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This paper describes a new approach to the analysis of
weather radar data for short-range rainfall forecasting
based on a neural network model. This approach
consists in extracting synthetic information from
radar images using the approximation capabilities of
multilayer neural networks. Each image in a sequence
is approximated using a modified radial basis function
network trained by a competitive mechanism. Predic-
tion of the rain field evolution is performed by
analysing and extrapolating the time series of weight
values. This method has been compared to the
conventional cross-correlation technique and the
persistence method for three different rainfall events,
showing significant improvement in 30 and 60 min
ahead forecast accuracy.
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1. Introduction

The use of radar in meteorology dates back to World
War II, when it was noticed that at wavelengths of
10 cm or less, reflections were occasionally obtained
from meteorological targets. In the 1950s and 1960s,
a better understanding of the physical phenomena
involved in these reflections has been gained,
allowing for the operational use of conventional
radars for the detection and tracking of thunder-
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storms and cyclones [1,2]. With the availability of
fast computers in the early 1970s, it later became
possible to process large amounts of digitised data
in real-time. Quantitative rainfall measurement
became possible, as well as short-range forecasting,
up to several hours ahead, of precipitation amounts.
Weather radars are now routinely used in several
countries for flood warning and water management
in general. In parallel, work is going on to determine
the accuracy of radar-derived precipitation data,
and improve the forecasting performance [2-4].

In this paper, we present a new approach to the
analysis of radar data for rainfall forecasting based
on a neural network model. This approach consists
in extracting synthetic information from radar images
using the approximation capabilities of multilayer
neural networks. Each image in a sequence is
approximated using a modified radial basis function
network trained by a competitive mechanism: Pre-
diction of the rain field evolution is performed by
analysing and extrapolating the time series of weight
values.

The next section presents an overview of this
approach, after a brief description of the principles
of rainfall measurement and forecasting by radar.
The competitive radial basis function network model
is presented in Sect. 3, and its application to the
approximation of radar images is described in Sect.
4. Finally, experimental results are given in Sect.
5.

2. Problem Description

2.1. Rainfall Measurement

For wavelengths greater than 3 cm, the scattering
of electro-magnetic pulses by an assemblage of
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airborne liquid particles can be described by the
following radar equation

zZ
P,=C3 €))

where P, is the average power in each echo pulse
arriving at the receiver, C is a constant depending
on the characteristics of the radar equipment, r is
the range, and Z is the radar reflectivity factor. Z
can be shown be depend on the 6th power of the
diameters of precipitation particles. By making

assumptions regarding the drop-size distribution and

the fall speeds of different-sized drops, it is possible
to relate the average value of Z to the rate of
rainfall R using an equation of the form:

Z=aR® O ©

where a and b are constants. When Z is expressed
in mm®.m~? and R in mm.h~!, common values for
a and b are a = 200 and b = 1.6. The resulting Z
— R relationship is known as the Marshall-Palmer
law. :

By rotating the radar antenna around a vertical
axis with constant elevation, one obtains a ‘snapshot’
of the rain field over an area of several thousands
km?. Some examples of radar images corresponding
to three different meteorological situations are
shown in Fig. 1. These are 256 X 256 images with
16 reflectivity levels and a spatial resolution of
1 km. The situations of June 17 1991 and July 31
1991 are characterised by convective precipitation
generated by a large number of small-scale structures
(convective cells). The third situation (November
12 1991) is typical of stratiform precipitation caused
by a large frontal rainband.

2.2. Rainfall Forecasting

The first radar-based rainfall forecasting systems
relied on the statistical comparison of the rain fields
in two successive images, using, for example, the
cross-correlation function [5]. In this method, the
cross-correlation coefficient is calculated for differ-
ent displaced superpositions of the two images,
and its maximum indicates the most probable
displacement. The forecast is obtained by linear
extrapolation of the displacement vector, applied
to the whole image.

