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Abstract

We introduce a general theory of epistemic random fuzzy sets for reasoning with fuzzy or crisp evidence. This framework 
generalizes both the Dempster-Shafer theory of belief functions, and possibility theory. Independent epistemic random fuzzy sets 
are combined by the generalized product-intersection rule, which extends both Dempster’s rule for combining belief functions, and 
the product conjunctive combination of possibility distributions. We introduce Gaussian random fuzzy numbers and their multi-
dimensional extensions, Gaussian random fuzzy vectors, as practical models for quantifying uncertainty about scalar or vector 
quantities. Closed-form expressions for the combination, projection and vacuous extension of Gaussian random fuzzy numbers 
and vectors are derived.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The Dempster-Shafer (DS) theory of belief functions [29] and possibility theory [38] were introduced indepen-
dently in the late 1970’s as non-probabilistic frameworks for reasoning with uncertainty [11,10]. The former approach 
is based on the idea of representing elementary pieces of evidence as completely monotone capacities, or belief func-
tions, and combining them using an operator known as the product-intersection rule or Dempster’s rule. As probability 
measures are special belief functions, and Dempster’s rule extends Bayesian conditioning, DS can be seen as an exten-
sion of Bayesian probability theory, particularly suitable to reasoning with severe uncertainty. There is also a strong 
relation between DS theory and the theory of random sets [23]: specifically, any random set induces a belief function 
and, conversely, any belief function can be seen as being induced by some random set [26]. In DS theory, a random set 
underlying a belief function does not represent a random mechanism for generating sets of outcomes, but the impre-
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cise meanings of a piece of evidence under different interpretations with known probabilities [30]. To avoid confusion, 
we use the term epistemic random set for random sets representing evidence in DS theory.

In contrast, possibility theory originates from the theory of fuzzy sets [36]. In this approach, a fuzzy statement about 
the variable of interest, seen as a flexible constraint on its precise but unknown value in some domain �, induces a 
possibility measure and a dual necessity measure on �. Interestingly, a necessity measure is a belief function, and the 
dual possibility measure is the corresponding plausibility function, but the converse is not true (a belief function is 
not, in general, a necessity measure). For this reason, possibility theory has sometimes been presented as “a special 
branch of evidence theory” (another name for DS theory) [21, page 187]. However, combining two necessity measures 
by Dempster’s rule yields a belief function that is no longer a necessity measure: this combination rule is, thus, not 
compatible with possibilistic reasoning. In contrast, possibility theory has its own conjunctive combination operators 
based on triangular norms (or t-norms) [16]. Possibility and DS theory are, thus, two distinct models of uncertain 
reasoning based on related knowledge representation languages but different information processing mechanisms.

In a companion paper [9], we have revisited Zadeh’s notion of “evidence of the second kind”, defined as a pair 
(X, �(Y |X)) in which X is a discrete random variable on a set � and �(Y |X) a collection of conditional possibility 
distributions of a variable Y given X = x, for all x ∈ �. If random variable X is constant, we get a unique possibil-
ity distribution for variable Y ; if the conditional possibility distributions �(Y |X) take values in {0, 1}, then the pair 
(X, �(Y |X)) defines a random set equivalent to a DS mass function. The mappings associating, to each event, its ex-
pected necessity and its expected possibility are, respectively, belief and plausibility functions. In this framework, a 
possibility distribution thus represents certain but fuzzy evidence, while a DS mass function is a model of uncertain 
and crisp evidence. In general, a pair (X, �(Y |X)) defines an epistemic random fuzzy set, allowing us to describe evi-
dence that is both uncertain and fuzzy. (The term “epistemic” emphasizes the distinction between this interpretation 
and that of random fuzzy sets as mechanisms for generating fuzzy data considered, for instance in [28,17]). In [9], we 
have proposed a family of combination rules for epistemic random fuzzy sets in the finite setting, generalizing both 
Dempster’s rule and the conjunctive combination rules of possibility theory. One of these rules, based on the product 
t-norm, is associative and arguably well suited for combining independent evidence. Equipped with this combination 
rule (called here the generalized product-intersection rule), the theory of epistemic random fuzzy sets can be seen 
as an extension of both DS theory and possibility theory, making it possible to combine evidence of various types, 
including expert assessments (possibly expressed in natural language), sensor information, and statistical evidence 
about a model parameter.

In this paper, drawing from mathematical results presented by Couso and Sánchez in [2], we give a more general 
exposition of the theory of epistemic fuzzy sets, considering arbitrary probability and measurable spaces. We define 
combination, marginalization and vacuous extension operations of random fuzzy sets in this general setting, laying 
the foundations of a wide-ranging theory of uncertainty encompassing DS and possibility theories as special cases. 
Finally, for the important case where the frame of discernment is Rp, we propose Gaussian random fuzzy numbers and 
vectors as a practical model, generalizing both Gaussian random variables and vectors on the one hand, and Gaussian 
possibility distributions on the other hand.

The rest of this paper is organized as follows. Classical models (including random sets, fuzzy sets and possibility 
theory) are first recalled in Section 2. Epistemic random fuzzy sets are then introduced in a general setting in Section 3. 
Finally, Gaussian random fuzzy numbers and vectors are studied, respectively, in Sections 4 and 5, and Section 6
concludes the paper.

2. Classical models

In this section, we recall the main definitions and results pertaining to the two models of uncertainty generalized 
in this paper: random sets and belief functions on the one hand (Section 2.1), fuzzy sets and possibility theory on the 
other hand (Section 2.2).

2.1. Random sets and belief functions

Whereas belief functions in the finite setting can be introduced without any reference to random sets [29], the 
mathematical framework of random sets is useful to analyze belief functions in more general spaces, and to define the 
2
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practical models needed, e.g., in statistical applications. Important references about the link between random sets and 
belief functions include [26] and [2].

Let (�, σ�, P) be a probability space, (�, σ�) a measurable space, and X a mapping from � to 2�. The upper
and lower inverses of X are defined, respectively, as follows:

X
∗
(B) = B∗ = {ω ∈ � : X(ω) ∩ B �= ∅} (1a)

X∗(B) = B∗ = {ω ∈ � : ∅ �= X(ω) ⊆ B} (1b)

for all B ⊆ �. It is easy to check that

B∗ ∩ (Bc)∗ = ∅
and

B∗ ∪ (Bc)∗ = {ω ∈ � : X(ω) �= ∅} = �∗,

where Bc denotes the complement of B in �.
The mapping X is said to be σ� − σ� strongly measurable [26] if, for all B ∈ σ�, B∗ ∈ σ� (or, equivalently, if for 

all B ∈ σ�, B∗ ∈ σ�). The tuple (�, σ�, P, �, σ�, X) is called a random set. When there is no confusion about the 
domain and co-domain, we will call the σ� − σ� strongly measurable mapping X itself a random set.

In the special case where |X(ω)| = 1 for all ω ∈ �, we can define the mapping X : � → � such that X(ω) =
{X(ω)} for all ω ∈ �. We then have B∗ = B∗ = X−1(B) for all B ⊆ �, and X is σ� − σ� measurable. The notion of 
random set thus extends that of random variable.

