidden units. This confirms
that the choice of p? as the objective function is
to some extent responsible for the robustness of
the algorithm.

Figure 14 shows the evolution of p? during
the growing phase followed by a reduction phase
conducted according to the pruning procedure
described in Section 4 (with the stopping criterion
relaxed). In the case, the value of 0.99% for p?
had been reached with 21 hidden units in the
growing phase, and was preserved with only 15
hidden units in the decreasing phase. The value
of 0.9975 obtained with 25 hidden units in the
increasing phase could be maintained after the
pruning of 3 hidden units. These results demon-
strate the usefulness of a reduction phase for
obtaining minimal-size networks.

Training Multilayer Networks

FIGURE 12. The function F(x,y)=sin{(x%+y?)"*) in the
domain [5, 5]°.

7. CONCLUSIONS

A new algorithm for adapting the topology of
multilayer feedforward networks in the course of
the training process has been described. The basic
features of this algorithm are an objective function
for internal representations, and a scheme for
gradually increasing the complexity of the network
architecture. Objective functions have been defined
both for classification and approximate interpola-
tion problems. These functions, which do not
depend on the hidden-to-output weights, can be
regarded as intrinsic measures of the degree to

objective function

5 10 15 20
number of neurons

FIGURE 13. p? as a function of the number of hidden units {five
consecutive runs).

93

R4

objective function
o o
3] o

o
IS

03

0.9/

0.1

o

5 10 15 20 25
number of neurons

FIGURE 14. Evolution of p? during a growing phase (solid line)
followed by a pruning phase (dotted line). The numbers indicate
the iterations of the construction algorithm. Iterations from 1 to
24 correspond to the growing phase. Rterations from 25 to 47
correspond to the pruning phase.

which the task can be solved linearly in the space
spanned by the hidden units. The process of adding
new units—and, if necessary, new layers—stops
when the last hidden layer can be connected directly
to the output layer.

Many variants of this basic scheme can be
imagined, only a few of which have been fully
investigated. One of these variants, which has
proved beneficial, consists of reducing the size of
the hidden layers generated by the constructive
algorithm, by gradually removing the least relevant
units and retraining the whole layer. Another
interesting possibility could be to extend the search
space of the algorithm to different topologies
(e.g., short-cut connections, cascaded architectures)
and different types of units (e.g., radial Dbasis
function units). This possibility—and others—will
be subject to further research.

REFERENCES

Asoh, H., & Otsu, N. (1990). An approximation of nonlinear
discriminant analysis by multilayer neural networks. In
Proceedings IJCNN’90, San Diego (pp. 111-211-216).

Baum, E. B., & Haussler, D (1989). What size net gives valid
generalization. Neural Computing, 1(1), 151-160.

Baum, E. B., & Lang, K. J. (1991). Constructing hidden units using
examples and queries. In R. P. Lippman, J. E. Moody, & D. S.
Touretzky (Eds.), Neural information processing 3 (pp. 904
910). San Mateo, CA: Morgan Kaufmann.

Burton, R. M., & Farris, W. G. (1991). Reliable evaluation of
neural networks. Neural Networks, 4, 411-415.

Courrieu, P. (1991). A distributed search algorithm for hard

94

optimization. Technical Report TA9101, CREPCO, Université
de Provence, F-13621 Aix-en-Provence Cedex 1.

Der Megreditchian, G (1983). Une identité algébrique intéressante
pour la statistique mathématique. La Météorologie, VI(32), 5-
14.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene
analysis. New York: John Wiley.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation
learning architecture. In D. S. Touretzky (Ed.), Advances in
neural information processing systems 2 (pp. 524-532). San
Mateo, CA: Morgan Kaufmann.

Fukunaga, K. (1972). Introduction to statistical pattern recognition.
Electrical Science. New York: Academic Press.

Gallinari, P., Thiria, S., & Fogelman-Soulie, F. (1988). Multilayer
perceptrons and data analysis. In Proc. ICNN'88, San Diego
(pp- 391-398).

Gallinari, P., Thiria, S., Badran, F., & Fogelman-Soulie, F. (1991).
On the relations between discriminant analysis and multilayer
perceptrons. Neural Networks, 4, 349-360.