Although this simple technique performs quite
well in frontal situations, characterised by large
rainfall areas with uniform advection, it suffers from
servere limitations when applied to other types of
meteorological situations such as convective ones,
where different rainfall areas may have different

~

directions and speeds of motion. Since these situ-
ations are often those causing the most heavy
rainfall, this drawback is particularly serious in
hydrological applications. This remark has motivated
research on more ‘structured’ approaches working
with connected groups of pixels, or ‘echoes’, sup-
posed to be associated with individual rainfall
generating systems [3,6,7]. These approaches usually
consist of four steps: (1) echo definition; (2) echo
description by features; (3) echo matching; and
(4) forecast by vector extrapolation. We have
investigated [7] the use of a neural network for
learning a matching rule whose function is to
determine whether two echoes taken from successive
images correspond to the same meteorological
structure or not. The decision rule obtained has
been found to yield a significant improvement over
the state-of-the-art method introduced by Neumann
[6], and has since been integrated into an operational
system. However, this structured approach remains
partly based on the three simplifying assumptions
mentioned by Einfalt et al. [3]:

1. Uniform spatial behaviour of a rainfall structure

(no split or merge).

2. Uniform temporal behaviour of a rainfall struc-
ture (no growth or decay).

3. Representation of a rainfall structure on the
radar image by one echo.

Indeed, detailed analysis of the forecasting perform-
ance of the structured approach has revealed that
futher improvements could be expected from the
consideration of not only the motion, but also the
growth and decay of rainfall areas [6]. Furthermore,
the matching rules reported in [3,6,7] may fail in
case of important deformation of rainfall areas from
one time step to the -other.

A previous attempt to apply connectionist algor-
ithms to radar-based rainfall forecasting was
reported recently [8]. In this approach, a three-
layer backpropagation network receives as input
the last image, and is trained to predict the rainfall
field one hour ahead. The rainfall data used in this
study were generated by a mathematical rainfall
simulation model. The simulation domain was
100 X 100 km at a resolution of 4 km, yielding a
grid of 25 X 25 points. The neural network was a
three-layer backpropagation network with 625 input
nodes, 625 output nodes and 15, 30, 45, 60 or 100
hidden nodes. The performance of the neural
network was compared to the persistence method,
in which the output is simply assumed to be identical
to the input, and the cross-correlation method.
According to the chosen performance criteria
(comparison of mean intensity and areal coverage),
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Fig. 1. Examples of radar images.

the study did not reveal any substantial improvement
as compared to the reference methods. Moreover,
this ‘brute-force’ approach was found to be very
time-consuming (training times of up to 32 hours
have been reported).

2.3. Proposed Approach

In this paper, we introduce a totally different
approach intended to overcome the aforementioned
limitations, making use of the approximation capa-
bilities of artificial neural networks. The method-
ology is schematically depicted in Fig. 2.

The basic idea consists in coding a radar image
using a small number of parameters. It is then
expected that the analysis of the time series of
parameter values corresponding to successive images
will capture the main components of the rain field
evolution, allowing for more accurate predictions
than those resulting from simple translation of
rainfall patterns.

To encode a radar image I, at time ¢, of size
n X n, we propose to consider it as a function F;:
{1, ..., n}?> > R, such that for each (i,j) € {1, ...,
n)2, F(i,j) represents the intensity value of the
pixel in image I, at coordinates (i,j). Knowing the
function F,, it is possible to approximate it to any
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Fig. 2. The methodology.

accuracy using a multilayer feedforward neural
network with two inputs, one output and a sufficient
number of hidden units (Fig. 3). The associated

weight vector W, can be taken as a representation -

of the image I,.

To preserve as much continuity as possible in the
representations from one image to the next, the
representation W,,, of image I,., must be suf-
ficiently ‘close’ to W,. This can be achieved by
taking W, as an initial guess for W,., before
updating it by further training.

The neural network learning algorithm to be used
for the approximation of F, should meet the
following requirements:

1. It should be fast enough to be usable in real-
time.

2. It should be able to adapt its architecture to the
complexity of the function F,; this complexity
may fluctuate due to the evolution of the
meteorological situation (e.g. increase of the
number of raincells due to convection
intensification).

3. The class of functions implementable using a
network architecture of ‘moderate’ size should
contain sufficiently good approximations of the
functions F, corresponding to radar images, the
shape of which is determined by the geometrical
characteristics of rainfall structures.

As will be explained later, no existing learning

Fyll)) i Feid)

Fig. 3. Image encoding using a neural network.

algorithm has been found to be completely satisfac-
tory according to all these criteria. For that reason,
a new neural network paradigm, called the Competi-
tive Gaussian Potential Function (CGPF) network
has been developed for that application (see Sect.
3).

