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Abstract—This paper addresses the problem of initializing the weights in back propagation networks with one
hidden layer. The proposed method relies on the use of reference patterns, or prototypes, and on a transformation
which maps each vector in the original feature space onto a unit-length vector in a space with one additional
dimension. This scheme applies to pattern recognition tasks, as well as to the approximation of continuous functions.
Issues related to the preprocessing of input patterns and to the generation of prototypes are discussed, and an
algorithm for building appropriate prototypes in the continuous case is described. Also examined is the relationship
between this approach and the theory of radial basis functions. Finally, simulation results are presented, showing
that initializing back propagation networks with prototypes generally results in (a) drastic reductions in training
time, (b) improved robustness against local minima, and (c) better generalization.

Keywords—Initialization, Feedforward neural networks, Back propagation, Prototypes, Supervised learning, Pattern
recognition, Function approximation, Radial basis functions.

1. INTRODUCTION

Several years after its successive discoveries (Le Cun,
1985; Parker, 1985; Rumelhart, Hinton, & Williams,
1986; Werbos, 1974), the back propagation (BP) al-
gorithm is now widely recognized as a powerful tool
for learning input-output mappings, with many appli-
cations in such areas as pattern recognition, time series
forecasting, and control (see, e.g., Canu, Sobral, &
Lengellé, 1990; Nguyen & Widrow, 1990a; Schalten-
brand, Lengelié, Minot, & Macher, 1990, for successful
applications to difficult real-world problems, among
many others). However, all users of BP have been con-
fronted to the two main drawbacks of this method,
which are:

1. the slowness of the learning process, especially when
large training sets, or large networks have to be used,
and

2. the absence so far of any theoretical result, or heu-
ristic, allowing for a reliable a priori determination
of an optimal network architecture for a given task.
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To tackle the first of these problems, most research

efforts have focused on improving the optimization
procedure by dynamically adapting the learning rates
(Dahl, 1987; Jacobs, 1988; Schmidhuber, 1989; Len-
gellé, Schaltenbrand, Cornu, & Gaillard, 1989; Silva &
Almeida, 1990; Tollenaere, 1990), or by using second
order information ( Battiti & Masulli, 1990; Becker &
Le Cun, 1988; Kramer & Sangiovanni-Vincentelli,
1989; Ricotti, Ragazzini, & Martinelli, 1988; Watrous,
1987). Large reductions in learning times have already
been gained, and further improvements can be expected
from the application of recent advances in large-scale
optimization (Shanno, 1990).

The second of the above mentioned problems, which
is probably even more challenging, has been treated
according to different strategies. One first approach has
been to somehow circumvent the difficulty by starting
with a large initial configuration, and then either prun-
ing the network once it has been trained (Mozer &
Smolensky, 1989; Sietsma & Dow, 1988), or including
complexity terms in the objective function in order to
force as many weights as possible to zero (Bishop, 1990;
Chauvin, 1990; Hanson & Pratt, 1989). Although
pruning does not always improve the generalization ca-
pability of a network (Sietsma & Dow, 1991) and the
addition of terms to the error function sometimes hin-
ders the learning process (Hanson & Pratt, 1989), these
techniques usually give satisfactory results. Alterna-
tively, another strategy for minimal network construc-
tion has been to add and/or remove units sequentially
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during training ( Ash, 1989; Fahlman & Lebiere, 1990;
Hirose, Yamashita, & Hijiya, 1991).

Finally, another direction of research, which has not
received much attention until recently, consists in find-
ing ways of providing the BP algorithm with as good
an initial state as possible. This can be done by using
either some understanding of the learning mechanism
in the network (Nguyen & Widrow, 1990b) or some
prior task-specific knowledge, e.g., in the form of fuzzy
rules (Eppler, 1990) or decision trees (Sethi, 1990). In
each case, substantial reductions in training times have
been reported. Moreover, interpretations of units and
weights are provided, which can contribute to solving
the architecture determination problem.

In this paper, a new method for initializing weights
in feedforward networks with one hidden layer is pre-
sented. This method relies on the use of prototypes
after a simple transformation of the inputs; it is appli-
cable to classification tasks, as well as to discrete ap-
proximation of continuous functions. The paper is or-
ganized as follows: the initialization method is described
in Section 2; the problem of the selection of prototypes
is addressed in Section 3, where an algorithm for gen-
erating “‘good” prototypes in the continuous case is
proposed; and finally, simulation results are presented
in Section 4.

