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Abstract

Whereas Probability theory has been very successful as a conceptual framework for

risk analysis in many areas where a lot of experimental data and expert knowledge are

available, it presents certain limitations in applications where only weak information

can be obtained. One such application investigated in this paper is water treatment, a

domain in which key information such as input water characteristics and failure rates

of various chemical processes is often lacking. An approach to handle such problems

is proposed, based on the Dempster-Shafer theory of belief functions. Belief functions

are used to describe expert knowledge of treatment process efficiency, failure rates

and latency times, as well as statistical data regarding input water quality. Evidential

reasoning provides mechanisms to combine this information and assess the plausibility

of various noncompliance scenarios. This methodology is shown to boil down to the

probabilistic one where data of sufficient quality are available. This case study shows

that belief function theory may be considered as a valuable framework for risk analysis

studies in ill-structured or poorly informed application domains.

Keywords: Risk Assessment, Belief Functions, Dempster-Shafer theory, Evidence

Theory, Transferable Belief Model, Drinking Water Production.



1 Introduction

Although Probability Theory remains well established as a reasonably well founded

conceptual framework for uncertainty management, a number of alternative theories

have begun to appear towards the end of the 1970’s, including Possibility theory [22]

and the so-called Dempster-Shafer theory of belief functions, or Evidence theory [13].

These new theoretical developments have been motivated by the growing recognition

that all forms of partial information are not easily amenable to representation in the

probabilistic framework. This applies, for instance, to vague linguistic statements of-

ten used by experts to express their knowledge, such as “if x is small, then y is very

likely to be large”. An extreme situation is that of complete ignorance: a quantity x

of interest may be totally unknown, and the representation of this lack of information

by a probability distribution (even a uniform one) may be shown to lead to paradoxes

(see [13] for detailed discussions on this topic). Among existing tools for uncertainty

representation, belief functions appear to play a pivotal role as they generalize both

probability and possibility distributions, allowing to represent various forms of uncer-

tainy such as randomness, imprecision and vagueness [9, 10]. In recent years, belief

functions have received a clear interpretation and an axiomatic justification in the

Transferable Belief Model [20, 18], a normative, nonprobabilistic model for reasoning

under uncertainty.

In spite of continued interest raised by belief functions since the publication of

Shafer’s book in 1976, real-life applications have up to now been rather limited and

essentially confined to certain technical fields such as expert systems [15][2], pattern

recognition [5][6] and data fusion [19][12]. In particular, applications of belief func-

tions or other nonprobabilistic uncertainty representation frameworks in reliability

engineering and risk analysis has been, up to now, very limited. This fact may be

explained by the outstanding successes of probabilistic methods in such domains as

transportation systems, where a lot of experimental data and expert knowledge are

available. However, when attempting to transpose standard probabilistic tools to

other types of applications, where data are scarce and expert knowledge is partial and
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imprecise, the analyst is faced with the relative inadequacy of standard probabilistic

tools. For instance, only crude approximations of certain parameters of interest such

as failure rates or latency times may be available, and treating such approximations as

accurate data may impair the whole analysis and make its conclusions unreliable. The

main thesis of this paper is that other uncertainty representation frameworks such as

Belief Function theory can then provide more flexible and reliable tools.

The particular application considered in this paper concerns risk analysis in drink-

ing water treatment, an issue of growing importance due to the general degradation

of water sources, and the increasing public awareness of the impact of many contam-

inants on human health. To meet contractual requirements and internal objectives,

water utilities now have not only to select a combination of treatment processes most

appropriate to treat the contaminants found in raw water in normal operating condi-

tions, but also to estimate the residual risk of producing water that momentarily does

not meet drinking water standards, due to failure of a treatment process, or accidental

pollution of the water source. Application of existing reliability and availability meth-

ods to this problem leads to computing the probability of producing noncompliant

water, taking into account the quality of the raw water to be treated (i.e., the esti-

mated probability to find a given contaminant level), as well as different characteristics

of the treatment unit and its various operating modes [11, 3].

However, a major hurdle here is the difficulty to obtain precise and reliable esti-

mates of key input data needed for reliability analysis such as failure rates, or frequency

distribution of raw water quality parameters. In this paper, it is proposed to model

the uncertainty on raw water quality, process line efficiency and state of the treatment

plant in the belief function framework. Each source of information will be modeled

by a belief function and combined to obtain an assessment of the plausibility to pro-

duce noncompliant water. In the limit case of precise and certain information, the

proposed methodology will be shown to yield exactly the same results as the classi-

cal probabilistic approach. In the general case, however, the output belief function

that quantifies the uncertainty related to the noncompliance of treated water is not
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a probability measure, and its imprecision directly reflects the imprecision of input

data. These results can be used to estimate a level of confidence that contractual

requirements will be met with a given treatment plant technology, and therefore to

help treatment plant designers to choose the optimal process line, given an objective

level of residual risk.

The rest of the paper is organized as follows. The classical methodology is first

recalled in Section 2. The necessary theoretical background on belief functions is then

summarized in Section 3, and our approach is described in Section 4. The equivalence

with the probabilitic approach is the proved in Section 4.7. Finally, a generalization

to multiple quality parameters is presented in Section 5, and simulations are presented

in Section 6. Section 7 concludes the paper.

2 Problem description and probabilistic approah

2.1 Problem statement

Drinking water regulations in industrialized countries define maximum admissible lev-

els for several dozens of contaminants, including volatile and synthetic organic com-

pounds, inorganic compounds, and microbial organisms. Standards are also defined

for global water quality parameters such as turbidity and color. To comply with these

regulations, water treatment facilities must include a series of treatment processes

called a “treatment train”. The most commonly used processes include filtration,

flocculation and sedimentation, and disinfection. Some treatment trains also include

ion exchange and adsorption. The design of a treatment train usually ensures that

water standards will be met in normal operating conditions. However, as the quality

or water sources is continuously degrading, and regulations are becoming more and

more stringent, it is now necessary to take into account “rare” events in the analysis,

such as extreme levels of some contaminants due to accidental pollution of the water

source, and failure of treatment processes. The problem addressed in this paper is

to assess a “degree of confidence” that, at a given time, the output level of a given
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quality parameter will not exceed the corresponding regulation standard. A solution

to this problem in the probabilistic setting is proposed in this section. The rest of the

paper is concerned with elaborating a more complete solution in the Belief Function

framework.

2.2 Modeling of treatment efficiency

The global efficiency of the treatment plant in the nominal mode with respect to a

given contaminant may be modelled by a transfer function, giving the output level

s as a function of the input level e. Such a transfer function may be constructed

by studying the impact of each of the treatment processes along the treatment train,

on the contaminant (or quality parameter) of interest. In most cases, this transfer

function can be assumed to be linear and expressed using a single parameter α0, called

the abatement rate or reduction factor:

s = (1 − α0)e.

It is also possible to account for nonlinearities by defining different abatement rates

according to the input level. However, such a sophistication is not fundamental at the

conceptual level, and we will adopt the linear assumption throughout this paper.

In addition to the nominal mode x0, it is assumed that the plant may be in one of

I degraded modes xi, i = 1, . . . , I. Each degraded mode corresponds to a fault in one

of the processes along the treatment train. For each degraded mode xi, the influence

of the whole treatment on the considered quality parameter will still be assumed to

be linear, with an abatement rate αi < α0. The complete model of the plant (with

respect to a given water quality parameter) is thus defined by I+1 coefficients αi,

i = 0, . . . , I.