Belief and plausibility functions. From now on, we will assume, for simplicity, that P(�∗) = 1. (If not verified, this 
property can be enforced by conditioning P on �∗). Let P ∗ and P∗ be the lower and upper probability measures 
associated with random set X, defined as the mappings from σ� to [0, 1] such that

P∗(B) = P(B∗) (2)

and

P ∗(B) = P(B∗) = 1 − P∗(Bc), (3)

for all B ∈ σ�. Mapping P∗ is a completely monotone capacity, i.e., a belief function, and P ∗ is the dual plausibility 
function [26, Proposition 1]. In the following, they will be denoted, respectively, as BelX and P lX . The corresponding 
contour function is defined as the mapping plX from � to [0, 1] such that

plX(θ) = P lX({θ})
for all θ ∈ �. The subsets X(ω) ⊆ �, for all ω ∈ �, are called the focal sets of BelX .

Interpretation. In DS theory, � represents a set of interpretations of a piece of evidence about a variable θ taking 
values in set � (called the frame of discernment). If interpretation ω ∈ � holds, we know that θ ∈ X(ω), and nothing 
more. For any A ∈ σ�, P(A) is the (subjective) probability that the true interpretation lies in A. For any B ∈ σ�, 
the degree of belief BelX(B) is then a measure of support of the proposition “θ ∈ B” given the evidence, while the 
degree of plausibility P lX(B) is a measure of lack of support for the proposition “θ /∈ B”. Under this interpretation, 
the random set X represents a state of knowledge: it can be said to be epistemic.

Vacuous random set. A constant random set (�, σ�, P, �, σ�, X) such that X(ω) = � for all ω ∈ � is said to be 
vacuous. For such a random set, we have BelX(A) = 0 for all A ∈ σ� \ {�} and P lX(A) = 1 for all A ∈ σ� \ {∅}. A 
vacuous random set represents complete ignorance about θ .

Finite case. Assume that � is finite, and σ� = 2�. The Möbius inverse of BelX is the mapping mX from 2� to [0,1] 
such that

mX(B) =
∑

(−1)|B|−|C|BelX(C),
C⊆B

3
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for all B ⊆ �. It verifies m(B) ≥ 0 for all B ⊆ �, 
∑

B⊆� m(B) = 1 and m(∅) = 0. The belief and plausibility can be 
computed from mX , respectively, as

BelX(B) =
∑
C⊆B

mX(C) and P lX(B) =
∑

C∩B �=∅
mX(C),

for all B ⊆ �.

Random closed intervals. Random closed intervals are particularly simple models allowing us to define belief func-
tions on the real line [4,34,6]. Let (�, σ�, P) be a probability space and X, Y two random variables � → R such 
that P({ω ∈ � : X(ω) ≤ Y(ω)}) = 1. Then, the mapping X : � → 2R defined by X(ω) = [X(ω), Y(ω)] is σ� − βR
strongly measurable, where βR is the Borel σ -algebra on R (see a formal proof in [22]). This mapping defines a 
random closed interval. For a random closed interval X = [X, Y ], we have [4]

BelX([x, y]) = P([X,Y ] ⊆ [x, y]) = P(X ≥ x;Y ≤ y) (4a)

and

P lX([x, y]) = P([X,Y ] ∩ [x, y] �= ∅) = 1 − P(X > y) − P(Y < x), (4b)

for all (x, y) ∈ R2 such that x ≤ y. In particular, by letting x tend to −∞ in (4), we obtain the lower and upper 
cumulative distribution functions (cdf’s) of X as

F∗(y) = BelX((−∞, y]) = P(Y ≤ y) = FY (y) (5a)

and

F ∗(y) = P lX((−∞, y]) = P(X ≤ y) = FX(y). (5b)

Lower and upper expectation. Let X be a random set from (�, σ�, P) to (R, βR). Following Dempster [3], we can 

define its lower and upper expectations, respectively, as

E∗(X) =
+∞∫

−∞
x dF ∗(x)

and

E∗(X) =
+∞∫

−∞
x dF∗(x),

where F∗(x) = BelX((−∞, x]) and F ∗(x) = P lX((−∞, x]) are the lower and upper cdf’s of X. When X is a random 
closed interval [X, Y ], it follows from (5) that E∗(X) = E(X) and E∗(X) = E(Y ).

Dempster’s rule. Consider two pieces of evidence represented by random sets

(�1, σ1,P1,�,σ�,X1) and (�2, σ2,P2,�,σ�,X2),

and the mapping X∩ from �1 × �2 to 2� defined by X∩(ω1, ω2) = X1(ω1) ∩ X2(ω2). If interpretations ω1 ∈ �1
and ω2 ∈ �2 both hold, we know that θ ∈ X∩(ω1, ω2), provided that X1(ω1) ∩ X2(ω2) �= ∅. Assume that X∩ is 
(σ1 ⊗σ2) −σ� strongly measurable, where σ1 ⊗σ2 is the tensor product σ -algebra over the Cartesian product �1×�2. 
The two pieces of evidence are said to be independent if, for any A ∈ σ1 ⊗ σ2, the probability that A contains the true 
interpretations of the two pieces of evidence is the conditional probability

P12(A) = (P1 × P2)(A | �∗) = (P1 × P2)(A ∩ �∗)
(P1 × P2)(�∗)

, (6)

where P1 × P2 is the product measure satisfying (P1 × P2)(A1 × A2) = P1(A1)P2(A2) for all A1 ∈ σ1, A2 ∈ σ2, and

�∗ = {(ω1,ω2) ∈ �1 × �2 : X∩(ω1,ω2) �= ∅}
4
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is the set of noncontradictory pairs of interpretations. The quantity

κ = 1 − (P1 × P2)(�
∗) = (P1 × P2)({(ω1,ω2) ∈ �1 × �2 : X∩(ω1,ω2) = ∅})

is called the degree of conflict between the two pieces of evidence. The combined random set

(�1 × �2, σ1 ⊗ σ2,P12,�,σ�,X∩)

is called the orthogonal sum of the two pieces of evidence, and is denoted by X1 ⊕ X2. This combination rule, first 
introduced by Dempster in [3], is called the product-intersection rule, or Dempster’s rule of combination.

We can remark that Dempster’s rule is usually viewed as an operation to combine belief functions, whereas it is 
defined here as an operation to combine random sets. This distinction is immaterial in the standard setting, as the 
orthogonal sum of two belief functions does not depend on their particular random set representations and can be 
defined without reference to the random set framework [32]. However, it becomes crucial when considering random 
fuzzy sets as a model for generating belief functions, as done in this paper. We will come back to this important point 
in Section 3.2.

Any vacuous random set is obviously a neutral element for Dempster’s rule. The following important proposition 
states that pieces of evidence can be combined by Dempster’s rule in any order.

Proposition 1. Dempster’s rule is commutative and associative.

Proof. See Appendix A. �

Example 1. Let X1 ∼ N(μ1, σ 2
1 ) and X2 ∼ N(μ2, σ 2

2 ) be two independent normal random variables and consider the 
random intervals X1 = [X1, +∞) and X2 = (−∞, X2]. The degree of conflict between X1 and X2 is

κ = P(X1 > X2) = P(X2 − X1 < 0) = 


⎛⎜⎝ μ1 − μ2√
σ 2

1 + σ 2
2

⎞⎟⎠ ,

where 
 is the standard normal cdf. The orthogonal sum of X1 and X2 is the random closed interval [X′
1, X

′
2], where 

(X′
1, X

′
2) is the two-dimensional random vector with distribution equal the conditional distribution of (X1, X2) given 

X1 ≤ X2. Its density is

fX′
1,X

′
2
(x1, x2) =

σ−1
1 σ−1

2 φ
(

x1−μ1
σ1

)
φ
(

x2−μ2
σ2

)
I (x1 ≤ x2)




(
μ2−μ1√
σ 2

1 +σ 2
2

) ,

where φ is the standard normal probability density function (pdf) and I (·) is the indicator function.