Grossman, T., Meir, R., & Domany, E. (1989). Learning by choice
of internal representations. In D. S. Touretzky, (Ed.), Advances
in neural information processing systems 1 (pp. 73-80). San
Mateo, CA: Morgan Kaufmann.

Haussler, D. (1988). Quantifying inductive bias: Al learning
algorithms and valiant’s learning framework. Artificial Intelli-
gence, 36, 177-221.

Hinton, G. E. (1990). Connectionist learning procedures. In Y.
Kodratoff & R. Michalski (Eds), Machine learning III.
(pp. 555-610). San Mateo, CA: Morgan Kaufmann.

Hirose, Y., Yamashita, K., Hijiya, S. (1991). Back-propagation
algorithm which varies the number of hidden units. Newral
Networks, 4(1), 61-66.

Hornik, K. (1991). Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4, 251-257.

Kohonen, T., Chrisley, R., & Barna, G. (1989). Statistical pattern
recognition with neural networks: Benchmarking studies. In L.
Personnaz & G. Dreyfus (Eds.), Neural networks from models to
applications. Paris: 1.D.S.T.

Krogh, A., Thorebegsson, G. 1., & Hertz, J. A. (1990). A cost
function for internal representations. In D. S. Touretzky (Ed.)
Advances in neural information processing systems 2 (pp. 733—
740). San Mateo, CA: Morgan Kaufmann.

Lengellé, R., & Denoeux, T (1992). Optimizing multilayer networks
layer per layer without back-propagation. In Igor Aleksander &
John Taylor (Eds.), Artificial neural networks II (pp. 995-998).
Amsterdam: North-Holland.

Marchand, M., Golea, M., & Rujan, P. (1990). A convergence
theorem for sequential learning in two-layer perceptrons.
Europhysics Letters, 11(6), 487-492.

Meézard, M., & Nadal, J. P. (1989). Learning in feedforward
layered networks: The tiling algorithm. Journal of Physics A:
Mathematical and General, 22, 2191-2203.

Rechstschaffen, A. & Kales, A. (1968) A manual of standardized
terminology, techniques and scoring system for sleep stages of
human subjects. Public Health Service, Washington, DC: U.S.
Government Printing Office.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for
information storage and organization in the brain. Psychologi-
cal Review, 65, 386-408.

Rumelhart, D. E. Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E.
Rumelhart & J. McClelland (Eds), Parallel distributed
processing. Cambridge, MA: MIT press.

Schaltenbrand, N., Lengellé, R., & Macher, J. P. (1993). Neural
network model: Application to automatic analysis of human
sleep. Computers and Biomedical Research, 26, 157-171.

Sontag, E. D. (1991). Remarks on interpolation and recognition
using neural nets. In R. L. Lippman, J. E. Moody, & D.

R. Lengellé and T. Deneux

S. Touretzky (Eds.), Advances in neural information proces-
sing systems 3 (pp. 939-945). San Mateo, CA: Morgan
Kaufmann.

Vapnik, V. N. (1983) Estimation of dependences based on empirical
data. Springer series in statistics. Berlin: Springer-Verlag.

Webb, A. R., & Lowe, D. (1990). The optimised internal
representation of multilayer classifier networks performs non
linear discriminant analysis. Neural Networks, 3, 367-375.

Weigend, A.S., Rumelhart, D.E., & Huberman, B.A. (1991).
Generalization by weight-elimination with application to
forecasting. In R. P. Lippman, J. E. Moody, & D. S. Touretzky
(Eds), Neural Information Processing, 3, (pp. 875-882). San
Mateo, CA: Morgan Kaufmann.

Zollner, R., Schmitz, H. J., Wiinsch, F., & Krey, U. (1992). Fast
generating algorithm for a general three-layer perceptron.
Neural Networks, 5, 771-771.