As a result of the processing of a series of images
I,t=1, .., T, a series of weight vectors W,, t =
1, ..., T is available. However, due to the changes
in the network architecture from one time step to
the next, there is not necessarily a one-to-one
correspondence between the components of success-
ive weight vectors. For each component W,(i,) of
W,, one must consider the list Wr_,(ix_p), ...,
Wi_1(ix—1) of its predecessors at previous time
steps. This time series can be extrapolated to predict
future values Wz, 4, ... WT+p of the weights.

The learning algorithm and the prediction method
will now be presented in greater detail.

3. Competitive Radial Basis Function
Networks

3.1. Radial Basis Function Networks

Radial Basis Function (RBF) networks (also referred
to as potential-function networks) are two-layer
networks whose hidden layer is composed of units
that respond to only a local region of the input space.
The second layer performs a linear combination of
the output signals from the hidden layer. The general
form of the input-output mapping ¢ implemented by
such a network is, for an input vector x:

M

B(x) = D, w' (x,p)) + 0 3)

i=1

where M is the number of hidden units, w* the ith
summation weight, p‘ the parameter vector for unit
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o(x) = Z yi(x)+0

wi(x) = y(x,pl)

Q)
D

Fig. 4. A radial basis function network.

I, ¢ the activation function and 8 a bias term (Fig.
4). In the most general case, ¢(x) is a vector;
however, it will be assumed to be a scalar in the
following discussion.

Following Lee [9], we define a Gaussian potential
function ¢* by:

¥'(x) = ¥(x,p") (4)
= exp(—dxi(x,m’)/2) ©)
dii(x,m’) = (x—m’)’K’(x—m’) ©

where m’ and K’ represent, respectively, the mean
and shape matrix (defined as the inverse of the
covariance matrix) of the potential function. The
weight vector m’ can be interpreted as a prototype,
or reference vector, in the input space. dg’(x,my’) is
then the squared distance between the vectors x
and m, according the metric defined by K.

The (j,k)th element of K’ can be expressed using
the marginal standard deviations ¢ and o% and the
correlation coefficient ki ;:

i
. Bk

where 0} >0 and k&, = 1if j = k, else |hi,| < 1.
Note that A}, = h{; for all i, j and k. In the case
of a two-dimensional input space, we can therefore
write hi, = hi; = H'.

Gaussian potential-function networks meet rela-
tively well the requirements listed in the former
section:

1. Because the hidden unit weights receive a natural
interpretation in terms of prototypes, they can
easily be initialised better than randomly,
resulting in faster training than, for example, back
propagation networks with sigmoidal activation
functions.

2. Relatively simple constructive algorithms are

. available for these networks [9, 10].

3. Because of the nature of rainfall-generating
systems (essentially rainbands and convective
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cells), the rain field generally appears as the
juxtaposition of more or less elongated ‘bumps’
that can be approximated using only a small
number of Gaussian units.

3.2. Parameter Learning

For a fixed architecture, such a network can be
trained in supervised mode by applying gradient-
descent to an error function. Most commonly used
is the quadratic error function, defined for the pth
training pattern as:

P =3(F - ¢0e) ®

where # denotes the target value for the pth training
pattern x?. The network weights are incrementally
updated using the following learning rules [9]:

MW = = = (e — SENFR)  (O)
W=~ = = H)WA)

> Kbk — mi)

]

(10)

Wof =~ = n(F — SO W)
J

_ 9 _ _ (O — m)(xf — m})
"ah]’:’k - ', (f]: aik
( — ()W (x)  (12)

(13)

Aph},k =

0= —n'e = — (e ~ ()

where 7 is the learning step.

3.3. Architecture Adaptation

Platt [10] and Lee [9] have separately proposed
similar algorithms for adapting the architecture of
potential-function networks to the characteristics
of the inputs. Basically, the method consists in
combining gradient-descent with a mechanism for
recruiting hidden units. Following an input presen-
tation, a unit is recruited if the following conditions
are satisfied:

1. The input pattern does not fall into the receive
field of any hidden unit.
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2. The output error for that pattern is greater than
some threshold.