The following proposition states that the contour function of the orthogonal sum of two independent random sets 
X1 and X2 is proportional to the product of the contour functions of X1 and X2.

Proposition 2. Let X1 and X2 be two independent random sets on the same domain �, with contour functions plX1
and plX2

. For any θ ∈ �,

plX1⊕X2
(θ) = plX1

(θ)plX2
(θ)

1 − κ
, (7)

where κ is the degree of conflict between X1 and X2.

Proof. We have

plX1⊕X2
(θ) = (P1 × P2)({(ω1,ω2) ∈ �1 × �2 : θ ∈ X∩(ω1,ω2)})
1 − κ

5
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= (P1 × P2)({ω1 ∈ �1 : θ ∈ X1(ω1)} × {ω2 ∈ �2 : θ ∈ X2(ω2)})
1 − κ

= P1({ω1 ∈ �1 : θ ∈ X1(ω1)}) · P2({ω2 ∈ �2 : θ ∈ X2(ω2)})
1 − κ

= plX1
(θ)plX2

(θ)

1 − κ
. �

Example 2. Let us consider again the two random intervals of Example 1. The contour functions of X1 and X2 are, 
respectively,

plX1
(x) = P(X1 ≤ x) = 


(
x − μ1

σ1

)
and

plX2
(x) = P(X2 ≥ x) = 1 − 


(
x − μ2

σ2

)
.

Now, the contour function of X1 ⊕ X2 is

plX1⊕X2
(x) = P(X′

1 ≤ x ≤ X′
2)

=
x∫

−∞

+∞∫
x

fX′
1,X

′
2
(x1, x2)dx2dx1

=
⎡⎢⎣


⎛⎜⎝ μ2 − μ1√
σ 2

1 + σ 2
2

⎞⎟⎠
⎤⎥⎦

−1
x∫

−∞

+∞∫
x

σ−1
1 σ−1

2 φ

(
x1 − μ1

σ1

)
φ

(
x2 − μ2

σ2

)
dx2dx1

=


(

x−μ1
σ1

)[
1 − 


(
x−μ2

σ2

)]



(
μ2−μ1√
σ 2

1 +σ 2
2

) = plX1
(x)plX2

(x)

1 − κ
.

Marginalization and vacuous extension. Let us now consider the case where we have two variables θ1 and θ2 with 
domains �1 and �2. (The case of n variables is not more difficult conceptually but it requires heavier notations). Let 
σ�1 and σ�2 be σ -algebras defined, respectively, on �1 and �2. Let �12 = �1 × �2 and σ�12 = σ�1 ⊗ σ�2 . Let X12
be a random set from (�, σ�, P) to (�12, σ�12), and X1 the mapping from � to 2�1 that maps each ω ∈ � to the 
projection of X12(ω) onto �1:

X1(ω) = X12(ω) ↓ �1 = {θ1 ∈ �1 : ∃θ2 ∈ �2, (θ1, θ2) ∈ X12(ω)}.
It is easy to see that X1 is σ� − σ�1 measurable: for any B ∈ σ�1 ,

X
∗
1(B) = {ω ∈ � : X1(ω) ∩ B �= ∅}

= {ω ∈ � : X12(ω) ∩ (B × �2) �= ∅}
= X

∗
12(B × �2).

As B × �2 ∈ σ�12 and X12 is σ� − σ�12 strongly measurable, it thus follows that X
∗
1(B) ∈ σ�. The random set X1

will be called the marginal of X12 on �1.
Conversely, let X1 be a random set from (�, σ�) to (�1, σ�1) and let X1↑2 be the mapping from � to �12 defined 

by

X1↑(1,2)(ω) = X1(ω) × �2.
6
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For any B ∈ σ�12 ,

X
∗
1↑(1,2)(B) = {ω ∈ � : X1↑2(ω) ∩ B �= ∅}

= {ω ∈ � : X1(ω) ∩ (B ↓ �1) �= ∅}
= X

∗
1(B ↓ �1).

If for all B ∈ σ�12 , X
∗
1(B ↓ �1) ∈ σ�, then X1↑(1,2) is σ� − σ�12 strongly measurable. It is said to be the vacuous 

extension of X1 in �1 × �2.
We say that a random set X12 from (�, σ�, P) to (�12, σ�12) with marginals X1 and X2 is non-interactive if it is 

equal to the orthogonal sum of its marginals, i.e.,

X12 = X1↑(1,2) ⊕ X2↑(1,2) denoted by X1 ⊕ X2.

Example 3. Let (X1, X2) be a two dimensional random vector from (�, σ�, P) to (R2, βR2) and consider the map-

ping X12 : � → 2R
2

defined as

X12(ω) = (−∞,X1(ω)] × (−∞,X2(ω)].
This mapping defines a random set [23, page 3]. Its marginals are the random closed intervals (−∞, X1] and 
(−∞, X2]. If X1 and X2 are independent, then X12 = (−∞, X1] ⊕ (−∞, X2] and X12 is non-interactive.

2.2. Fuzzy sets and possibility theory

A fuzzy subset of a set � is a pair F̃ = (�, μF̃ ), where μF̃ is a mapping from � to [0, 1], called the membership 
function of F̃ . Each number μF̃ (θ) is interpreted as a degree of membership of element θ to the fuzzy set F̃ . In 
the following, to simplify the notation, we will identify fuzzy sets to their membership functions and write F̃ (θ) for 
μF̃ (θ). The height of fuzzy set F̃ is defined as

hgt(F̃ ) = sup
θ∈�

F̃ (θ).

If hgt(F̃ ) = 1, F̃ is said to be normal. For any α ∈ [0, 1], the (weak) α-cut of F̃ is the set

αF̃ = {θ ∈ � : F̃ (θ) ≥ α}.

Possibility and necessity measures. Let θ be a variable taking values in �. Assume that we receive a piece of evidence 
telling us that “θ is F̃ ”, where F̃ is a normal fuzzy subset of �. This evidence induces a possibility measure �F̃ from 
2� to [0, 1] defined by

�F̃ (B) = sup
θ∈B

F̃ (θ), (8)

for all B ⊆ �. The number �F̃ (B) is interpreted as the degree of possibility that θ ∈ B , given that θ is F̃ [38]. The 
corresponding possibility distribution is the mapping from � to [0, 1] defined by

πF̃ (θ) = �F̃ ({θ}) = F̃ (θ),

i.e., it is identical to the membership function F̃ . The dual necessity measure is defined as

NF̃ (B) = 1 − �F̃ (Bc) = inf
θ /∈B

[
1 − F̃ (θ)

]
. (9)