For each contaminant, the regulation defines a standard level N that should not be

exceeded by treated water. This defines two possible states for the produced water:

compliance (s < N) and noncompliance (s ≥ N). Applying the inverse nominal

and degraded mode transfer functions to level N defines I + 1 admissible levels θi =
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N/(1 − αi) for raw water: the raw water level e must be less than θi to respect the

regulation, assuming the plant to be in state xi (see Figure 1).

In the sequel (except in Section 5), the analysis will be carried out for a single

quality parameter, which does not pose any problem if the parameters are assumed

to be independent. The case of several dependent parameters will be addressed in

Section 5.

2.3 Probabilistic analysis

A major step in the classical approach is the Failure Mode Effects and Criticality

Analysis (FMECA), in which the different failure modes xi, i = 1, . . . , I of the treat-

ment process are listed, and the corresponding failure rates λi (failure probability per

unit time), latency times Ti (time to restore nominal mode after failure), and degraded

transfer functions (degraded abatement rates αi for i > 0) are determined. The com-

pliant water unavailability induced by failure mode xi is simply the probability to be

in that mode, and is equal to pi = λiTi. The probability to be in the nominal mode is

p0 = 1 −
I
∑

i=1

pi. (1)

This data provides the basic input to Fault Tree Analysis (FTA), as illustrated

in Figure 2. For the considered parameter, the top level event of the fault tree is

“Produced water does not comply with standard level N”. The first level of the tree

is a decomposition between the different operating modes of the treatment plant by

the top level OR gate. The plant in a given mode xi will not accept input level

exceeding θi for the considered contaminant, which corresponds to the second level

AND gate. The probability of the top level event is trivially obtained in that case as:

P (s ≥ N) =

I
∑

i=0

piP (s ≥ N |xi) =

I
∑

i=0

piP (e ≥ θi) . (2)

2.4 Limitation of the approach

The above methodology assumes perfect knowledge of transfer functions, failure rates,

latency times, and input distribution of the quality parameter under study. This as-
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sumption has proved unrealistic in the present application, for several reasons. The

approach is to be used at early stages of treatment plant design, where few exper-

imental data, if any, are available. Treatment efficiency can be precisely measured

in laboratory experiments, but observed values in operational conditions are often

different and vary considerably from one site to another. Due to the scarcity of his-

torical records, water treatment engineers are often not able to provide more than

crude estimates of failure rates and latency times. Lastly, laboratory measurement of

key quality parameters are costly, and the number of available measurements rarely

exceeds a few dozens, providing only partial information on the input distribution of

contaminant levels in raw water.

These considerations have motivated the adoption of a more flexible framework,

allowing to represent and manage weaker forms of knowledge than assumed in the

probabilistic setting. This framework will be described in the next section.

3 The Transferable Belief Model

3.1 Basic notions

The theory of belief functions originates from a series of seminal papers par Dempster

[4] and an influential book by Shafer [13]. It was later developed by Smets [20]

who clarified semantic issues, introduced many new tools, and provided axiomatic

justifications for the use of belief functions and the main combination rules. This

has resulted in a coherent framework for representing and manipulating uncertain

information, called the Transferable Belief Model (TBM) [20]. In this model, a belief

function is understood as representing an agent’s state of belief, without resorting to

an underlying probability model. Only the essential definitions and specific notations

will be given here. A detailed exposition of the TBM may be found in [18].

Let x denote a variable or quantity of interest defined on a finite domain (or frame

of discernment X). An agent’s belief concerning the value taken by x is represented

by a basic belief assignment (bba) mX defined as a function from the powerset 2X of
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X to [0, 1] verifying
∑

A⊆X

mX(A) = 1.

Subsets A of X such that mX(A) 6= 0 are called the focal sets of mX . The quantity

mX(A) is interpreted as a fraction of a unit mass of belief assigned specifically to

subset A (i.e., to the hypothesis that A contains the true value of x), given the facts

known by the agent at a given time. Total ignorance is therefore represented by the

vacuous bba defined by mX(X) = 1, whereas full knowledge corresponds to the case

where mX({x}) = 1 for some x ∈ X. Probabilistic knowledge is recovered when all

the focal sets are singletons (mX is then a probability function on X, and is called a

Bayesian bba). The normality condition m(∅) = 0 is not systematically imposed in

the TBM. The quantity m(∅) measures the amount of conflict after combining several

information sources (see below), and can sometimes be interpreted as a weight of belief

in the hypothesis that the quantity of interest might take its value outside the known

set of alternatives (open-world assumption).

Associated with mX are several set functions which play an important role in the

theory. Two such functions are the belief function belX and the plausibility function

plX defined, respectively, as:

belX(A) =
∑

∅6=B⊆A

mX(B), (3)

plX(A) =
∑

B∩A6=∅

mX(B), ∀A ⊆ X. (4)

The quantity belX(A) is interpreted as the amount of support actually given to A

by available evidence, whereas plX(A) = belX(Ω) − belX(A) (where A denotes the

complement of A) represents an amount of the potential support that could be given

to A, if further information became available.

A key feature in any uncertainty management framework is the way pieces of

information are combined, leading to a new knowledge state. In the TBM, the basic

mechanisms for combining independent pieces of information is the conjunctive sum,

also known as the unnormalized Dempster’s rule of combination. Let mX
1 and mX

2 be
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two bba’s induced by distinct sources of information. Their conjunctive sum mX
1 ∩©2 =

mX
1 ∩©mX

2 is defined as:

mX
1 ∩©2(A) =

∑

B∩C=A

mX
1 (B)mX

2 (C), ∀A ⊆ X. (5)

Note that mX
1 ∩©2(∅) may be nonzero even if mX

1 and mX
2 are normalized: the quantity

mX
1 ∩©2(∅) is then interpreted as a degree of conflict between the two sources. The

conjunctive sum operation is commutative and associative.

It sometimes occurs that a source of information induces a bba mX , but we have

some doubt regarding the reliability of that source. Such metaknowledge may be

represented by discounting [13] mX by some factor δ ∈ [0, 1], which leads to a bba

mX
δ defined as:

mX
δ (A) = (1 − δ)mX(A) ∀ A ⊆ X,A 6= X (6)

mX
δ (X) = δ + (1 − δ)mX(X) (7)

A discount rate δ = 1 means that the source can certainly not be trusted: the resulting

bba is then vacuous. On the contrary, a null discount rate leaves mX unchanged: this

corresponds to the situation where the source is known to be fully reliable.

3.2 Link with Possibility Theory

The theory of Belief functions has close links with Possibility theory, another uncer-

tainty management framework [22][8] closely related to Fuzzy Set Theory. A possibility

distribution on X is a function πX : X → [0, 1]. It is interpreted as a soft constraint

on values that can possibly be taken by x, and is formally equivalent to a fuzzy subset

of X. The associated possibility and necessity measures are set functions defined,

respectively, as:

ΠX(A) = max
x∈A

πX(x),

NX(A) = 1 − ΠX(A), ∀A ⊆ X.

These functions are characterized by the following properties:

ΠX(A ∪ B) = max(ΠX(A),ΠX (B)) (8)
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NX(A ∩ B) = min(NX(A), NX (B)), (9)

for all A,B ⊆ X.

Let mX be a consonant bba, i.e., a bba with nested focal sets F1 ⊆ . . . ⊆ Fn.