A new prototype is then created and initialised with
the input vector. If the input falls within the
accommodation boundary of an existing compu-
tational unit, or the error is small enough, then the
network weights are simply updated using such
learning rules as described in the previous section.

Initially, the receptive fields must be large enough
to learn quickly a coarse representation of the
input-output function. Their width is then gradually
reduced for finer learning.

Although this learning technique offers good
performance in terms of learning speed and com-
pactness of representation, it presents some draw-
backs, both in general terms, and specifically for
our application:

e First, the parameter adaptation part of the °

learning rule is global, which means that all the
weights are simultaneously updated to accommo-
date each input unit that does not trigger the
allocation of a new unit. Since the representations
formed by the network are essentially local (each
unit responds  to localised inputs), a possible
alternative would be to use a local learning rule,
which might result in faster training.

e Secondly, there is no mechanism for pruning the
least relevant units; such a functionality is needed
in our application, to account for the possible
vanishing of rainfall-generating systems.

® Lastly, an additive output unit presents some
drawbacks in our application, which can be shown
by the following example. Let us consider an
image at time ¢ consisting of two echoes e; and
e, as represented in Fig. 5, and let us assume
that the predicted trajectories for these echoes
converge at some point. From a physical point
of view, it is not realistic to add up the rainfall
intensities of the two echoes. A much better
choice would be to consider at each point of the
intersection the maximum of the contributions
from e, and e,.

N =

Fig. 5. Convergence of the trajectories of two echoes. The
echoes e, and e, of the image at time ¢ (left) merge into a single
entity at time ¢ + At (right).

From these considerations, we have developed
a new type of potential-function network, the
Competitive Radial Basis Function (CRBF) net-
work, that will now be described.

3.4. The Competitive Radial Basis Function
Network

The CGPF network has the same architecture and
hidden unit activation function as its non-competitive
counterpart. The essential differences reside in its
propagation equation and learning rule. Instead of
Eq. 3, we now have:
¢(x) = max wipi(x)+ ¢ (14)
i=1,...,.M

where 6’ is a threshold for unit i and ¢ is defined
as before by Eqs. 4-6. Therefore, only the winning
unit, defined as the hidden unit with the highest
output signal for input x, contributes to the network
output. As in classical competitive learning, only
this unit will be modified to accommodate the input.
However, instead of simply moving the weights w*
in the direction of the input, as in the standard
winner-take-all learning rule, all the parameters
attached to unit i, i.e. w', m’, o}, ki, and & are
updated using the rules described by Eqs. 9-13.

This simple adaptation mechanism can be com-
bined with the same procedure for allocating units
as described above. Moreover, we now have the
possibility t.» prune a unit that has not been activated
during a _ =n number of presentations of the
learning set.

We can now give a complete formulation of the
learning algorithm. To simplify the notations, the
input space will be assumed to be two-dimensional.

BEGIN
1. Initialise the first hidden unit with the first
input vector x:
M« 1;m' «<x'; 00 < 0y, = 1,2)
MRe0, 0«1, T<0
Initialise each individual learning rate at m,

2. Repeat
iteit+1
For p = 1 to P/* number of training patterns
*/do

compute ¢(x?) according to Eq. 14

imax < arg max;_; _ a W (xP) + &
If (dgimex (x?, m™) < §(it)) or (¥ —
&(x?)) < € then
update wima.x, mimax’ o.jynax, hima.x and 0’max
using Eq. 9-13

else
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create a new hidden unit
Me<M+1
mM « x?
al;'l « BdKimax (xp, mim)’ (’ o 1’2)
M« 0
M0
wM «—
endif
end
If a hidden unit has not fired during the
last L learning cycles, then

delete it
rename the indices accordingly
M<M-1

endif

adapt the learning rates
until convergence '
END

0o, €, L, B and mo are problem-dependent para-
meters. 8(it) is a time-decreasing parameter. In the
simulations presented in the next section, 8(it) was
made to decrease exponentially as a function of the
number it of learning cycles:

8(it) = max(8y exp(—it/7), Spmin)

where &, 6, and 7 are constants.

Adaptation of the learning rates was performed
using a modified version of the method described
in [11].