It can easily be shown that mapping NF̃ : 2� → [0, 1] is completely monotone, i.e., it is a belief function, and �F̃

is the dual plausibility function [15]. These belief and plausibility functions are formally induced by the random 
set ([0, 1], β[0,1], λ, �, 2�, X), where β[0,1] is the Borel σ -algebra on [0, 1], λ is the uniform probability measure, 
and X is the mapping [0, 1] → 2� defined by X(α) = αF̃ . However, as we will see in Section 3.2, it is important, 
when combining evidence, to distinguish between possibility distributions induced by fuzzy sets, and consonant belief 
functions induced by random sets.
7
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Conjunctive combination of possibility distributions. Assume that we receive two independent pieces of information 
telling us that “θ is F̃ ” and “θ is G̃”, where F̃ and G̃ are two fuzzy subsets of �. The conjunctive combination 
of these two pieces of evidence requires some notion of intersection between fuzzy sets. As reviewed in [13], the 
intersection operation can be extended to fuzzy sets using triangular norms (or t-norms for short). Given a t-norm �, 
the �-intersection of two fuzzy subsets F̃ and G̃ of the same domain � can be defined as

(F̃ ∩� G̃)(θ) = F̃ (θ)�G̃(θ)

for all θ ∈ �. The most common choices for � are the minimum and product t-norms, as originally proposed by 
Zadeh [36]; the corresponding operations are called, respectively, the minimum and product intersections. However, 
the intersection of two normal fuzzy sets is generally not normal. To obtain a normal fuzzy set, as needed for the 
definitions of possibility and necessity measures in (8)-(9), we define the normalized �-intersection as

(F̃ ∩∗� G̃)(θ) =
⎧⎨⎩

F̃ (θ)�G̃(θ)

hgt(F̃ ∩� G̃)
if hgt(F̃ ∩� G̃) > 0

0 otherwise.

The fuzzy set F̃ ∩∗� G̃ is normal provided that hgt(F̃ ∩� G̃) > 0. In general, the normalized intersection ∩∗� associated 
with a t-norm � is not associative. A notable exception is the case where � is the product t-norm: the normalized 
product intersection, denoted by �, is associative (see [16], and a simple proof in [9]). By abuse of notation, we 
can use the same symbol to denote the conjunctive combination of possibility measures and the normalized product 
intersection of fuzzy sets, and write

�F̃ � �G̃ = �F̃�G̃.

As noted by Dubois and Prade [16, page 352], product intersection has a reinforcement effect that is appropriate 
when the information sources are assumed to be independent. The choice of the normalized product intersection for 
combining possibility distributions makes possibility theory fit in the framework of valuation-based systems [33] and 
allows for possibilistic reasoning with a large number of variables. The normalized product intersection operator also 
has an interesting property with respect to Gaussian fuzzy numbers, as recalled in the next paragraph.

Gaussian fuzzy numbers. A fuzzy number (or fuzzy interval) can be defined as a normal and convex fuzzy subset of 
the real line. In particular, a Gaussian fuzzy number (GFN) is a normal fuzzy subset of R with membership function

ϕ(x;m,h) = exp

(
−h

2
(x − m)2

)
,

where m ∈ R is the mode and h ∈ [0, +∞] is the precision. Such a fuzzy number will be denoted by GFN(m, h). 
If h = 0, ϕ(x; m, h) = 1 for all x ∈ R: GFN(m, 0) is then maximally imprecise and identical to the whole real line, 
whatever the value of m. If h = +∞, ϕ(x; m, h) = I (x = m), where I (·) is the indicator function; the fuzzy number 
GFN(m, +∞) is then maximally precise and equivalent to the real number m.

It can easily be shown that the family of GFN’s is closed under the normalized product intersection (see, e.g., [1]). 
More precisely, we have the following proposition, proved in [1].

Proposition 3. For any x ∈R,

ϕ(x;m1, h1) · ϕ(x;m2, h2) = exp

(
−h1h2(m1 − m2)

2

2(h1 + h2)

)
ϕ(x;m12, h12),

with

m12 = h1m1 + h2m2

h1 + h2
and h12 = h1 + h2.

Consequently,

GFN(m1, h1) � GFN(m2, h2) = GFN(m12, h12),

and

hgt [GFN(m1, h1) · GFN(m2, h2)] = exp

(
−h1h2(m1 − m2)

2)
. (10)
2(h1 + h2)

8
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Marginalization and cylindrical extension. Let us now assume that we have two variables θ1 and θ2 jointly constrained 
by a possibility distribution πF̃ , where F̃ is a fuzzy subset of �12 = �1 × �2. As a result of (8), variable θ1 alone is 
constrained by the possibility distribution

π1(θ1) = �({θ1} × �2) = sup
θ2∈�2

πF̃ (θ1, θ2) = sup
θ2∈�2

F̃ (θ1, θ2) = (F̃ ↓ �1)(θ1),

where F̃ ↓ �1 is the projection of F̃ on �1. We say that π1 is the marginal of πF̃ on �1. Conversely, given a 
possibility distribution πF̃1

, where F̃1 is a fuzzy subset of �1, its cylindrical extension in �1 × �2 is the possibility 
distribution πF̃1×�2

defined as

πF̃1×�2
(θ1, θ2) = πF̃1

(θ1)

for all (θ1, θ2) ∈ �1 × �2. We say that the joint possibility distribution πF̃ on �12 is non-interactive with respect to 
the product intersection if it is the product of its marginals:

πF̃ (θ1, θ2) = πF̃↓�1
(θ1) · πF̃↓�2

(θ2).

Example 4. Let π12 be the possibility distribution on R2 defined by

π12(x1, x2) = exp

(
−h1

2
(x1 − m1)

2 − h2

2
(x2 − m2)

2
)

= exp

(
−h1

2
(x1 − m1)

2
)

exp

(
−h2

2
(x2 − m2)

2
)

.

Its marginals are

π1(x1) = max
θ2

π12(x1, x2) = exp

(
−h1

2
(x1 − m1)

2
)

and

π2(x2) = max
θ1

π12(x1, x2) = exp

(
−h2

2
(x2 − m2)

2
)

.

Consequently, π12 is non-interactive with respect to the product intersection.

3. Epistemic random fuzzy sets

The proposed epistemic random fuzzy set model is introduced in this section. The main definitions are first given 
in Section 3.1, and the generalized product-intersection rule is introduced in Section 3.2. Marginalization and vac-
uous extension are then addressed in Section 3.3, and an application to statistical inference is briefly discussed in 
Section 3.4.

3.1. General definitions

As before, let (�, σ�, P) be a probability space and let (�, σ�) be a measurable space. Let X̃ by a mapping from 
� to the set [0, 1]� of fuzzy subsets of �. For any α ∈ [0, 1], let αX̃ be the mapping from � to 2� defined as

αX̃(ω) = α[X̃(ω)],
where α[X̃(ω)] is the weak α-cut of X̃(ω). If for any α ∈ [0, 1], αX̃ is σ� − σ� strongly measurable, the tuple 
(�, σ�, P, �, σ�, ̃X) is said to be a random fuzzy set (also called a fuzzy random variable) [2]. It is clear that the class 
of random fuzzy sets includes that of random sets, just as the class of fuzzy sets includes that of classical (crisp) sets.

Example 5. Let M be a Gaussian random variable from (�, σ�, P) to (R, βR), with mean μ and standard deviation 
σ , and let X̃ be the mapping from � to [0, 1]R that maps each ω ∈ � to the triangular fuzzy number with mode M(ω)

and support [M(ω) − a, M(ω) + a]:
9
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X̃(ω)(x) =
{

a−|x−M(ω)|
a

if |x − M(ω)| ≤ a

0 otherwise.

for some a > 0. For any α ∈ [0, 1], the α-cut of X̃(ω) is

αX̃(ω) = [M(ω) − a(1 − α),M(ω) + a(1 − α)] .