As shown by Shafer [13], the plausibility and belief measures induced by mX verify

(8) and (9), respectively. Hence, plX is a possibility measure, and belX is the dual

necessity measure. The corresponding possibility distribution is the function defined

by πX(x) = plX({x}), for all x ∈ X.

Conversely, let πX be a possibility distribution on X. The associated possibility

and necessity measures ΠX and NX are, respectively, plausibility and belief functions

[8]. The associated consonant bba mX may be computed as follows. Let π1 > . . . > πr

be the distinct values taken by πX , arranged in decreasing order, and πr+1 = 0 by

convention. Let Ai = {x ∈ X | πX(x) ≥ πi}, i = 1, . . . , r. Then, we have, for any

non-empty subset A of X:

mX(A) =

{

πi − πi+1 if A = Ai, i = 1, . . . , r

0 otherwise,
(10)

and mX(∅) = 1 − π1.

Although combination rules in Possibility theory and in the TBM are different,

the above considerations show that belief functions provide a very general framework,

which encompasses both probability and possibility measures are special cases. This

generality makes the TBM particularly suitable as a modelling tools for problems in

which the available pieces information are provided in different formats, which is often

the case when subjective knowledge (often conveniently represented in the form of a

possibility distribution) has to be combined with statistical information, which lends

itself more naturally to probabilistic representation.

3.3 Coarsenings and Refinements

In applying the TBM framework to a real-world problem, the definition of the frame of

discernment is a crucial step. As remarked by Shafer [13], the degree of “granularity”

of the frame is always, to some extent, a matter of convention, as any element ω of Ω
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representing a “state of nature” can always be split into several possibilities. Hence, it

is fundamental to examine how a belief function defined on a frame may be expressed

in a finer or, conversely, in a coarser frame [7].

Let X and Y denote two finite sets. A mapping ρ : 2Y → 2X is called a refining if

it verifies the following properties:

1. The set {ρ({y}), y ∈ Y } ⊆ 2X is a partition of X.

2. For all B ⊆ Y , we have

ρ(B) =
⋃

y∈B

ρ({y}) . (11)

Following the terminology introduced by Shafer, Y is then called a coarsening of X,

and X is called a refinement of Y . Formally, defining a coarsening of a frame amounts

to defining a partition of that frame.

A bba mY on Y may be tranformed into a bba on a refinement X by tranferring

each mass mY (B) for B ⊆ Y to A = ρ(B). This operation is called a vacuous extension

of mY to X. Formally:

mX(A) =

{

mY (B) if A = ρ(B) for some B ⊆ Y,

0 otherwise.
(12)

3.4 Operations on Joint Spaces

Most problems involve several variables, with available knowledge consisting in ex-

act or approximate relations between groups of variables. In probability theory, such

knowledge is typically represented by a joint probability distribution over the set of

variables, from which marginal and conditional probability distributions can be com-

puted. Similar operations can be defined in Belief Function Theory, as well as other

operations which have no equivalent in probability theory [17][1]. These operations

are briefly presented in the sequel.

Let mXY denote a bba defined on the Cartesian product X ×Y of two variables x

and y (the notation X × Y is replaced by XY in the superscript of bba’s to simplify
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the notation). The marginal bba mXY ↓X on X is defined, for all A ⊆ X, as

mXY ↓X(A) =
∑

{B⊆X×Y | Proj(B↓X)=A}

mX×Y (B) , (13)

where Proj(B ↓ X) denotes the projection of B onto X, defined as

Proj(B ↓ X) = {x ∈ X | ∃y ∈ Y, (x, y) ∈ B} . (14)

Marginalization may be seen as going from a frame X × Y to a coarsening X.

The inverse operation, which has no equivalent in Probability Theory, is a particular

instance of vacuous extension. Let mX be a bba on X. Its vacuous extension on

X × Y is defined as:

mX↑XY (B) =

{

mX(A) if B = A × Y for some A ⊆ X,

0 otherwise.
(15)

Other important notions are those of conditioning, and its inverse operation called

the ballooning extension [17]. Let mXY denote a bba on X × Y (with underlying

variables (x,y)), and mXY
y the bba on X × Y with single focal set X × {y}. The

conditional bba of x given y = y is defined as:

mX [y] = (mXY
∩©mXY

y )↓X (16)

The conditioning operation for belief functions has the same meaning as in Probability

Theory. However, it also admits an inverse operation (with no probabilistic counter-

part) called the ballooning extension [17]. Let mX [y] denote the conditional bba on

X, given y. The ballooning extension of mX [y] on X × Y is the least committed bba,

whose conditioning on y yields mX [y] (see [17] for detailed justification). It is obtained

as:

mX [y]⇑XY (B) =

{

mX [y](A) if B = (A × {y}) ∪ (X × (Y \ {y})) for some A ⊆ X,

0 otherwise.

(17)

3.5 Belief networks

A set of belief functions over subsets of a joint space X1×. . .×Xn of n variables can be

represented graphically by an undirected hypergraph, in which each node is a variable,
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and each hyperedge linking a subset of nodes is weighted by a belief function defined

on the product space of the corresponding variables [14]. Such a graphical model is

called a belief network. Once a problem has been formalized as a belief network, a

solution is found by combining the belief functions, and marginalizing on variables

of interest. Local computation algorithms as described in [14], [1] and [16] allow to

perform these operations at a considerable savings of time and space.

4 Application of the TBM

4.1 Representation of basic input data

As already mentioned in Section 2.4, one of the main difficulties in applying the

probabilistic approach to the problem considered in this paper is the unavailability of

precise and reliable input data. The Belief Function formalism, being more general

and flexible than the probabilistic one, will allow us to represent and manage weak

information available in this application, without making it artificially and deceptively

precise.

The basic quantities of interest in our problem are abatement rates αi (i =

0, . . . , I), failure rates λi and latency times Ti associated to each degraded mode

xi (i = 1, . . . , I), and the frequency distribution of the raw water quality parameter

under study. Whereas these quantities were assumed to be known in Section 2, we

will now consider the more realistic situation were they are only partially specified.

Defining precise abatement rates αi hardly makes any sense, because the efficiency

of a treatment process depends on changing characteristics of raw water, and the

linearity of the plant input-output transfer function is only a simplifying assumption.

Indeed, the experts felt more comfortable to provide, for each rate αi (i = 0, . . . , I),

a lower bound α−
i , an upper bound α+

i , and a point estimate α0
i . This data can be

modeled by the triangular possibility distribution πi on the real line with support

[α−
i , α+

i ] and mode α0
i .

Failure rates and latency times were also elicited from experts. Here again, only
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imprecise assessements can be obtained. For simplicity, only upper and lower bounds

of these parameters were considered, leading to intervals [λ−
i , λ+

i ] and [T−
i , T+

i ] for

i = 1, . . . , I.

Lastly, information about the distribution of quality parameter in raw water will

be assumed to consist either in a set of n values e(t1), . . . , e(tn) measured in samples

taken at n time steps t1, . . . , tn, or partial probability assessments provided by experts.

The representation of this input data in the TBM framework will be described in

the following sections.

4.2 Discretization

The theory outlined in Section 3 assumes belief functions to be defined on finite spaces

(a generalization to continuous spaces is possible, but it requires considerably more

mathematical sophistication). We thus have to discretize variables e and s representing

the input and output levels.