2. DESCRIPTION OF THE METHOD

Consider a classification problem consisting in assigning
vectors of R” to ¢ predetermined classes. Let pf, i = 1,
..., K be a set of K reference vectors, with known
classification. These prototypes may constitute the
whole data set or may represent some synthetic infor-
mation extracted from a larger set of samples.

One common way of using such reference vectors
to obtain a decision rule is to classify each pattern x in
the class of its nearest neighbor among the prototypes,
according to some metric. An input vector which is far
from any prototype, or close to several prototypes of
different classes, can optionally be rejected (Lengellé,
Hao, Schaltenbrand, & Denoeux, 1991). This decision
rule can be implemented within a three-layer neural
network with # input units, K hidden units, and ¢ out-
put units, as illustrated in Figure 1(a) (withn =4, K
= 5 and ¢ = 3). The i-th hidden unit becomes activated
if the distance between the input vector and p’ is less
than some threshold 3;. The last layer simply performs
an inclusive OR.

We propose to consider this architecture as a basis
for initializing the weights in three-layered feedforward
networks of the type described by Rumelhart, Hinton,
and Williams (1986). For that, the following two con-
ditions must be verified:

1. The threshold transfer functions in the hidden and
output units have to be replaced by sigmoid func-
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(b)

FIGURE 1. Network implementation of a classification rule in a
four-dimensional space, with five prototypes and three classes
(up), and corresponding BP network (down).

tions, with values ranging continuously from 0 to
1, eg.,

f(x) = 3(1 + tanh(x)). (1)

2. The i-th hidden unit has to compute the scalar
product between the input x and p‘. Since

Ix = pl> = IxII* + Ip‘l> — 2x-p* forallx (2)

this dot product is an interesting measure of simi-

larity between x and p’ if and only if the input vectors

have constant length (e.g., |x|| = 1, for all x).

This last condition might seem difficult to satisfy in
most applications. However, it can be achieved without
any loss of information by a feature space transfor-
mation which maps each vector y in the original feature
space of dimension #-1 onto a unit-length vector x in
a space of dimension n. More precisely, this method
consists in applying successively a homotetic transfor-
mation A, such that:

lay) Il <1, forally (3)
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and then a projection p onto a hypersphere of radius
1, adding one dimension to the input vectors:
nir
h e
phiy=[ ) >x= Ynrlr 4)

Yn—1 | i 1/2
(1 -5 2 )’?)
i=1

re .

with: r = max(|ly ), y € learning set.
Figure 2 illustrates this transformation in the simple
case n = 2.

Assuming that the input data have been prepro-
cessed as described above, and that K prototypes are
available, let us now describe the initialization scheme
more formally. If the input and hidden layers have each
a bias unit with constant activation value of 1, the ma-
trices of weights W) and W2 between the first and
second layer, and between the second and third layer,
respectively, can be initialized according to the following
equations:

Vie{l,...,K}, VjE{l,...,n} Wf-,',’=ap,'i_ (5a)

Vie{l,...,K} W@l =-af B <1 (5b)
Vke{l,...,c}, ViE{l,...,K}
W@ =y>1 if p*Eclassk

=0 if p“&classk (5¢)
VEKE(L,...,c} Woka=-1 (5d)
where a, 8; (i = 1, ..., K) and + are constants ( Fig-

ure 1(b)).
With these initial values of the weights, an input x
such that:
pi-x>f; (6)
will cause the i-th hidden unit to have an activation
value close to 1, since
ap’-x — af; > 0. (7)

Consequently, provided the activation of the i-th unit
is greater thar_l 1/7, the output unit corresponding to
the class of p’ will also get activated.

1
x=poh(y
i
I
I
I
el -
h(y) y

FIGURE 2. The initial feature space transformation (case
n=2).
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The role of a and # is simply to control the “degree
of nonlinearity” of the activations: For great values of
a and v, the hidden and output neurons will tend to
saturate very often and the decision function imple-
mented in the network will be close to the initial so-
lution with threshold functions. However, it may be
suspected that, in this case, BP learning will be slow,
since the derivatives of the activation functions will be
close to zero for many patterns. Therefore, a compro-
mise must be found between the quality of the initial
solution on the one hand, and the flexibility of the net-
work on the other hand.