NOMENCLATURE

Y vector of unit states in the current
hidden layer

X outputs from previous layer

r number of units in the current
hidden layer

W weight matrix

f hidden unit transfer function

N, number of classes

T total scatter matrix

B between-class scatter matrix

U within-class scatter matrix

Ji(i =1,2,3) separability criteria

N number of training samples

p? sample coefficient of multiple
determination

arv average relative variance

R correlation matrix of vector Y

APPENDIX A: RELATIONSHIP BETWEEN
LINEAR DISCRIMINATION AND FISHER’S
LINEAR DISCRIMINANT

Consider the case where two clusters are to be linearly separated.
Let X; be the vector composed of the p components of the
observation i and 1 as the (p + 1)th component (this transforma-
tion allows one to consider only hyperplanes passing through the
origin in the new space even though the corresponding hyperplane
can be in any position in the initial space). The linear
discrimination problem consists in determining a hyperplane
defined by its normal vector A such that X{A > 0 if X; belongs to
class one and X{A < 0 if the observation belongs to class 2.
Replacing X; by —X; if X; belongs to cluster 2 transforms the initial
problem into a new one that consists of finding now a vector A
verifying X; A > 0 for all i. Solutions, if they exist (i.., if and only if
the clusters are linearly separable), can be found by solving this
system of inequalities. An approach to determine a solution is the
perceptron learning rule, which consists of modifying A in such a
way that each misclassified point attempts to verify its own
inequality. This procedure can be shown to be equivalent to
minimizing the sum of the distances from these points to the
decision boundary. However, since no weight vector can correctly
classify every sample in a non-separable set, the corrections may
never cease. This is the reason why researchers have tried to define
criteria that take into account all the samples instead of focusing
their attention only on misclassified samples.

Training Multilayer Networks

Let us attempt to solve XA = b, where b, is an arbitrarily
positive number. Generally, the number N of samples is much
larger than the dimension p + 1 of A, so that no exact solution
exists. However, we can seek a vector that attempts to minimize the
sum of squares between X; A and b;. The solution is then given by a
pseudo-inverse approach. An essential result (Duda & Hart, 1973)
is that if b, = 1/N| if the observation X; belongs to class 1 and 1/N,
if it belongs to class 2, where N is the number of observations from
class j, then the weight vector minimizing the error is proportional
to the product of the inverse of the within-class scatter matrix by
the difference of the mean vectors [A = U~'(m, — m,)] which is
precisely the solution for Fisher’s hinear discriminant (Duda &
Hart, 1973). This relationship justifies the definition of some
criterion involving scatter matrices as a measure of class
separability.

APPENDIX B: GRADIENT CALCULATION

Determination of the Gradient of tr(7-1B) w.r.t. the
Weights

Let y and Y denote respectively the p-dimensional vectors of
activations and states of a hidden layer, and X the vector of inputs
to that layer. By definition, we have:

y=W-X, (B.1)

Y =/(y), (B.2)

where W is the weight matrix, and f the transfer function.

Assuming the input X to be taken from a given distribution, let
us consider the total scatter matrix 7 and the between-class scatter
matrix B in the hidden layer, as well as tr(T"' B), as functions of the
weights W, and let g(W) = tr(T™' B). Using the fact that both T
and B are symmetric, the derivative of g w.r.t. a weight W, , is given
by:

IS~ O OBma
+2. 2 BBy Wi (B3)

Let us now express the four derivatives appearing in (B.3). We
use the fact that, for any non-singular matrix R:

AR _
ax)

Applying this equation for x = R, ; yields:

aR"!
6R,"j

= —R_l],'_jR_],

where [, ; is the matrix with the component (i, j) equal to 1, and all
other components equal to 0.
Furthermore, if R is symmetric, then:

dR

3R, = M +hi— bl =1,

where §; ; is the Kronecker symbol, and consequently:

8R!
AR, ;

=-R'I; ;R

From the preceding considerations, we have:

95

og _ * 1
T ("1}, T B) (B.4)
= —te(I}, T'BT™) (B.S)
=—(0;;+6,—8,0.;) (B-6)
=—(2- 6,;,-)0,;], (B.7)

where §,; is the element (i, j) of matrix § = T"'BT™'. Moreover,

oT,; dcov(Y;, Y))
Wi OWi
=cov(Y;, f' (m) Xx)éi j + cov(f' (yi) X, ¥;)8,: (BYI)