The random set αX̃ : ω → αX̃(ω) is σ� − βR strongly measurable (it is a random closed interval). Consequently, 
X̃ is a random fuzzy set. In the following, such random fuzzy sets with domain [0, 1]R will be called random fuzzy 
numbers.

Interpretation. Here, as in [9], we use random fuzzy sets as a model of unreliable and fuzzy evidence. In this model, 
we see � as a set of interpretations of a piece of evidence about a variable θ taking values in �. If interpretation ω ∈ �

holds, we know that “θ is X̃(ω)”, i.e., θ is constrained by the possibility distribution πX̃(ω). We qualify such random 
fuzzy sets as epistemic, because they encode a state of knowledge about some variable θ . It should be noted that 
this semantics of random fuzzy sets is different from those reviewed in [2]. The conditional possibility interpretation 
developed in [2] is the closest to ours, since we also see the fuzzy sets X̃(ω) as defining conditional possibility 
measures. However, in [2], the authors use the random fuzzy set formalism to model a situation in which we have two 
random experiments, one of which is completely determined; the family of possibility distributions {πX̃(ω) : ω ∈ �}
then models our knowledge about the relationship between the outcomes ω of the first experiment and the possible 
outcomes of the second one. This formalism allows the authors of [2] to compute lower and upper bounds on the 
probability of any event related to the second experiment. In contrast, our model does not rely on the notion of random 
experiment. In particular, we do not postulate the existence of an objective probability measure on �, and the belief 
and plausibility measures introduced below are not interpreted as lower and upper bounds on “true” probabilities.

Belief and plausibility. We say that random fuzzy set X̃ is normalized if it verifies the following conditions:

1. For all ω ∈ �, X̃(ω) is either the empty set, or a normal fuzzy set, i.e., hgt(X̃(ω)) ∈ {0, 1}.
2. P({ω ∈ � : X̃(ω) = ∅}) = 0.

These conditions will be assumed in the rest of this section. For any ω ∈ �, let �X̃(· | ω) be the possibility measure 
on � induced by X̃(ω):

�X̃(B | ω) = sup
θ∈B

X̃(ω)(θ), (11)

and let NX̃(· | ω) be the dual necessity measure:

NX̃(B | ω) =
{

1 − �X̃(Bc | ω) if X̃(ω) �= ∅
0 otherwise.

Let BelX̃ and P lX̃ be the mappings from σ� to [0, 1] defined as

BelX̃(B) =
∫
�

N(B | ω)dP (ω) (12)

and

P lX̃(B) =
∫
�

�(B | ω)dP (ω). (13)

Function BelX̃ is a belief function, and P lX̃ is the dual plausibility function. As shown in [2, Lemma 6.2], they are 
induced by the random set (� ×[0, 1], σ� ⊗ β[0,1], P ⊗ λ, �, σ�, X), where X : � × [0, 1] → 2� is the multi-valued 
mapping defined as

X(ω,α) = αX̃(ω). (14)

As a consequence, BelX̃(B) and P lX̃(B) can also be written as follows:
10
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BelX̃(B) =
1∫

0

BelαX̃(B)dα (15a)

and

P lX̃(B) =
1∫

0

P lαX̃(B)dα. (15b)

Lower and upper expectations of a random fuzzy number. Let X̃ be a random fuzzy number (i.e., a random fuzzy 
set with domain [0, 1]R), and let X be the corresponding random set defined by (14). We define the lower and upper 
expectations of X̃ as the lower and upper expectations of X, i.e., E∗(X̃) = E∗(X) and E∗(X̃) = E∗(X). It follows 
from (15) that

E∗(X̃) =
1∫

0

E∗(αX̃)dα and E∗(X̃) =
1∫

0

E∗(αX̃)dα. (16)

Example 6. Let us consider again the random fuzzy number of Example 5. Its lower and upper cdf’s are, respectively, 
the mappings x → BelX̃((−∞, x]) and x → P lX̃((−∞, x]). Let us illustrate the calculation of the upper cdf first, 
using two methods.

Method 1. From (11),

�((−∞, x] | ω) = sup
x′≤x

X̃(ω)(x′) =

⎧⎪⎨⎪⎩
1 if M(ω) ≤ x
x−M(ω)+a

a
if x < M(ω) ≤ x + a

0 otherwise.

Using (13), we get

P lX̃((−∞, x]) = P(M ≤ x) × 1 + P(x < M ≤ x + a)E

[
x − M + a

a
| x < M ≤ x + a

]
= 


(
x − μ

σ

)
+
[



(
x + a − μ

σ

)
− 


(
x − μ

σ

)]
×
(

x + a

a
−E [M | x < M ≤ x + a]

)
.

Now, using a well-known result about the truncated normal distribution,

E [M | x < M ≤ x + a] = μ + σ
φ
(

x−μ
σ

)− φ
(

x+a−μ
σ

)


(

x+a−μ
σ

)− 

(

x−μ
σ

) .
After rearranging the terms, we finally obtain

P lX̃((−∞, x]) =
(

x + a − μ

a

)



(
x + a − μ

σ

)
−
(

x − μ

a

)



(
x − μ

σ

)
+

σ

a

[
φ

(
x + a − μ

σ

)
− φ

(
x − μ

σ

)]
. (17)

Method 2. Let us now use (15b). We have

P lX̃((−∞, x]) =
1∫

0

P(M − a(1 − α) ≤ x)dα

=
1∫

0




(
x + a(1 − α) − μ

σ

)
dα.
11
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Fig. 1. Lower and upper cdf’s for the random fuzzy numbers studied in Examples 5 and 6, with μ = 0, σ = 1, and a = 0.5 (blue curves) or a = 1.5
(red curves). The Gaussian cdf corresponding to a = 0 is shown as a broken line. (For interpretation of the colors in the figure, the reader is referred 
to the web version of this article.)

Using the formula∫

(u + vx)dx = 1

v
[(u + vx)
(u + vx) + φ(u + vx)] + C,

we get the same result as (17). Using any of the two methods demonstrated above, we obtain the following expression 
for the lower cdf:

BelX̃((−∞, x]) =
(

x − μ

a

)



(
x − μ

σ

)
−
(

x − a − μ

a

)



(
x − a − μ

σ

)
+

σ

a

[
φ

(
x − μ

σ

)
− φ

(
x − a − μ

σ

)]
. (18)

It can easily be checked that, when a = 0,

BelX̃((−∞, x]) = P lX̃((−∞, x]) = 


(
x − μ

σ

)
.

Examples of functions BelX̃((−∞, x]) and P lX̃((−∞, x]) for different values of a are shown in Fig. 1.
Now, the lower and upper expectations of X̃ can be computed from (16) as

E∗(X̃) =
1∫

0

E∗(αX̃)dα =
1∫

0

[μ − a(1 − α)]dα = μ − a

2
,

and

E∗(X̃) =
1∫

0

E∗(αX̃)dα =
1∫

0

[μ + a(1 − α)]dα = μ + a

2
.