Let us now consider the case where the network is
used to learn a continuous function F from R” to R. If
we assume that the values of F for the prototypes are
known, then the approach described above can easily
be generalized: Nothing changes for the first layer of
weights, whereas the weights from the hidden layer to
the output units (with transfer function f( x) = x) are
set in the following way:

Vie{l,...,K} W= F(p') (8a)
Wik = 0. (8b)

Note that, in this case, if one input pattern activates
more than one hidden unit at a time, the function F
will be constantly overestimated. Therefore, a should
not be chosen too small. On the other hand, large values
of a will result in worse initial interpolation, and, as
already noted, in a slower training process. In fact, the
optimal choice of « can empirically be shown to depend
on characteristics of the function F to be approximated.
This point will be further discussed in Section 4.1 on
the basis of some simple experiments.

Before addressing the question of the generation of
prototypes, we would like to come back to the prelim-
inary step in our scheme, i.e., the feature space trans-
formation described above. The necessity to perform
such a transformation can be seen as a drawback of
the whole approach, for two main reasons. The first
one concerns the problem of “outliers,” i.e., spurious
patterns in the data set, as are frequently encountered
in many pattern recognition problems, which may have
a much greater norm than the “normal” patterns. These
outliers may cause the other patterns to be “com-
pressed” around the origin after the homotetic trans-
formation and then located in a small area on the hy-
persphere, making the discrimination between patterns
more difficult. One way to solve this problem is to
choose 7 so that only some percentage, say 95%, of the
training patterns have a norm smaller than r. The re-
maining patterns can then be either eliminated or nor-
malized to r.

The second case where the feature space transfor-
mation might pose a problem is when the probability
distribution of inputs is likely to evolve over time and
the network is to be adapted after the initial training
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as new training patterns are available. Input vectors
with norm >r will have to be normalized before the
projection on the hypersphere, and some information
will be lost. A sclution to this problem consists in pro-
gressively reducing the importance of the n-th com-
ponent during training. This can be achieved:

1. by slightly decreasing the magnitude of the n-th
component of training patterns after each learning
cycle, which amounts to reversing the initial feature
space transformation during the learning process,
or

2. by causing the weights connecting the n-th input
neuron to the hidden layer to tend to zero, by the
addition of a weight decay term (weighted by some
coeflicient A) to the error function E:

K
C=E+A3 w2 (9

i=1 .

Simulations show that training times are not dra-
matically changed by either of these modifications, at
least for problems of moderate complexity. Once the
network has been trained, it no longer makes use of
the n-th component of input vectors, which means that
the function which is implemented is from the initial
feature space (of dimension 7n-1) to the target space.
The network can subsequently be adapted with new
training patterns of arbitrary norm.

One final question that needs to be examined con-
cerns the connection of our approach with the theory
of radial basis functions (RBF) (Poggio & Girosi,
1989). Because of eqn (2), it is easy to verify that for
any u and v such that |lu] = ||v|] = 1:

f(ll'V)=%(l+tanh(u-v))

1
T 14 ezZexp(lu—v|?)

(10)

When the inputs are normalized, a BP network with
sigmoid activation functions can thus be regarded as a
RBF network, with radial basis functions approximat-
ing gaussians.

3. GENERATION OF PROTOTYPES

Since the hidden layer should not be too large, the set
of prototypes will generally have to be much smaller
than the learning set. Therefore, some method must be
used to synthesize the information contained in the
learning set in the form of a few reference vectors.
For classification problems, supervised algorithms

such as RCE (Reilly, Cooper, & Elbaum, 1982) or LVQ

(Kohonen, 1987) are available. In RCE, the prototypes
are patterns incrementally picked out of the learning
set. Once they have been selected, they can be neither
modified nor removed, but their “region of influence”
can be reduced. In LVQ, the prototypes are in a fixed,
predetermined number, but they are adapted as new

T. Denoeux and R. Lengellé

input patterns are presented. Alpaydin (1990) and
Kong and Noetzel (1990) have proposed two variants
of these basic paradigms, the latter having the partic-
ularity of combining the three processes of creation,
suppression, and adaptation of prototypes.