For that purpose, let us define K − 1 thresholds σk, (k = 1, . . . ,K − 1) for the

output level s, which induce K possible states sk = [σk−1, σk) (k = 1, . . . ,K) with

σ0 = 0 and σK = ∞ by convention. To recover the classical limit, one of the output

thresholds must be the standard level (N = σk for some k).

For a given mode xi of the treatment plant, each output threshold σk defines

an input threshold θk,i = σk/(1 − α0
i ) (the input concentration must be less than

θk,i for the output concentration to be less than σk when the treatment plant is

in mode xi). For this mode xi it would be sufficient to consider the K raw water

states Ak,i = [θk−1,i, θk,i), 1 ≤ k ≤ K, with θ0,i = 0 and θK,i = ∞, but we need a

discretization which allows to take into account all I + 1 plant operating modes. We

therefore consider the whole set of θk,i for all modes xi and all output thresholds σk,

and we note ηj (1 ≤ j ≤ J−1) this set of values arranged in increasing order. Note that

we defined K−1 thresholds for each of the I +1 modes, so that J −1 ≤ (K−1)(I +1)

(the upper bound may not be strict because some of the thresholds may be equal). We

finally have J raw water states ej = [ηj−1, ηj) (1 ≤ j ≤ J with η0 = 0 and ηJ = ∞).
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Note that the set of states E = {e1, . . . , eJ} can be thought of as the coarsest common

refinement of the I + 1 sets {Ak,i|1 ≤ k ≤ K} (0 ≤ i ≤ I). This discretization scheme

is represented in Figure 3.

We thus have three discrete underlying variables: the discretized input level tak-

ing values in E = {e1, . . . , eJ}, the discretized output level taking values in S =

{s1, . . . , sK}, and the plant state in X = {x0, . . . , xI}. The available pieces of infor-

mation will now be modeled as belief functions on these domains, leading to the belief

network shown in Figure 4.

4.3 Belief on X

In the probabilistic case, knowledge of failure rates λi and latency times Ti induce

a probability function on X, as shown in Section 2.3. Since λi and Ti are now only

known to lie in given intervals, it is natural to define a probability interval [p−
i , p+

i ]

for each of the failure mode as:

p−i = λ−
i T−

i , p+
i = λ+

i T+
i , i = 1, . . . , I. (18)

The probability interval [p−0 , p+
0 ] for the nominal mode can be deduced from (1) and

(18) to be:

p−0 = max

(

0, 1 −
I
∑

i=1

p+
i

)

, (19)

p+
0 = 1 −

I
∑

i=1

p−i , (20)

assuming that
I
∑

i=1

p−i ≤ 1, (21)

which ensures the feasability of the constraints. Since the different failure probabilities

pi, i = 1, . . . , I are small, we can further assume that

I
∑

i=1

p+
i ≤ 1. (22)

Equation (19) then simplifies to p−0 = 1 −
∑I

i=1 p+
i .
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Let P−(A) and P +(A) denote, respectively, the lower and upper bounds on the

probability of A ⊆ X, under the constraints (18). In general, the imprecise probability

framework [21] is distinct from the belief function framework, and the concept of

coherent lower probability measure as defined by Walley [21] is strictly more general

than that of belief function. In the special case considered here, however, it will be

shown that, under conditions (21) and (22), P − is a belief function, P + being the

associated plausibility function. The corresponding bba mX happens to have at most

2I + 1 focal sets of cardinality 1 or 2.

Proposition 1 Let P denote the set of probability measures on X defined by con-

traints (18), under conditions (21) and (22).

1. We have, for all A ⊆ X:

P−(A) = min
P∈P

P (A) =

{

∑

xi∈A p−i if x0 6∈ A

1 −
∑

xi 6∈A p+
i otherwise,

P+(A) = max
P∈P

P (A) =

{

∑

xi∈A p+
i if x0 6∈ A

1 −
∑

xi 6∈A p−i otherwise,

2. P− is a belief function with associated plausibility function P + and bba mX

defined by:

mX({xi}) = p−i i = 0, . . . , I (23)

mX({x0, xi}) = p+
i − p−i i = 1, . . . , I. (24)

Proof: See Appendix A.

Example 1 Assume that we have two degraded modes x1 and x2. Mode x1 hap-

pens with a frequency comprised between 1 and 3 hours per year (λ1 ∈ [1.14 ×

10−4 h−1, 3.42 × 10−4 h−1]), and has a latency time of between 48 and 96 hours

(T1 ∈ [48 h, 96 h]), whereas mode x2 happens between 2 and 5 hours per year (λ2 ∈

[2.28×10−4 h−1, 5.70×10−4 h−1]), and has a latency time of between 24 and 48 hours
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(T2 ∈ [24 h, 48 h]). We thus have (with two significant digits):

p1 ∈ [0.0055, 0.033]

p2 ∈ [0.0055, 0.027]

p0 ∈ [0.94, 0.99],

which leads to the following bba:

mX({x0}) ≈ 0.94

mX({x1}) ≈ 0.0055

mX({x2}) ≈ 0.0055

mX({x0, x1}) ≈ 0.027

mX({x0, x2}) ≈ 0.022.

4.4 Belief on E

Information about the frequency distribution of contaminant levels in raw water may

be obtained either from data, or from expert opinion. The most favorable situation

is that where a large amount of data is available, allowing to build a histogram with

J classes e1, . . . , eJ , which then constitutes a good estimate of the true probability

distribution. In that case, mE({ej}) may simply be defined as the relative frequency

of data in class ej = [ηj−1, ηj), and mE is then a Bayesian bba (the associated belief

function is a probability measure).

A usual rule of thumb to build a histogram is to impose the absolute frequency

of each class to be at least equal to five. If this is not the case, the sample size is

too small to build a histogram with J classes. A useful strategy is then to merge

some classes, which amounts to defining a coarsening E ′ of E with J ′ < J elements.

Building a histogram with the classes defined by E ′ leads to a Bayesian bba mE′

on

E′, which can be vacuously extended on E using (12). The resulting bba mE is then

no longer Bayesian: it has J ′ focal sets which form a partition of E.
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Example 2 Let E = {e1, . . . , e6}, and assume that the absolute frequencies of n = 50

observations in each class are 2, 5, 14, 20, 8, 1. The frequencies of the two extreme

classes are two small to provide reliable estimates of the probabilities of these classes.

We then merge e1 and e2, as well as e5 and e6. We the obtain a coarsened frame E ′ =

{e′1, e
′
2, e

′
3, e

′
4} linked to E by a refining ρ such that ρ({e′1}) = {e1, e2}, ρ({e′2}) = {e3},

ρ({e′3}) = {e4}, ρ({e′4}) = {e5, e6}. The bba on E ′ is then defined as:

mE′

({e′1}) = 7/50, mE′

({e′2}) = 14/50

mE′

({e′3}) = 20/50, mE′

({e′4}) = 9/50.

The vacuous extension of mE′

on E yields:

mE({e1, e2}) = 7/50, mE({e3}) = 14/50

mE({e4}) = 20/50, mE({e5, e6}) = 9/50.

When no data is available, we must resort to expert knowledge to obtain at least

some imprecise specification of the distribution of input water quality parameter val-

ues. Typically, an expert will not be able to estimate all class frequencies, but he

or she may be able to provide a limited number of approximate cumulative probabil-

ity values Fj = P ({e1, . . . , ej}) for j = j1, . . . , jr. This information may be encoded

exactly as a bba mE
F defined as

mE
F ({e1, . . . , ej1}) = Fj1 ,

mE
F ({ejk−1+1, . . . , ejk

}) = Fjk
− Fjk−1

, k = 2, . . . , r,

mE
F ({ejr+1, . . . , eJ}) = 1 − Fjr .