3.2. Generalized product-intersection rule

Dempster’s rule and the possibilistic product intersection rule recalled, respectively, in Sections 2.1 and 
2.2 can be generalized to combine epistemic random fuzzy sets. Consider two epistemic random fuzzy sets 
(�1, σ1, P1, �, σ�, ̃X1) and (�2, σ2, P2, �, σ�, ̃X2) encoding independent pieces of evidence. The independence 
12
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assumption means here that the relevant probability measure on the joint measurable space (�1 × �2, σ1 ⊗ σ2) is the 
product measure P1 × P2.

If interpretations ω1 ∈ �1 and ω2 ∈ �2 both hold, we know that “θ is X̃1(ω1)” and “θ is X̃2(ω2)”. It is then natural 
to combine the fuzzy sets X̃1(ω1) and X̃2(ω2) by an intersection operator. As discussed in Section 2.2, normalized 
product intersection is a good candidate as it suitable for combining fuzzy information from independent sources and 
it is associative. We will thus consider the mapping X̃�(ω1, ω2) = X̃1(ω1) � X̃2(ω2), which we will assume to be 
σ1 ⊗ σ2-σ� strongly measurable.

As in the crisp case recalled in Section 2.1, if hgt(X̃1(ω1)X̃2(ω2)) = 0, the two interpretations ω1 and ω2 are 
inconsistent and they must be discarded. If hgt(X̃1(ω1)X̃2(ω2)) = 1, the two interpretations are fully consistent. If 
0 < hgt(X̃1(ω1)X̃2(ω2)) < 1, ω1 and ω2 are partially consistent. As proposed in [9], instead of simply discarding 
only fully inconsistent pairs (ω1, ω2), it makes sense to give all pairs (ω1, ω2) a weight proportional to the degree 
of consistency between X̃1(ω1) and X̃2(ω2). This can be achieved by conditioning P1 × P2 on the fuzzy set �̃∗ of 
consistent pairs of interpretations, with membership function

�̃∗(ω1,ω2) = hgt
(
X̃1(ω1) · X̃2(ω2)

)
.

Using Zadeh’s definition of a fuzzy event [37], we get the following expression for the conditional probability measure 
P̃12 = (P1 × P2)(· | �̃∗), for any B ∈ σ1 ⊗ σ2:

P̃12(B) = (P1 × P2)(B ∩ �̃∗)
(P1 × P2)(�̃∗)

=
∫
�1

∫
�2

B(ω1,ω2)hgt
(
X̃1(ω1) · X̃2(ω2)

)
dP2(ω2)dP1(ω1)∫

�1

∫
�2

hgt
(
X̃1(ω1) · X̃2(ω2)

)
dP2(ω2)dP1(ω1)

,

where B(·, ·) denotes the indicator function of B . This conditioning operation, called soft normalization was first 
proposed in [35] in the finite case and with a different justification.

The combined random fuzzy set

(�1 × �2, σ1 ⊗ σ2, P̃12,�,σ�, X̃�)

is called the orthogonal sum of the two pieces of evidence. This operation generalizes both Dempster’s rule and the 
normalized product of possibility distribution. We will refer to it as the generalized product-intersection rule, and it 
will be denoted by the same symbol ⊕ as Dempster’s rule. It is clear that X̃ ⊕ X0 = X̃ for any random fuzzy set X̃
and any vacuous random set X0 on the same domain �. The degree of conflict between two random fuzzy sets X̃1
and X̃2 is naturally defined as

κ = 1 − (P1 × P2)(�̃
∗) = 1 −

∫
�1

∫
�2

hgt
(
X̃1(ω1)X̃2(ω2)

)
dP2(ω2)dP1(ω1). (19)

The associativity of ⊕ was proved in [9] in the finite case; we give a similar proof in the general case.

Proposition 4. The generalized product-intersection rule ⊕ for random fuzzy sets is commutative and associative.

Proof. See Appendix B. �

The following proposition states that a counterpart of Proposition 2 is still valid when combining independent 
random fuzzy sets, i.e., the combined contour function is still proportional to the product of the contour functions.

Proposition 5. Let X̃1 and X̃2 be two random fuzzy sets on the same domain �, with contour functions plX̃1
and plX̃2

and with degree of conflict κ defined by (19). The contour function plX̃1⊕X̃2
of X̃1 ⊕ X̃2 verifies

(plX̃1⊕X̃2
)(θ) = plX̃1

(θ)plX̃2
(θ)

1 − κ
, (20)

for all θ ∈ �.
13
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Fig. 2. (a): Two Gaussian possibility distributions (black solid curves) with their normalized product intersection (red broken curve) and the contour 
function of the combined random set (blue solid curve). (b): Lower and upper cdf’s of the combined possibility distribution (red broken curves) 
and of the combined random set (blue solid curves). (For interpretation of the colors in the figures, the reader is referred to the web version of this 
article.)

Proof. We have

(plX̃1⊕X̃2
)(θ) =

∫
�1

∫
�2

hgt
(
X̃1(ω1) · X̃2(ω2)

)
X̃�(ω1,ω2)(θ)dP2(ω2)dP1(ω1)

1 − κ

=
∫
�1

∫
�2

hgt
(
X̃1(ω1) · X̃2(ω2)

)
X̃1(ω1)(θ)X̃2(ω2)(θ)

hgt
(
X̃1(ω1)X̃2(ω2)

) dP2(ω2)dP1(ω1)

1 − κ

=
(∫

�1
X̃1(ω1)(θ)dP1(ω1)

)(∫
�2

X̃2(ω2)(θ)dP2(ω2)
)

1 − κ

= plX̃1
(θ)plX̃2

(θ)

1 − κ
. �

As remarked in Section 2.2, a belief function induced by a random fuzzy set is also induced by a random (crisp) set. 
However, combining random fuzzy sets or random crisp sets does not result in the same belief function in general. In 
particular, it is well-known that Dempster’s rule does not preserve consonance. To combine two belief functions, we 
must, therefore, examine the evidence on which they are based, not only to determine whether the bodies of evidence 
are independent or not, but also to determine whether the evidence is fuzzy or crisp. This point is illustrated by the 
following example.

Example 7. Consider the following two mappings from R to [0, 1] represented in Fig. 2a:

π1(x) = GFN(0,0.3), π2(x) = GFN (1,0.5) .

If these two mappings are possibility distributions encoding fully reliable but fuzzy evidence, they correspond to 
“constant random fuzzy sets”, i.e., mappings X̃1(ω) = π1 and X̃2(ω) = π2 with P({ω}) = 1. The combined random 
fuzzy set X̃1 ⊕ X̃2 is then defined by (X̃1 ⊕ X̃2)(ω) = π1 � π2. From Proposition 3, the normalized product of two 
GFN’s is a GFN. Here, we get the combined possibility distribution plotted as a red broken curve in Fig. 2a:

(π1 � π2)(x) = GFN(0.625,0.8).

The corresponding lower and upper cumulative distribution functions (cdf’s) are, respectively
14
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BelX̃1⊕X̃2
((−∞, x]) =

{
0 if x ≤ 0.625

1 − exp
(−0.4(x − 0.625)2

)
if x > 0.625

and

P lX̃1⊕X̃2
((−∞, x]) =

{
exp

(−0.4(x − 0.625)2
)

if x ≤ 0.625

1 if x > 0.625.