For continuous function approximation problems,
some other method has to be employed. One possibility
is to use some unsupervised method such as, e.g., the
k-means clustering algorithm, or the NeoART algo-
rithm proposed by Yin, Lengellé, and Gaillard (1990)
in which the number of prototypes is not fixed in ad-
vance, but determined by the complexity of the data,
and a vigilance parameter g. Although these methods
for building prototypes take into account the proba-
bility distribution of patterns in the feature space and
are consequently more satisfactory than a random
choice out of the learning set, it is easy to show exper-

imentally that they do not generally produce an optimal

set of prototypes for our purpose.

For instance, consider the function plotted in Figure
3. Since data points are distributed uniformly on the
interval [—1; 1], the prototypes generated by one of
the above mentioned unsupervised methods will also
be uniformly distributed. Figure 3(a) shows a plot of
the function implemented by a three-layer network with
six hidden units, initialized according to the scheme
described in Section 2, before back propagation. As
can be seen, the initial solution in this case is relatively
good. However, it can be conjectured that prototypes
situated close to the extrema of the function to be
learned would provide better “hints™ to the network.
This intuitive judgment is confirmed by Figure 3(b),
which shows the function implemented by a network
which has been initialized with such prototypes.

If we accept as a valuable heuristic that the reference
vectors should preferably be located near the minima
and maxima of the function, on the domain D on which
it is approximated ( which is confirmed by many other
simulations), we need an algorithm for automatically
generating prototypes with this desirable property. One
such algorithm that gives very good practical results is
based on a competitive learning mechanism, First, ref-
erence vectors are picked randomly out of the training
set, initial estimates at these points of the function F
to be learned are being provided by the training data.
In the learning phase, each input pattern x presented
to the system “activates” the closest reference vector
p’. If F(x)is greater (resp. smaller) than the estimated
value F' of F at p’, this vector is then updated so that
lx — p’|l is decreased, and F" is modified in the direction
of F(x). In this way, each prototype is gradually at-
tracted towards those inputs in its influence region
which have the highest (resp. the lowest) values of F.
After a number of learning epochs, the prototypes can
be shown experimentally to evolve spontaneously to-
wards the maxima (resp. the minima) of F in the
learning set. An example of this behavior is illustrated
in Figure 4.

4
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FIGURE 3. Influence on prototype location on the quality of the initial solution. Initial approximation performed by a network initialized
with six uniformly distributed prototypes (up), and with the prototypes located at the extrema (down).

More formally, let p'(,), i =1, .. ., K be the initial
values of K prototypes, and F'(£y), i =1, ..., K the
corresponding values of the function F to be learned:

Fi(te) = F(p'(t)) i=1,...,K. (1)

For each new pattern x(¢) presented at time ¢ to the
system, the nearest prototype p’(?) is modified, and the
estimate Fi(¢) of F at p‘(¢) is updated, according to
the following equations:
if F(x(8)) > Fi(t)[resp. F(x(t)) < F{(1)]:
pi(t+ 1) = p'(1) + €O[x(1) — p'(1)] (12a)
Fi(r + 1) = (1 — e(0)Fi(1) + e(1)F(x(2))  (12b)

else:

pi(t+ 1) =pi(2) (12¢)
Fi(t + 1) = F{1) (12d)

where £(¢) and £(¢) are monotonically time-decreasing
factors in the range ]0, 1, similar to the gain factor in
the LVQ algorithm.

Note that, although the demonstration of the con-
vergence of this algorithm will not be undertaken here,
it is easy to show that all the maxima x* of the restric-
tion of F on the learning set, and their corresponding
values F(x*), are stable points of eqns (12a) and (12b),
respectively.

4. SIMULATIONS

Four sets of simulations will not complete the descrip-
tion of the initialization scheme presented in this paper.
First, one simple example will mainly serve to illustrate
the sensitivity of the method to the saturation parameter
a (see Section 2) and to show how the initial feature
space transformation can be reversed during the learn-
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FIGURE 4. Convergence of the algorithm described in Section 3. Three prototypes spontaneously evolve toward the maxima (),
whereas the three others are made independently to converge toward the minima (O).

ing process (Section 4.1). Then, the efficiency of the
overall scheme will be demonstrated on three difficult
learning tasks:

e a classification problem with complex decision

boundary (4.2)

* aclassification problem with heavily overlapping class

distributions (4.3)

o the approximation of a nonlinear continuous func-

tion (4.4)