Additional information concerning the reliability of the expert’s estimates may be

expressed in the form of a degree of confidence 1 − δ between 0 (no confidence at all)

and 1 (full confidence). It may be included in the evaluation by discounting mE with

a discount rate δ, using (6)(7).

Example 3 Let us consider the same domain E as in Example 2, and let us assume

that the following information has been elicited from an expert:

P ({e1, e2}) ≈ 0.2, P ({e1, . . . , e4}) ≈ 0.8.
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Assume furthermore that the expert has a degree of confidence of 1 − δ = 0.8 on his

or her assessements. The cumulative probability assessments lead to:

mE
F ({e1, e2}) = 0.2, mE

F ({e3, e4}) = 0.8 − 0.2 = 0.6,

mE
F ({e5, e6}) = 1 − 0.8 = 0.2.

Applying a discount rate of 1−0.8 = 0.2 to this bba leads to the following final result:

mE({e1, e2}) = 0.2 × 0.8 = 0.16, mE({e3, e4}) = 0.6 × 0.8 = 0.48,

mE({e5, e6}) = 0.2 × 0.8 = 0.16 mE(E) = 1 − 0.16 − 0.48 − 0.16 = 0.2.

4.5 Belief on X × E × S

The triangular possibility distribution πi(α) on αi defined in Section 4.1 may be seen

as constraining the set of possible values for the pair of variables (e, s), when the plant

is in state xi. Since we then have s/e = 1 − αi, the induced possibility distribution

on variables (e, s) may be expressed as a function of the ratio β = s/e as:

π[xi](e, s) = πi(1 − β) =



























1 − β − α−
i

α0
i − α−

i

if α−
i ≤ 1 − β ≤ α0

i

α+
i − 1 + β

α+
i − α0

i

if α0
i < 1 − β ≤ α+

i

0 otherwise.

(25)

In (25), the notation [xi] indicates that this possibility distribution is conditional on

the plant being in state xi.

The above possibility is defined on the continuous space R
2
+. Since the spaces

of input and output levels have been discretized (Section 4.2), we have to define the

induced possibility distribution on the discrete space E × S. Applying standard rules

of Possibility Theory, the simplest and most natural way to define this distribution

would be as:

πES[xi](ej , sk) = max
e∈ej ,s∈sk

π[xi](e, s) j = 1, . . . , J, k = 1, . . . ,K. (26)

However, this discretization scheme has the undesirable effect that introducing

even an infinitesimal amount of imprecision in the possibility distribution πi(α) from

α−
i = α+

i to α+
i −α−

i = dα results in drastic change in the joint possibility distribution

πES [xi], as some possibility values jump from 0 to 1. To avoid this effect, the following
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“smooth” discretization procedure was adopted. The possibility given to each rect-

angle Rk,k′,i = Ak,i × sk′ was computed as the height of the intersection between the

quadratic possibility distribution defined by (25) and a “pyramidal” possibility distri-

bution with support (the base of the pyramid) equal to Rk,k′,i and with kernel (the

point with maximum possibility value) equal to the center of Rk,k′,i (Figure 5). This

method yields the same results as the simple one (26) in the “precise” case (α−
i = α+

i ),

but it has the desirable property that the possibility associated to rectangles varies

continuously, ensuring the continuity at the classical limit.

The above procedure yields I + 1 conditional possibility distributions which can

be converted into conditional bba’s mES[xi], i = 0, . . . , I using (10). Each of these

bba’s represents one’s belief in the joint values of input and output concentrations,

when the plant is in state xi. These conditional bba’s can be then be converted into

joint bba’s mXES
i using the ballooning extension (17).

mXES
i = mES[xi]

⇑XES , i = 0, . . . , I.

Remark 1 In our model, expert knowledge concerning transfer functions in different

states is initially described in the language of Possibility theory, using (25). The corre-

sponding possibility distributions are then discretized, and finally translated into the

belief function formalism. This is essentially a consequence of our choice to represent

expert assessments concerning abatement rates αi as triangular possibility distribu-

tions, a convenient model of expert opinion about a parameter (this method is referred

to as the “method of consonant intervals” in [1, page 241]). We could as well have

avoided to mention Possibility Theory at all, and presented a triangular possibility

distribution as a continuous belief function with a mass density over a family of con-

sonant intervals. From our experience, however, we have come to the conclusion that

the semantics of a possibility distribution as a flexible constraint over some unkown

quantity is quite useful when eliciting expert opinions. Nevertheless, Possibility The-

ory is far less suitable for representing probabilistic information such as frequency

distributions. The ability of the TBM to incorporate both kinds of knowledge is, in

our view, a major advantage of this framework.
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4.6 Combination and marginalization

The final step is to combine all the available evidence, and marginalize on S. For that

purpose, belX and belE must be extended to the product space X × E × S using the

vacuous extension (15). The resulting belief functions are combined using Dempster’s

rule, and the result is marginalized on S. Formally, the final bba mS is thus defined

as:

mS =
(

(

∩©I
i=0m

XES
i

)

∩©mX↑XES
∩©mE↑XES

)↓S
. (27)

Note that these operations can be performed very efficiently using local computa-

tion algorithms, as mentioned in Section 3.5.

Several interesting functions can be computed from mS , including the cumulative

belief and plausibility functions, which we define as follows. First, let S denote the

refinement of S induced by the following refining ρ:

ρ({sk}) = [σk−1, σk),

and let mS denote the vacuous extension of mS on S. The focal sets of mS are real

intervals. The cumulative belief function F S
bel is then defined for all s ≥ 0 as

F S
bel(s) = belS((−∞, s))

=
∑

{A⊆S | ρ(A)⊆(−∞,s)}

mS(A)

=
∑

{A⊆S | sup ρ(A)≤s}

mS(A).

By construction, F S
bel is a right-continuous step function with jumps at each cutpoint

σk (see Section 6 for graphical displays of this function). Similarly, we may define the

cumulative plausibility function F S
pl as

F S
pl(s) = plS((−∞, s))

=
∑

{A⊆S | ρ(A)∩(−∞,s)6=∅}

mS(A)

=
∑

{A⊆S | inf ρ(A)<s}

mS(A),

for all s ≥ 0. Function F S
pl is also a step function with jumps at each cutpoint σk, but

it is continous from the left.
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4.7 Equivalence with the probabilistic approach

The following proposition states that our method is a valid generalization of the prob-

abilistic approach, i.e., that it yields the same results as the classical method when all

necessary data are precisely known.

Proposition 2 Under the following conditions:

1. The abatement rates are exactly known: α−
i = α+

i for i = 0, . . . , I;

2. The failure rates and latency times of all degraded modes are exactly known:

λ−
i = λ+

i and T−
i = T+

i for i = 1, . . . , I;

3. mE is a Bayesian bba, and it adequately reflects the probability distribution of

e: mE({ej}) = P (ηj−1 ≤ e < ηj) for j = 1, . . . , J ;

4. N = σk0−1 for some k0 ∈ {2, . . . ,K},

then the degree of belief in the event s ≥ N computed using the TBM approach is equal

to the probability of that event computed using Equation (2).

Proof. See Appendix B.