(B8)

where cov(-, -) is the usual covariance operator.
From the properties recalled above:

dg

55— = Tmint Tum = SmnT), (B.10)

=Q2=bna) T, (B.11)

Let us now give a formula for

OB n
6W“ :

By definition, we have:

5= m(E(Ylor) = EQONE(Vlor} — B

Hence,

Dme 5 ((AEEOD) (g gy,

Wi 4 Wi
+2m ((E{Ylw.-} - E(Y}), (M%“%V}:E&))

with

QE(X|witm _ prp _
T“—E{f (ym)Xk |wi o4 m

and

3W.x

6 W,'k Zi n;

AE(Y), L.m gl

which completes the calculation of

g
OIWix

The complexity of this gradient calculation can be estimated in
the following way. Let N be the size of the training set and N, the
number of classes. The estimation of T requires

pip+1)
N=5

multiplications, and the determination of B about

96

pip+1)
N ==

The objective function can be evaluated with O{p’) more
operations (inversion of T and product with B). The first step for
gradient determination is the evaluation of matrix #, with 21;3
multiplications. Then, for each weight, the main part of the
computational time is spent in the evaluation of the covariances
appearing in eqn (B.9) (3N operations) and of

BE{Y|w},
AW,s

i.e., N products in the case of equal priors. This must be multiplied
by o(p®) because of the double summations in eqn (B.3).
Consequently, the computation of the whole gradient requires
O(Np®) operations.

Determination of the Gradient of p? w.r.t. the Weights
With the notations introduced in Section 5, we have:

p2 — rlR-lr
with:
R, = cov(Y;, Yi)
7 Veou(Y;,) - cov(Y}, Y;)

COV(Y;‘, F)

= V%) ko,
"= Joov(Yx, Ye)oov(F, F) P

,hj=1,...,p and

In order to compute the gradient of p? w.r.t. the weights W, we
shall use the following property (Der Megreditchian, 1983): Let R®
be the matrix obtained by removing from R line / and column 7, 7
the vector obtained by removing from r the component /, and s
the vector formed by the /th column of R. We have:

bt
S FORO-150 (n— s RO-1£0)
1 s RO-150

which can be more simply written:

2
2_ 2, (n=4)
FErT T

In this expression, only r,, 4 and B depend on the weights
Wi, - - ., Wi, connecting the th hidden unit to the previous layer.
Therefore, we have:

apt
oW,
3’] aA 2 0B
2R (g) 0= B+ 047 g
(1-8y)

We must now determine

R. Lengellé and T. Deneux

and
8B
oW,
We have:
6r,
AW,
cov(F, ' (y1) X,)y/cov(Yy, Y1)
_ —cov(Yy, F) — cov(Y, 1 (31) X,)/ /oov(Ys, Y1)
cov(Yy, Y1)y/cov(F, F)
and
A a _
_ 0 Ri0-1 5
BWI,,—BWL, (s RO-TFI)
= (VW ps(f)l)R(l)'l;(Ol
with

) cov(%1, Yx)
OWip OWi, \\Joov(Yy, Yi) -cov(Y1, 17)/

Denoting by Num and Den, respectively, the numerator and
denominator of the previous expression, we can write:

& Num dDen
as(k[) *————m‘p Den — Num "’l_‘,
oW, , - Den?
where
O Num ,
oW, =cov(Yy, f' (31} Xp)
and
dDen _ cov(Yy, Yi)cov(Yy, f'(y1) X;)
oW, Den ‘
Lastly, for
OB
ow,,’

we simply obtain:

0B

Lp

=2sWRD-1y Wl,ps(m

The computation of the objective function requires

plptl)
N=3

multiplications for the determination of R, O(p®) for the matrix
inversion and O(p?) for the evaluation of r'R'r, where N is
the number of samples used to train the network. To evaluate
the gradient, all the covariances appearing in the equations

Training Multilayer Networks

can be determined with O(Np?®) operations and all the R®™

must be computed with (at most) O(p*) multiplications.

Computation of

97

and

2]
ow,,

need O(p?) operations. Consequently, the whole gradient
determination can be achieved with O (p* + Np?) multiplications.