All the simulations have been performed using BP
in batch mode with adaptive learning rates, such as
proposed independently by Lengellé, Schaltenbrand,
Cornu, and Gaillard (1989), and Silva and Almeida
(1990). In this algorithm, the weights are updated after

100 ey

each pass over the data set, according to the following
equations:

k k
2@ =an(t—1), a>1

aC aC
if —— (¢ t—1)>0 (13a)
an-}"()an;"( )
=by(t—1), b<l
acC aC
if —()——=((—-1)<0 (13b
an_;(,()aW%H( ) (13b)
*) aC )
21 = (O +pzPe—1)  (14a)
oW ’
AWP (@) =P )2 P ) (14b)
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FIGURE 5. Decrease in time of the mean square error for different values of «, in log-log coordinates (first example in Section 4.1).
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FIGURE 6. The second function considered in Section 4.1, with
initial prototypes (x).

where:

e tisadiscrete time index (1 = 0, 1, . . .) updated after
each pass over the data set

e AW{(1) is the change made at time ¢ to the weight
connecting the i-th unit in layer k£ + 1 to the j-th unit
in layer k.

e ('is the objective function

. nf-f)(t) is an individual learning rate applied at time
tto W)

® u is a momentum coefficient

® g and b are two constants.

However, if the objective function to be minimized is

found to be greater at time ¢ than it was at time ¢ — 1,

the previous state of the network is restored, and the

weights are modified again, this time with all nff’ re-

duced by a factor d < 1.

- alpha=5 -- alpha=10 -. alpha=20 .. alpha=30
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Note that in eqns (14a) and (14b), a momentum
term is added to the gradient components before mul-
tiplying by the adaptive step sizes, as suggested by Silva
and Almeida (1990).

In most of our simulations, the parameters were
chosen as follows:

75°(0) = 0.1 foralli,j, k

u=205
a=1.5
b=d=0.5.

4.1. Sensitivity to the Saturation Parameter

In Section 2, we mentioned the fact that the choice of
the saturation parameter «, by which the reference vec-
tors are multiplied before being used as initial weight
values, must result from a compromise between the
quality of the initial state on the one hand, and learning
speed on the other hand. One simple example will now
illustrate this point.

The first task that will be examined consists in ap-
proximating the function plotted in Figure 3. Six pro-
totypes have been generated using the algorithm de-
scribed in Section 3. Figure 5 shows the decrease in
time of the mean square error for different values of a
(5, 10, 20, and 30). As expected, large values of « result
in a relatively good initial state, but the network later
lacks the flexibility needed to converge quickly. With
a = 30, the search procedure ends in a local minimum.
For this example, the best performance is obtained with
a=10.

To illustrate the dependency on the learning task,
let us now consider a more complex function as plotted

100 e
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FIGURE 7. Decrease in time of the mean square error for different values of a, in log-log coordinates (second example in Section

4.1).
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FIGURE 8. Decrease in time of the mean square error (—) and the penalization term (- -), for the first problem mentioned in Section
4.1. Also shown is the average mean square error of randomly initialized BP networks of the same size, for five different initial

states.

in Figure 6. With eight prototypes used for initializa-
tion, the same analysis as above (Figure 7) shows that
o« must now be chosen larger. than previously (« = 20
seems to be close to the optimum). This demonstrates
that the choice of the saturation parameter cannot be
done independently of the learning task.' As suggested
by Kruschke and Movellan (1991), the saturation pa-
rameters could also be adjusted dynamically during
the learning process, independently for each hidden
unit. This seems to be an interesting possibility which
remains to be investigated in this context.

The impact of adding a weight decay term to the
error function E in order to obtain a function from
[—1; 1] (instead of [ —1; 1] X [0; 1]) to R, as suggested
in Section 2, has also been tested on the first learning
task. A heuristic procedure for adapting the weighting
factor A, roughly similar to the one proposed by Wei-
gend, Rumelhart, and Huberman (1991), has been
employed. As can be seen in Figure 8, the annihilation
of the influence of the last component is obtained at
the price of a longer training time, which, however, re-
mains considerably smaller than that required on av-
erage by randomly initialized networks to reach the
same error level.