20 40 60
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4. Application
4.1. Learning Radar Images

Figures 6 to 8 show some typical results concerning
the application of the algorithm described above to
three radar images, corresponding to three different
types of meteorological situations. The initial resol-
ution of 256 X 256 pixels was lowered to 64 X 64
by averaging in order to reduce computing time.
Reflectivity values were coded using 16 levels, as
shown in Fig. 1, and converted to rainfall intensities
using the Marshall-Palmer law.

Each image was smoothed using a median filter
before applying the learning algorithm. The para-
meter values were defined as shown in Table 1. In
our current implementation, the approximation of
each image required about 1 min on a Sun Sparc 2
workstation.

As can be seen, the overall structure of the
reflectivity patterns can be preserved using only 15
to 20 hidden units, i.e. approximately 100 to
150 parameters. The exact number of units and,
correspondingly, the quality of the representation
as measured by the mean squared error E obviously
depend upon the tuning parameters of the learning
algorithm. Our choice of parameter values has been
found empirically to result in a good compromise
between complexity on the one hand, and accuracy
on the other hand. As a heuristic, it is interesting
to compare E to the discretisation error E, defined
as:

20 40 60

Fig. 6. Situation of November 12 1991. Original image after smoothing (a) and approximation (b) using 16 prototype units (E =

0.143; E; = 0.39).
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Table 1. Parameter values.

y n n — 2
i=1j=1 2

where N;; denotes the reflectivity level (between 0
and 15) of the pixel at coordinates (i,j) and
[Rinin(N: ), Rimax(N; ;)] represents the corresponding
intensity interval. By convention, R,,,, (15) is taken
as 207 mm/h.
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Fig. 7. Situation of August 7 1991. Original image after smoothing (a) and approximation (b) using 20 prototype units (E = 0.255;

E, = 0.408).
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Fig. 8. Situation of July 31 1991. Original image after smoothing (left) and approximation (b) using 15 prototype units (E = 0.023;

E, = 0.083).
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The discretisation error can be interpreted as an
estimate of the mean squared error caused by the
discretisation of reflectivity values, assuming the
intensity to be uniformly distributed inside the
intervals defined by R, and R,,. It therefore
provides a basis for estimating the error E needed
to achieve a sufficiently good representation of the
image. Empirically, good results have been obtained
with E = 0.5E,,.

2. Extrapolation of Connection Weights

By iteratively applying the learning procedure
described above to successive images, taking
the weight vector at time ¢ as an initial guess for
the weight vector at time ¢ + 1, one obtains time
series for each of the network weights
(m), o}, W, W', &),i= 1, ..., M; j = 1,2. To extrapo-
late these series, some prior knowledge regarding
the possible behaviour of each corresponding vari-
able is necessary.

Assuming each hidden unit i to approximate the
intensity distribution of one well-defined rainfall
area, m' can be interpreted as the centre of
that area, whose shape (size, orientation, etc.) is
described by the other parameters. According to
that interpretation, one can expect to observe a
quasi linear evolution for m‘, corresponding to the
generally linear advection of rainfall areas.

The evolution of the other network parameters
such as o}, 04 and w' is more difficult to predict.
In convective situations, meteorological studies
concerning the life-cycle of radar echoes [12] suggest
that one could observe the same kind of ‘bell-
shaped’ curves as observed for the size of rain cells.

As will be seen in the next section, experimental
facts support these assumptions reasonably well,
particularly concerning the linear displacement of
the centres m‘. This suggests that, given enough
data, some extrapolation technique could be applied
to the prediction of o}, o4 and w'. However, in the
present study, we have restricted ourselves to the
linear extrapolation of the Gaussian potential centres
m’ using a displacement vector computed by a
moving average of the past observed displacements.

5. Experimental Results
5.1. The Data
The performances of our method and the cross-

correlation method (hereafter referred to as NN
and CC, respectively) have been compared for three
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typical meteorological situations respectively of
frontal type (November 12 1991) and convective
type (June 17 and July 31 1991). Sample images
from these three situations are represented in
Fig. 1.