These two functions are plotted as red broken curves in Fig. 2b. Alternatively, as explained in Section 2.1, we may 
see π1 and π2 as encoding crisp but partially reliable evidence, in which case they define two independent consonant 
random intervals X1(α1) = α1π1 and X(α2) = α2π2, where (α1, α2) has a uniform distribution on [0, 1]2. These two 
random intervals can be combined numerically using Monte-Carlo simulation, as explained in [20]. The contour 
function and the lower and upper cdf’s are plotted as solid blue lines in Figs. 2a and 2b, respectively. We notice that 
the contour functions are proportional, as a consequence of Proposition 2.

3.3. Marginalization and vacuous extension

Let us now consider again the case where we have two variables θ1 and θ2 with respective domains �1 and 
�2. Let X̃12 be a random fuzzy set from a probability space (�, σ�, P) to the measurable space (�12, σ�12) with 
�12 = �1 ×�2 and σ�12 = σ�1 ⊗ σ�2 , where σ�1 and σ�2 are σ -algebras on �1 and �2, respectively. Let X̃1 be the 
mapping from � to [0, 1]�1 defined by

X̃1(ω) = X̃12(ω) ↓ �1,

where, as before, ↓ denotes fuzzy set projection. If, for all α ∈ [0, 1], the mapping αX̃1 is σ� − σ�1 strongly measur-
able, then the random fuzzy set X̃1 is called the marginal of X̃12 on �1.

Conversely, given a random fuzzy set X̃1 from (�, σ�, P) to (�1, σ�1), let X̃1↑(1,2) be the mapping from � to 
[0, 1]�12 that maps each ω ∈ � to the cylindrical extension of X̃1(ω) in �12

X̃1↑(1,2)(ω) = X̃1(ω) × �2,

i.e., for all (θ1, θ2) ∈ �12,

X̃1↑(1,2)(ω)(θ1, θ2) = X̃1(ω)(θ1).

If the mapping X̃1↑(1,2) is σ� − σ�12 strongly measurable, then the random fuzzy set X̃1↑(1,2) is called the vacuous 
extension of X̃1 in �12.

We say that a joint random fuzzy set is non-interactive if it is equal to the orthogonal sum of the vacuous extensions 
of its projections:

X̃12 = X̃1↑(1,2) ⊕ X̃2↑(1,2) denoted as X̃1 ⊕ X̃2.

A particular kind of non-interactive random fuzzy sets will be studied in Section 5.3.

3.4. Application to statistical inference

Epistemic random fuzzy sets naturally arise in the context of statistical inference. As proposed by Shafer [29] and 
formally justified in [7][8], the information conveyed by the likelihood function in statistical inference problems can 
be represented by a consonant belief function, whose contour function is equal to the relative likelihood function. For 
a statistical model f (x, θ), where x ∈X is the observation and θ ∈ � is the unknown parameter, the likelihood-based 
belief function Bel(·, x) on � after observing x is, thus, consonant and defined by the contour function

pl(θ;x) = L(θ;x)

supθ ′∈� L(θ ′;x)
, (21)

where L(·, x) : θ → f (x; θ) is the likelihood function, and it is assumed that the denominator in (21) is finite. The 
corresponding plausibility function is, thus, defined by
15
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P l(A;x) = sup
θ∈A

pl(θ;x)

for any A ⊂ �, i.e., it is a possibility measure. However, as noticed by Shafer in [29] and [31], and also discussed 
in [7], this construction is not compatible with Dempster’s rule: if we consider two independent observations x and 
x′, the belief function Bel(·; x, x′) is not equal to the orthogonal sum Bel(·; x) ⊕ Bel(·; x′), which is not consonant. 
As argued in [9], this problem disappears if we do not consider the likelihood-based belief function to be induced 
by a consonant random crisp set, but by a constant random fuzzy set ̃θx with membership function ̃θx(θ) = pl(θ; x). 
We can interpret ̃θx as the fuzzy set of likely values of θ after observing x. Combining the contour functions (21) by 
the normalized product intersection rule then yields the correct result, i.e., the constant random fuzzy set θ̃x,x′ with 
membership function ̃θx,x′(θ) = θ̃x(θ) � θ̃x′(θ).

Now, consider a prediction problem, where we want to predict the value of a random variable Y whose distribution 
also depends on θ . We can always write Y in the form Y = ϕ(θ, U), where U is a pivotal random variable with known 
distribution [19,20]. After observing the data x, our knowledge of θ is represented by the fuzzy set ̃θx . Conditionally 
on U = u, our knowledge of Y is, thus, represented by the fuzzy set Ỹ (u) = ϕ(θ̃x, u), with membership function

Ỹ (u)(y) = sup
θ :ϕ(θ,u)=y

θ̃x(θ).

The mapping Ỹ : u → Ỹ (u) is, then, a random fuzzy set representing statistical evidence about Y .

Example 8. Let X = (X1, . . . , Xn) be an independent and identically distributed (iid) Gaussian sample with parent 
distribution N(θ, 1), and let Y ∼ N(θ, 1). After observing a realization x of X, the likelihood function is

L(θ;x) = (2π)−n/2 exp

(
−1

2

n∑
i=1

(xi − θ)2

)
.

Denoting by ̂θ the sample mean, the fuzzy set ̃θx of likely values of θ after observing x is the relative likelihood

θ̃x(θ) = L(θ;x)

L(θ̂;x)
= exp

(
−n

2
(θ − θ̂ )2

)
.

It is the Gaussian fuzzy number GFN(θ̂ , n) with mode ̂θ and precision n. Now, Y can be written as Y = θ + U , with 
U ∼ N(0, 1). Consequently, the conditional possibility distribution on Y given U = u is the Gaussian fuzzy number 
θ̃x + u = GFN(θ̂ + u, n), and our knowledge of Y is described by the random fuzzy set U → GFN(θ̂ + U, n), with 
U ∼ N(0, 1). This is a Gaussian fuzzy number with fixed precision h = n and normal random mode M = θ̂ + U ∼
N(θ̂, 1). This important class of random fuzzy sets will be studied in the next section.

4. Gaussian random fuzzy numbers

In this section, we introduce Gaussian random fuzzy numbers (GRFN’s) as a practical model for representing 
uncertainty on a real variable. As we will see, this model encompasses Gaussian random variables and Gaussian fuzzy 
numbers as special cases. A GRFN can be seen, equivalently, as a Gaussian random variable with fuzzy mean, or as a 
Gaussian fuzzy number with random mode. The definition and main properties will first be presented in Section 4.1. 
The expression of the orthogonal sum of two GRFN’s will then be derived in Section 4.2. Finally, arithmetic operations 
on GRFN’s will be addressed in Section 4.3.

4.1. Definition and main properties

Definition 1. Let (�, σ�, P) be a probability space and let M : � → R be a Gaussian random variable with mean μ
and variance σ 2. The random fuzzy set X̃ : � → [0, 1]R defined as

X̃(ω) = GFN(M(ω),h)

is called a Gaussian random fuzzy number (GRFN) with mean μ, variance σ 2 and precision h, which we write 
X̃ ∼ Ñ(μ, σ 2, h).
16
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In the definition of a GRFN, μ is a location parameter, while parameters h and σ 2 correspond, respectively, to 
possibilistic and probabilistic uncertainty. If h = 0, imprecision is maximal whatever the values of μ and σ 2: the 
GRFN X̃ then induces the vacuous belief function on R, in which case BelX̃(A) = 0 for all A ⊂ R, and P lX̃(A) = 1
for all A ⊆ R such that A �= ∅; such a GRFN will be said to be vacuous and will be denoted by X̃ ∼ Ñ(0, 1, 0). 
If h = +∞, each fuzzy number GFN(M(ω), h) is reduced to a point: the GRFN X̃ is then equivalent to a Gaussian 
random variable with mean μ and variance σ 2, which we can write: Ñ(μ, σ 2, +∞) = N(μ, σ 2). Another special case 
of interest is that where σ 2 = 0, in which case M is a constant random variable taking value μ, and X̃ is a possibilistic 
variable with possibility distribution GFN(μ, h).