4.2. The Two Spirals Problem

This problem consists in finding the boundary between
two intertwined spirals, such as represented in Figure

! In fact, these results even suggest the existence of some relation-
ship between the optimal value of « and the gradient of F. However,
this point has not been clarified yet.

9. Since its introduction by Alexis Wieland of MITRE
Corp., this learning task has become a common bench-
mark for connectionist learning algorithms (see, e.g.,
Baum & Lang, 1991; Fahlman & Lebiere, 1990), es-
sentially because it is extremely hard to solve using
standard back propagation. According to Baum and
Lang (1991), a 2-50-1 back propagation network seems
unable to find a correct solution to this problem, start-
ing from random initial weights. Fahlman and Lebiere
(1990) mention a solution using a 2-5-5-1 net with

08
0.6
04
0.2
0
0.2
-0.4
0.6

038

-1 S N a

-1 -0.5 0 05 1

FIGURE 9. The two-spirals problem, with the two classes (+
and ), the initial locations of the 20 prototypes (O), and the
final decision boundary (dotted line).
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- 20 prototypes -- 24 prototypes -. 44 prototypes RN

MSE

600 800 1000 1200

epochs

FIGURE 10. Convergence of BP networks initialized with 20 (—), 24 (- -) and 44 (- - ) prototypes, for the two-spirals problem.

shortcut connections, but this solution required 60,000
iterations of the quickprop algorithm. Some of the best
results to date have been obtained with Fahlman’s Cas-
cade-Correlation, which yielded correct solutions using
between 12 and 19 (mean 15.2) partially intercon-
nected hidden units.

The initialization scheme described in Section 2 has
been applied to this problem. Ten prototypes of each
class (Figure 9) have been generated by the RCE al-
gorithm and used to initialize a 3-20-1 network, with
o = v = 1. Perfect classification has been achieved after
1,200 iterations of the accelerated back propagation
algorithm described above. The decision boundary be-
tween the two classes is shown in Figure 9. Note that
only 101 degrees of freedom were available in this case,
against 114 in a 2-12-1 Cascade-Correlation Network.
Using more prototypes results in faster convergence
(Figure 10).

0.8
%
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LRI N : x ©° 2
i +% .
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+ ¥ ¥ ¢+ +
T Ky hAE LN 8 x ;
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x x X4+ +
x Tty
-0.4} . * . X s
x
0.6 X ¥ ¥

%8 06 04 02 0 02 02 05 08 1

FIGURE 11. The second “hard” problem (two heavily overlap-
ping classes) in two dimensions, with four prototypes (O) and
final decision boundary (dotted line).

4.3. Discrimination Between Two Heavily
Overlapping Classes

This problem, previously considered by Kohonen,
Chrisley, and Barna ( 1989), consists in separating two
classes with symmetrical multivariate normal distri-
butions, having the same mean and square root of vari-
ance equal to 1 and 2, respectively, in all dimensions.

The two-dimensional case has first been considered.
A learning set and a test set have been generated in-
dependently, each consisting of 100 samples (50 in each
class, see Figure 11). Four prototypes have been gen-
erated with the NeoART algorithm and used to ini-
tialize a 4-5-2 network (with @ = v = 4). Again, the
convergence of this network has been compared with
that of a 3-5-2 network initialized randomly. Figure 12
shows the decay in error rates for the two networks,
both on the training set, and on the test set. Since this

- random -- prototypes

0.8} R

0.7} ' o

o'20 20 40 60 80 100

epochs

FIGURE 12. Decrease of quadratic error on the training and
test sets, for two networks initialized randomly, and with pro-
totypes, resp. (overlapping normal distributions, two-dimen-
sional case).
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FIGURE 13. Decrease of quadratic error on the training and
test sets, for two networks initialized randomly, and with pro-
totypes, resp. (overlapping normal distributions, three-dimen-
sional case).

problem is less challenging for the BP algorithm than
the previous one, the gain of using prototypes for ini-
tialization is less important, in terms of convergence
time. However, what should be noted here is that the
asymptotic error rate on the test set is significantly lower
for the network initialized with prototypes. This result,
which has been confirmed on other examples (see Fig-
ure 13 for the three-dimensional case, with five pro-
totypes, and Figure 14 for the five-dimensional case,
with seven prototypes), suggests that the proposed ini-
tialization scheme might, at least in some cases, enhance
the generalization capability of BP networks.