5 Multiparameter extension

The analysis carried out up to now concerned only one quality parameter. This ap-

proach, however, can easily be extended to the more realistic situations where several

parameters have to be taken into account in the risk analysis.

For simplicity and without loss of generality, let us assume that we have two

quality parameters e1 and e2. If these two parameters are statistically independant,

then the above analysis can be carried out independently for e1 and e2, leading to

the model depicted in Figure 6. In this model, E1 and E2 are the discrete spaces for

input levels of parameters e1 and e2, S1 and S2 are the discrete spaces for output

levels of the same parameters, and X is, as before, the set of states of the treatment

plant. An additional variable R indicates whether the produced water complies with
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the standards regarding the both parameters. If C1 ⊆ S1 and C2 ⊆ S2 denote,

respectively, the sets of compliant states for output levels of parameters 1 and 2, the

relation between S1, S2 and R can be encoded as a bba mRS1S2 defined as:

mRS1S2

(

({1} × C1 × C2) ∪ ({0} × C1 × C2)
)

= 1.

A belief function on R integrating all the available information may be obtained, as

before, by combining all the belief functions using Dempster’s rule, and marginaliz-

ing on R. Alternativeley, more detailed information on the output levels for both

parameters may be obtained by marginalizing on S1 × S2.

When the two parameters are not independent, then a joint bba mE1E2 has to be

constructed from a two dimensional histogram of observations of both parameters, or

from expert opinion as explained in Section 4.4, the rest of the analysis being carried

out in the same way. A graphical illustration of such model is shown in Figure 7.

In the most general case, the parameters may be clustered into several classes, with

the assumption of independence between classes. The above two-parameter models

can then be generalized in an obvious way.

6 Simulation results

As an illustration of the above approach, we study in this section a simple, but realistic

example of a treatment plant with a normal state x0 and one degraded state x1. In

a first step (Sections 6.1 and 6.2), only one parameter (turbidity) will be considered,

and the cases of precise and imprecise knowledge will be successively examined. In a

second step (Section 6.3), the approach will be extended to two correlated parameters

(turbidity and oxydability).

6.1 One parameter, precise data

In this first case, only one quality parameter (turbidity) is considered, and the available

knowledge in assumed to consist in:

22



• the abatement rates for the normal mode α0 = 0.8 and the degraded mode

α1 = 0.2;

• the failure rate and latency time of the failure mode: λ1 = 1e−3 h−1 and T1 =

2 × 24 h;

• 366 daily measurements of raw water turbidity, assumed to reflect the frequency

distribution of that parameter in the whole population of measurements.

The output turbidity level was discretized in 11 states, with cut-points σk = k,

k = 1, . . . , 10. The induced thresholds ηj on the input turbidity level result in 18 input

states E = {e1, . . . , e18}. The histogram of turbidity values with these 18 classes is

shown in Figure 8.

Figure 9 shows to the conditional possibility distribution on E × S given the

nominal state x0 (left) and the degraded state x1 (right). As expected, only “diagonal”

rectangles (i.e. those rectangles whose diagonal is crossed by the line s/e = 1 − αi)

receive a possibility value equal to 1. The corresponding mass functions mES[xi] have

a unique focal set equal to the union of these rectangles.

The cumulative belief and plausibility functions for the output turbidity level are

displayed in Figure 10, together with the linearly interpolated cumulative probability

function obtained using the probabilistic approach. The three functions coincide at

each cutpoint σk, which confirms the equivalence property proved in Section 4.7. The

probability of not exceeding the standard level N = 6 computed using this approach

is 0.96 and, equivalently, the probability of exceeding N is 0.04.

6.2 One parameter, imprecise data

The above simulations were repeated, this time introducing some imprecision on input

data:

α0
0 = 0.8, α−

0 = 0.7, α+
0 = 0.9,

α0
1 = 0.2, α−

1 = 0.1, α+
1 = 0.3,

λ−
1 = 0.8e−3, λ+

1 = 1.2e−3,
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T−
1 = 24, T +

1 = 3 × 24.

Additionnally, a more reliable, but less precise estimation of the frequency distribution

of input parameter values was computed by grouping the first three classes {s1, s2, s3}

and the last five ones {s14, . . . , s18}, leading to the twelve-class histogram shown in

Figure 11.

Figure 12 shows the conditional possibility distributions on E × S, related to the

nominal state x0 (left) and the degraded state x1 (right). These possibility distri-

butions are “blurred” versions of the crips relations of Figure 9 obtained under the

assumption of precision of input data, each pair (ej , sk) being now assigned a degree

of possibility.

The global result (combination of all available information and marginalization on

S) is represented in Figure 13 in the form of the cumulative belief and plausibility

functions F S
bel and F S

pl. The belief of the event s < N is now 0.90, and the plausibility

of that event is 0.99. Equivalently, the belief and plausibility of not meeting the quality

standard are, respectively, 1 − 0.99 = 0.01 and 1 − 0.90 = 0.10, which indicates that

the corresponding probability, for certain values of the input parameters within the

range provided by experts, could be as high as 0.10, a much higher value than that

computed using the classical approach.

Figure 14 illustrates the kind of sensitivity analysis that can be performed using

the belief function approach. Here, the belief and plausibility of not exceeding the

standard level (N = 6) is drawn against the relative degree of imprecision ε of input

data: for instance, the value ε = 0.1 corresponds to 10 % imprecision on input data α0,

α1, λ1 and T1. The lower curve, corresponding to the degree of belief of not exceeding

the standard level, is a more conservative assessment than the value computed using

the probabilistic approach, which does not take into account the imperfectness of the

available knowledge. As can be seen from this figure, this degree of belief decreases

rapidly with ε, particularly for ε > 0.12. As a relative uncertainty of 20 % on input

data is not unrealistic in this application, the quantity bel(s < N) could be as low as

0.87, a significantly lower value than the optimistic assessment of 0.96 obtained when
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this source of uncertainty is ignored.

6.3 Two parameters, imprecise data

To illustrate the application of our method in the multiparameter case, the analysis

was extended to take into account a second quality parameter: oxydability. A scat-

terplot for the 366 paired observations of these two parameters is shown in Figure 15.

Also represented in this figure are the discretization thresholds for the input levels of

these two parameters, and the corresponding estimated joint probability density.

The abatement rates for parameter e1 (turbidity) were given the same values as

in Section 6.2. For parameter e2 (oxydability), the values were 0.7 (normal state) and

0.2 (degraded state), with an uncertainty of ±0.1. The interval-valued failure rate and

latency time for the degraded mode were fixed as above.

Tables 1 and 2 show, respectively, the belief and plausibility values for the event

(s1 < N1 and s2 < N2) for possible values of the standard levels N1 and N2. These

values are to be compared with the probabilities of the same events shown in Table

3, computed using the standard probabilistic approach, without taking into account

the imprecision of basic data. For instance, the belief-plausibility interval for the

event e1 < 6 and e2 < 5 is [0.86, 0.98], whereas the optimistically biased estimated

probability of that event is 0.94.

7 Conclusion

A case study concerning the application of the Transferable Belief Model to a risk

assessment problem has been presented. The belief function formalism was shown

to be flexible enough to encode such diverse input data as fuzzy values, interval-

valued probabilities and statistical data in a single representation format. The result

of such analysis is a belief network composed of nodes (one for each variable in the

problem), and distinct belief functions connecting subsets of nodes. Combination of

this information and marginalization on variables of interest can then be performed

using local computational procedures, allowing to compute the belief and plausibility
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of various events relevant to the risk analysis.