The frontal situation is characterised by a narrow
rainband embedded inside a larger area of stratiform
precipitation, with uniform eastward advection and
good stability of the shape of rainfall areas. In the
two convective situations, much smaller echoes
corresponding to convective cells are scattered all
over the region covered by the radar. On June
17 1991 a heterogeneous advection with counter-
clockwise rotation around some point near the
centre of the image is clearly discernible on computer
animations. The situation of July 31 1991 is charac-
terised by a very slow advection with important
deformation of reflectivity patterns and a tendency
for rain cells to aggregate into an organised line of
precipitation.

Figures 9 and 10 show the Gaussian potential
centres and their predicted displacement for the
next 30 and 60 minutes, respectively. As can be
seen, both the uniform advection in the frontal
situation and the heterogeneous advection of rain
cells in the convective one are well captured by our
procedure. The evolution of the network weights
for three different hidden units in all three situations
tested is represented in Figs 11 to 13. Not surpris-
ingly, the weights are more stable during the
frontal sitaution, whereas the stronger variability of

1.0 2.0 : '3.0 40 50 60
Fk.’PonnonsofGlmanpotenhdceuuun‘(‘)and
plvdueddlsplmmentlorthcnenwm The contours of the

image to the 1.3 mm/h and 4.9 mm/h levels (situation
of November 12 1991).
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Fig. 10. Positions of Gaussian potential centres m‘ (*) and
predicted displacement for the next 60 min. The contours of the
image correspond to the 1.3 mm/h and 2.7 mmv/h levels (situation
of June 17 1991).
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Fig. 11. Evolution of the weights for three hidden units (situation
of November 12 1991). (a) Trajectories of Gaussian potential
centres m'; (b) o%; (c) ob; (d) #'; (e) w; (f) .

reflectivity patterns in the two convective situations
results in greater weight variability.

5.2. Results

Our forecast evaluation procedure has attempted
to reflect as much as possible the use of quantitative
rainfall forecasts in an operational context. The
accumulated rainfall depth for the next 30 and 60
minutes was computed over the 4 X 4 km? areas
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Fig. 12. Evolution of the weights for three hidden units (situation
of June 17 1991). (a) Trajectories of Gaussian potential centres
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Fig. 13. Evolution of the weights for three hidden units (situation
of July 31 1991). (a) Trajectories of Gaussian potential centres
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corresponding to each of the 4096 pixels, using both
forecasting methods (CC and NN). Predictions of
rainfall depths were obtained by computing forecast
images at 5 min intervals, and summing up the
coresponding intensity values. In addition to CC
and NN, we also considered for comparison the
performance of the ‘persistence’ method (Pers.),
which simply consists in taking the last observed
image as the prediction for future time steps.
These predicted values were compared to esti-
mates of the same quantities, computed in a similar
manner using radar measurements performed in the
same period. The sparseness of available rain-gauges
did not permit the use of ground measurements for
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calibrating the radar data. However, the errors so
introduced can reasonably be expected to affect
only the absolute performance values, and not the
relative values that only matter in this comparative
study [4].

The mean forecasting errors for the three situ-
ations at five successive time steps are represented
in Figs. 14 to 16. As expected, the CC and NN
methods both outperform the trivial persistence
method, and the overall best performance was
obtained with the NN approach. The superiority of
the NN method increases with range from 30 to 60
min, which suggests that it is actually due to a
better estimation of the speed and direction of
motion of rainfall patterns.

6. Conclusions

A new rainfall forecasting method based on the
representation of radar images by radial basis
function networks has been presented. For each
incoming image, a neural network is trained so as
to approximate the rain field, using the previous
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weights as an initial state. The learning algorithm
is based on a competitive mechanism, combined
with a procedure for adapting the network size to
the complexity of the input distribution. Forecast
images are obtained by extrapolating the time series
of weight values.

The ability of this method to predict accumulated
rainfall volumes on small-size areas was evaluated
for three rainfall events corresponding to different
types of meteorological situations. For each of these
events, significant gains in prediction accuracy were
obtained, as compared to the standard cross-
correlation method. Additional improvements are
still expected from the analysis of a greater number
of situations, that will allow both the experimen-
tation of more sophisticated extrapolation tech-
niques and the refinement of heuristics for tuning
the method.

Although more experiments in various meteoro-
logical situations are still needed to complete the
validation of this approach, the results obtained so
far are considered as very encouraging. Our current
work aims at carrying out further testing and
refinement so as to convert the present prototype
into a fully operational system.
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