Another advantage of the initialization scheme pro-
posed here is that it allows for an interpretation of what
has been learned by the network: After training, the
weights in the first layer can be interpreted (after re-
normalization) as the new components of the proto-
types. In this case, it is interesting to examine how the
prototypes and the corresponding hidden unit activa-
tion functions have evolved in the course of the learning
process. Such an analysis has been performed in the
two-dimensional case (Figure 15) showing that the final

0.6 _ - random -- prototypes

misclassification rate

epochs

FIGURE 14. Decrease of misclassification rate on the training
and test sets, for two networks initialized randomly, and with
prototypes, resp. (overlapping normal distributions, five-di-
mensional case).

T. Denoeux and R. Lengellé

1

FIGURE 15. Contour lines of hidden unit activation functions
(levels 0.45,0.35 and 0.25), before (left) and after (right) back
propagation.

solution can occasionally be very far away from the
initial one. The same phenomenon has been observed
in many other simulations, with the conclusion that
even a relatively poor initial guess generally suffices to
obtain a substantial reduction in training time.

4.4. Nonlinear Continuous Function Approximation

The third problem that will be considered here has been
proposed recently by Nguyen and Widrow (1990b). It
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FIGURE 16. The function F(x, y) = 0.5 sin{xx2)sin(2xy) on [ —1; 1]2 (a), and its approximation by networks initialized with 16 (b)

and 8 (c) prototypes, before back propagation.

consists in approximating the following function of R2,
on D = [—1; 1]? (Figure 16(a)):

F(x, y) = 0.5 sin(wx?)sin(27y).

Since in the general case the number of extrema of a
function to be learned is not known, an arbitrary
number of prototypes (16) have been generated by the
algorithm described in Section 3. As expected, the pro-
totypes are located very close to the extrema of F (Fig-
ure 17), which results in a very good initial approxi-
mation (Figure 16(b)). Note that, in this case, only
eight prototypes correctly located at the extrema are
sufficient (Figure 16(c)).

In Figure 18, the convergence of the network based
on these 16 prototypes (a = 40) is compared with those
of two networks of the same size, with weights:

1. randomly initialized between —0.5 and 0.5, and
2. initialized according to the method proposed by

Nguyen and Widrow (1990b),
with evident superiority of our approach. Note that
similar results have been obtained with only eight pro-
totypes.

5. CONCLUSIONS

A scheme has been proposed for initializing the weights
in feedforward networks with one hidden layer, prior
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FIGURE 17. Contours of F, and location of prototypes.

to back propagation. This scheme has proved applicable
both to pattern recognition tasks, and to the approxi-
mation of continuous functions. Issues related to the
preprocessing of patterns and to the generation of pro-
totypes have been discussed, and solutions adapted to
each case have been proposed. Simulations have shown
that this method yields drastic reductions in training
time, and considerably improves robustness with regard
to local minima. Experimental results also suggest that
networks initialized with prototypes show better gen-
eralization properties, but this finding remains unex-

0.06

0.05
0.04
E 0.03
0.02

0.01

epochs

FIGURE 18. Convergence of networks with 16 hidden units,
initialized randomly (—), according to Nguyen and Widrow’s
method (- - -) and with prototypes (- -), on the third problem
(approximation of F).

plained so far. The question of how many prototypes
should be considered for a given task also remains open.
Future work will concentrate on these questions, as well
as to the final validation of this approach on difficuit
real-world problems, such as water demand forecasting
or sleep stage scoring.
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NOMENCLATURE

*
LJ

n dimension of inputs
c number of classes
K number of prototypes
p’ i-th prototypes
w

weight of the connection from the i-th unit of layer k + 1
to the j-th unit of layer k

a, B8;, v initialization parameters (eqns 5(a), 5(b), and 5(c))

D the domain on which a function is approximated

£(1), e(#) monotonically decreasing scalar gain factors (eqns 12(a)

) and 12(b))

Fi(r) the estimate at time ¢ of F(p‘(1))

7{9(t)  learning rate applied to W{* in the BP algorithm (eqns
’ 13(a) and 13(b), 14(b))

u momentum coefficient in the BP algorithm (eqn 14(a))

a,b,d parameters for learning rate adaptation in the BP algorithm

(eqns 13(a) and 13(b))
C the cost funtion minimized by BP (eqns 8, 13(a) and 13(b))
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