This approach was shown to be more conservative than the classical probabilis-

tic approach, which typically neglects the imprecision and uncertainty of input data.

Whereas this assumption is reasonable in domains where a lot of experimental data and

expert knowledge are available, it leads to overoptimistic conclusions when such good

quality information is lacking. The belief function methodology exemplified in this

paper can then lead to more reliable conclusions, while maintaining the consistency

with the probabilistic approach when all necessary information can be collected. Con-

sequently, this methodology appears to be particulary adequate in situations where

only partial knowledge and scarce statistical data are available. Future work will aim

at validating the approach on a wider range of applications. Important methodolog-

ical issues such as the elicitation of belief functions from experts, or their induction

from statistical data also remain to be fully investigated.

A Proof of Proposition 1 (sketch)

A.1 Proof of Part 1 (expression of P−(A) and P +(A))

Let A ⊆ X and P ∈ P. We have P (A) ≥
∑

xi∈A p−i and P (A) = 1 − P (A) ≥

1 −
∑

xi 6∈A p+
i . Hence,

P−(A) ≥ max





∑

xi∈A

p−i , 1 −
∑

xi 6∈A

p+
i



 .

Similarly,

P+(A) ≤ min





∑

xi∈A

p+
i , 1 −

∑

xi 6∈A

p−i



 .

To see how these expressions simplify, two cases can be considered.

Case 1: x0 6∈ A. Then, we have 1 −
∑

xi 6∈A p+
i =

∑I
i=1 p−i −

∑

xi 6∈A,i6=0 p+
i , and

∑

xi∈A p−i =
∑I

i=1 p−i −
∑

xi 6∈A,i 6=0 p−i . Hence,
∑

xi∈A p−i ≥ 1 −
∑

xi 6∈A p+
i , and we can

retain
∑

xi∈A p−i as a lower bound for P (A). This bound can be attained by setting

pi = p−i , i = 1, . . . , I and p0 = p+
0 Hence, P−(A) =

∑

xi∈A p−i . A similar line of
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reasoning holds for the upper bound, by exchanging plus and minus superscripts and

changing the direction of inequalities. This leads to
∑

xi∈A p+
i ≤ 1 −

∑

xi 6∈A p−i , and

P+(A) =
∑

xi∈A p+
i .

Case 2: x0 ∈ A. Then,
∑

xi∈A p−i = 1−
∑I

i=1 p+
i +
∑

xi∈A,i6=0 p−i and 1−
∑

xi 6∈A p+
i =

1−
∑I

i=1 p+
i +
∑

xi∈A,i 6=0 p+
i . Hence, 1−

∑

xi 6∈A p+
i ≥

∑

xi∈A p−i The bound 1−
∑

xi 6∈A p+
i

can be attained by setting pi = p+
i , i = 1, . . . , I and p0 = p−0 . Hence, P−(A) =

1−
∑

xi 6∈A p+
i . Once again, exchanging plus and minus signs and changing the direction

of inequalities allows to show that P +(A) = 1 −
∑

xi 6∈A p−i .

A.2 Proof of part 2 (expression of mX)

First of all, it is easy to check that the masses in (23) and (24) sum to one. Next, let

us consider the belief and plausibility values given to singletons. We have obviously

belX({xi}) = mX({xi}) = p−i = P−({xi}) for i = 0, . . . , I, and

plX({x0}) = mX({x0}) +

I
∑

i=1

mX({x0, xi}) = 1 −
I
∑

i=1

p−i = p+
0

plX({xi}) = mX({xi}) + mX({x0, xi}) = p−i + p+
i − p−i = p+

i i = 1, . . . , I.

Hence belX and plX coincide with P− and P+, respectively, on singletons. To check

that this is also the case for any A ⊆ X, |A| > 1, we consider again two cases.

Case 1: x0 6∈ A. We have belX(A) =
∑

xi∈A mX({xi}) =
∑

xi∈A p−i = P−(A), and

plX(A) =
∑

xi∈A

mX({xi}) +
∑

xi∈A

mX({x0, xi})

=
∑

xi∈A

p−i +
∑

xi∈A

(p+
i − p−i ) =

∑

xi∈A

p+
i = P+(A).

Case 2: x0 ∈ A. Then,

belX(A) =
∑

xi∈A

mX({xi}) +
∑

xi∈A,i6=0

mX({x0, xi})

= p−0 +
∑

xi∈A,i 6=0

p−i +
∑

xi∈A,i6=0

(p+
i − p−i ) = 1 −

∑

xi 6∈A

p+
i = P−(A),
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and

plX(A) =
∑

xi∈A

mX({xi}) +
I
∑

i=1

mX({x0, xi})

= p−0 +
∑

xi∈A,i 6=0

p−i +

I
∑

i=1

(p+
i − p−i ) = 1 −

∑

xi 6∈A

p−i = P+(A).

We have shown that belX(A) = P−(A) and plX(A) = P +(A) for all A ⊆ X, which

completes the proof.

B Proof of Proposition 2

When the abatement rate αi is known, there is a deterministic relationship between

E and S. Working with the set of input states {Ak,i|1 ≤ k ≤ K} which is the relevant

coarsening of E = {ej |1 ≤ j ≤ J} for mode xi, one can assert with certainty that

if raw water is in state Ak,i with station in mode xi, then treated water is in state

sk. Consequently, the “diagonal rectangles” (i.e. whose diagonal is crossed by the

line representing the transfer function) Ak,i × sk must have a possibility value 1, all

other ones a possibility value 0 (see Figure 3). This is indeed the result given by the

discretization procedure described in Section 4: the possibility distribution defined by

Equation (25) is equal to 1 on the line s = (1 − αi)e, and 0 elsewhere. The only one

rectangles having a non empty intersection with this line are the diagonal ones, for

which the line passes through the summit of the pyramid.

The corresponding mass function mES [xi] thus has a unique focal set in that case:

mES[xi](Bi) = 1, (28)

where Bi is defined as Bi =
⋃K

k=1 Ak,i × {sk}.

The ballooning extension of mES[xi] yields:

m[xi]
ES⇑XES (({xi} × Bi) ∪ ({xi} × E × S)) = 1. (29)

In order to combine these belief functions for all xi, let us calculate the intersection

of the unique focal element of two such functions:

(({xi} × Bi) ∪ ({xi} × E × S)) ∩ (({xj} × Bj) ∪ ({xj} × E × S)) =
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({xi} × Bi) ∪ ({xj} × Bj) ∪ ({xi, xj} × E × S).

Therefore, by immediate recurrence:

I
⋂

i=0

({xi} × Bi ∪ {xi} × E × S) =
I
⋃

i=0

({xi} × Bi). (30)

Hence, if we note mXES
a = ∩©I

i=0m
ES[xi]

⇑XES , we obtain:

mXES
a

(

I
⋃

i=0

{xi} × Bi

)

= 1. (31)

In a second step, we have to express our beliefs concerning the raw water and

plant states. In the classical case, mX and mE are probability functions defined

by mX({xi}) = pi (i = 0, . . . , I) and mE({ej}) = qj (j = 1, . . . , J). The vacuous

extension of these bba’s on the joint space yields:

mX↑XES({xi} × E × S) = pi i = 0, . . . , I (32)

mE↑XES(X × {ej} × S) = qj j = 1, . . . , J. (33)

Let mXES
b denote the combination of mXES

a with mX↑XES . We have:

mXES
b ({xi} × Bi) = pi i = 0, . . . , I. (34)

Finally, let mXES denote the combination of mXES
b with mE↑XES. By construction,

there is only one k such that ej ∈ Ak,i, considering a fixed state i of the plant.

Consequently, the resulting focal sets are all of the form:

({xi} ×
K
⋃

k=1

(Ak,i × {sk})) ∩ (X × {ej} × S) = {(xi, ej , sk)} (35)

with ej ∈ Ak,i. Hence, mXES is a Bayesian bba (a probability function). It is defined

as:

mXES({(xi, ej , sk)}) =

{

piqj if ej ∈ Ak,i,

0 otherwise.

Let us now compute the degree of belief in the event s ≥ N . Denoting by k0 the

index such that N = σk0−1, and by Dk0
the set of output states corresponding to
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noncompliant water: {sk0
, . . . , sK}, this degree of belief is equal to

belS(Dk0
) = belXES(X × E × Dk0

)

=
∑

{(i,j,k)|ej∈Aki,k≥k0}

mXES({(xi, ej , sk)})

=

I
∑

i=0

∑

{j|ηj−1≥θk0−1,i}

piqj

=

I
∑

i=0

pibel
E(e ≥ θk0−1,i).

By definition, the notation θk0−1,i has the same meaning as θi in (2). Hence, belS(Dk0
)

is equal to P (s ≥ N), which completes the proof.
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Table 1: Degree of belief in the event: s1 < N1 and s2 < N2, for different values of

N1 and N2.

N2

N1 3 4 5 6

2 0.2708 0.4061 0.4147 0.4203

4 0.4510 0.7262 0.7498 0.7620

6 0.4966 0.8262 0.8624 0.886

8 0.5008 0.8405 0.8824 0.9127

10 0.5032 0.8491 0.8944 0.9292

Table 2: Plausibility of the event: s1 < N1 and s2 < N2, for different values of N1

and N2.

N2

N1 3 4 5 6

2 0.6627 0.6909 0.6943 0.6944

4 0.8841 0.9454 0.9498 0.9510

6 0.9009 0.9734 0.9792 0.9826

8 0.9026 0.9765 0.9825 0.9874

10 0.9026 0.9765 0.9827 0.9885
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Table 3: Probability of the event: s1 < N1 and s2 < N2, computed using the classical

approach, for different values of N1 and N2.

N2

N1 3 4 5 6

2 0.5269 0.5477 0.5556 0.5556

4 0.8164 0.8842 0.8924 0.8936

6 0.8372 0.9337 0.9448 0.9518

8 0.8398 0.9416 0.9527 0.9613

10 0.8398 0.9416 0.9527 0.9629
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Figures

Nominal: abatement α0

Degraded 1: abatement α1

Degraded I: abatement αI

s

e

N

θI

eI+2eI+1

...

e1

Figure 1 :  Transfer function (output concentration of an undesirable water characteristics, as a function of the input concentration) in 
nominal mode and for n degraded mode of the treatment plant. In this linear approximation, the transfer function for mode i only
depends on an abatement rate αi, such as s = (1-αi).e

N is the norm to respect for output water and thus θi is the maximal concentration allowed for input water, to respect the norm for mode 
i (0<=i<=n where 0 is the nominal mode). Values ηj (j<=1<=I+1) are θi (0<=i<=I) rearranged in increasing order for convenience : 
ηj = θI+1-j.The different possible states of input water are designed by ej (1<=j<=I+2) as shown in the figure. The two possible states of 
output water are sk (k=2 non respect of the norm or k=1 respect of the norm).

...

θ1 θ0

Figure 1: Transfer function (output concentration of an undesirable water character-

istics, as a function of the input concentration) in nominal mode and for I degraded

mode of the treatment plant.
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Figure 5 :  Fault tree analysis of event “Production of water in state s0 (non conform to the norm)”.
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The minimal cutset can be written as : 

And the probability of production of non compliant water as :  

Where qi is the probability for the raw water to be in state ej
(determined by experience) and  p i the probability for the station to 
be in state xi. For i>0, p i = λiTi (i>0) where λi and Ti are 
respectively the failure rate and the repair time for mode i. The 
probability p0 to be in nominal state is thus : 

i
I

1i
i0 T1p ⋅λ−= ∑

=

e ¸ θi

Figure 2: Fault tree analysis of event “Production of non compliant water ”.

s

e

Figure 3 :  Affectation of possibilities and determination of the belief function on ExS given the treatment plant state xi (crisp case). All rectangles (ejxsk) that are 
crossed by the line representing the transfer function for state xi (greyed) receive a possibility value 1, other ones receive a possibility value zero.

The resulting belief function has a single focal element which is the set of greyed rectangles  with a mass value 1. More formally :

sk

θk,i

σk-1

θk-1,i ηj-1 ηj

ej

σk

Αk,i

[ ] ( ) 1Bm i
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=× [ ]{ }i,ki,1kjji,k ,eeA θθ⊆= −

[ ] { } { }( ) 1SExBxm iii
SEXSE

xi
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{ }U
1K

1k
ki,ki sAB

+

=
×=

Figure 3: Discretization of input and output levels of the quality parameter. The bold

diagonal line represents the transfer function of mode xi: s = (1 − αi)e. The gray

rectangles are crossed by this line along their diagonal.
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Figure 4: Belief network for the TBM model in the one-parameter case, with I = 1

(one failure mode). Each circle corresponds to a variable in the model. Hyperedges

between sets of variables are labeled by belief functions on the corresponding product

space.
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Figure 5: Possibility distribution on E×S and discretization procedure. The possibil-

ity distribution defined by (25) is represented by two pieces of hyperbolic paraboloids.

The discretized possibility value given to the rectangle Rk,k′,i = Ak,i × sk′ is defined

as the height of the intersection between the surface representing the continuous pos-

sibility distribution, and a pyramid with base Rk,k′,i, which corresponds to the height

of point H in this figure.
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Figure 6: Belief network for the TBM model in the case of two independent quality

parameters.
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Figure 7: Belief network for the TBM model in the case of two dependent quality

parameters.
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Figure 8: Histogram of 366 turbidity measurements in raw water.
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Figure 9: Conditional possibility distribution on E × S given the nominal state x0

(left) and the degraded state x1 (right), in the case of precise data.
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Figure 10: Cumulative belief and plausibility functions (precise data), with linearly in-

terpolated cumulative probability function obtained using the probabilistic approach.
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Figure 11: Histogram of 366 turbidity measurements in raw water.The first two states

have been grouped, as well as the last three ones.
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Figure 12: Conditional possibility distribution on E × S given the nominal state x0

(left) and the degraded state x1 (right), in the case of imprecise data.
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Figure 13: Cumulative belief and plausibility functions (imprecise data), and linearly

interpolated cumulative probability function obtained using the probabilistic approach

with the precise data of Section 6.1.
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Figure 14: Belief and plausibility of not exceeding the standard level (N = 6), as

a function of the imprecision on input data (α0, α1, T and λ), the input turbidity

level frequency distribution being estimated with 9 histogram classes. The horizontal

dotted line corresponds to the probability computed by the classical procedure.
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Figure 15: Input data for the two parameter case (turbidity and oxydability), and

two-dimensional histogram (estimated probability density values are represented as

gray levels).
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