The following proposition gives the expression of the contour functions plX̃(x) associated to X̃.

Proposition 6. The contour function of GRFN X̃ ∼ Ñ(μ, σ 2, h) is

plX̃(x) = 1√
1 + hσ 2

exp

(
− h(x − μ)2

2(1 + hσ 2)

)
. (22)

Proof. See Appendix C. �

A shown by Proposition 6, the contour function plX̃ is constant in two cases: if h = 0, X̃ is vacuous, and plX̃(x) = 1
for all x ∈ R; if h = +∞, X̃ is a random variable, and plX̃(x) = 0 for all x ∈ R. We also note that, if σ 2 = 0, plX̃
is equal to the possibility distribution GFN(μ, h). When σ 2 → +∞ and h > 0, plX̃(x) → 0 for all x. The next 
proposition gives the expressions of the belief and plausibility of any real interval.

Proposition 7. For any real interval [x, y], the degrees of belief and plausibility of [x, y] induced by the GRFN 
X̃ ∼ Ñ(μ, σ 2, h) are, respectively,

BelX̃([x, y]) = 


(
y − μ

σ

)
− 


(
x − μ

σ

)
−

plX̃(x)

[



(
(x + y)/2 − μ

σ
√

hσ 2 + 1

)
− 


(
x − μ

σ
√

hσ 2 + 1

)]
−

plX̃(y)

[



(
y − μ

σ
√

hσ 2 + 1

)
− 


(
(x + y)/2 − μ

σ
√

hσ 2 + 1

)]
, (23)

and

P lX̃([x, y]) = 


(
y − μ

σ

)
− 


(
x − μ

σ

)
+ plX̃(x)


(
x − μ

σ
√

hσ 2 + 1

)
+

plX̃(y)

[
1 − 


(
y − μ

σ
√

hσ 2 + 1

)]
. (24)

Proof. See Appendix D. �

Corollary 1. The lower and upper cdf’s of the GRFN X̃ ∼ Ñ(μ, σ 2, h) are, respectively

BelX̃((−∞, y]) = 


(
y − μ

σ

)
− plX̃(y)


(
y − μ

σ
√

hσ 2 + 1

)
(25)

and

P lX̃((−∞, y]) = 


(
y − μ

σ

)
+ plX̃(y)

[
1 − 


(
y − μ

σ
√

hσ 2 + 1

)]
. (26)

Proof. Immediate from Proposition 7 by letting x tend to −∞ in (23) and (24) �
17
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We can easily check from (23) and (24) that BelX̃([x, y]) and P lX̃([x, y]) both tend to 
 
( y−μ

σ

)− 
 
(

x−μ
σ

)
when 

h → ∞, which is consistent with the fact that a GRFN with infinite precision is equivalent to a Gaussian random 
variable. Finally, the following proposition gives the expressions of the lower and upper expectations of a GRFN.

Proposition 8. Let X̃ ∼ Ñ(μ, σ 2, h) be a GRFN with h > 0. Its lower and upper expectations are, respectively,

E∗(X̃) = μ −
√

π

2h
and E∗(X̃) = μ +

√
π

2h
. (27)

Proof. See Appendix E. �

As expected, we can see from (27) that the lower and upper expectations boil down to the usual expectation μ
when h = +∞.

4.2. Orthogonal sum of Gaussian fuzzy random numbers

In this section, we derive the expression of the orthogonal sum X̃1 ⊕ X̃2 of two GRFN’s X̃1 and X̃2. We start with 
the following lemma.

Lemma 1. Let M1 ∼ N(μ1, σ 2
1 ) and M2 ∼ N(μ2, σ 2

2 ) be two independent Gaussian random variables, and let F̃ be 
the fuzzy subset of R2 with membership function

F̃ (m1,m2) = hgt (GFN(m1, h1) · GFN(m2, h2)) = exp

(
−h1h2(m1 − m2)

2

2(h1 + h2)

)
.

The conditional probability distribution of (M1, M2) given F̃ is two-dimensional Gaussian with mean vector μ̃ =
(μ̃1, ̃μ2)

T and covariance matrix

�̃ =
(

σ̃ 2
1 ρσ̃1σ̃2

ρσ̃1σ̃2 σ̃ 2
2

)
,

with

μ̃1 = μ1(1 + hσ 2
2 ) + μ2hσ 2

1

1 + h(σ 2
1 + σ 2

2 )
(28a)

μ̃2 = μ2(1 + hσ 2
1 ) + μ1hσ 2

2

1 + h(σ 2
1 + σ 2

2 )
(28b)

σ̃ 2
1 = σ 2

1 (1 + hσ 2
2 )

1 + h(σ 2
1 + σ 2

2 )
(28c)

σ̃ 2
2 = σ 2

2 (1 + hσ 2
1 )

1 + h(σ 2
1 + σ 2

2 )
(28d)

ρ = hσ1σ2√
(1 + hσ 2

1 )(1 + hσ 2
2 )

, (28e)

where

h = h1h2

h1 + h2
. (28f)

Furthermore, the degree of conflict between two independent GRFN’s X̃1 ∼ Ñ(μ1, σ 2
1 , h1) and X̃2 ∼ Ñ(μ2, σ 2

2 , h2)

is
18
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κ = 1 −
∫∫

f (m1,m2)F̃ (m1,m2)dm1dm2 =

1 − σ̃1σ̃2

σ1σ2

√
1 − ρ2 exp

{
−1

2

[
μ2

1

σ 2
1

+ μ2
2

σ 2
2

]
+ 1

2(1 − ρ2)

[
μ̃2

1

σ̃ 2
1

+ μ̃2
2

σ̃ 2
2

− 2ρ
μ̃1μ̃2

σ̃1σ̃2

]}
,

where f (m1, m2) is the pdf of random vector (M1, M2).

Proof. See Appendix F. �

Proposition 9. Let X̃1 ∼ Ñ(μ1, σ 2
1 , h1) and X̃2 ∼ Ñ(μ2, σ 2

2 , h2) be two independent GRFN’s, and assume that h1 > 0
or h2 > 0. We have

X̃1 ⊕ X̃2 ∼ Ñ(μ̃12, σ̃
2
12, h12),

with

h12 = h1 + h2, (29)

μ̃12 = h1μ̃1 + h2μ̃2

h1 + h2
, (30)

and

σ̃ 2
12 = h2

1σ̃
2
1 + h2

2σ̃
2
2 + 2ρh1h2σ̃1σ̃2

(h1 + h2)2 , (31)

where μ̃1, μ̃2, ̃σ1, ̃σ2 and ρ are given by (28) in Lemma 1.

Proof. Let M1 and M2 be the Gaussian random variables from (�1, σ1, P1) and (�2, σ2, P2) to (R, βR) correspond-
ing, respectively, to GRFN’s X̃1 ∼ Ñ(μ1, σ 2

1 , h1) and X̃2 ∼ Ñ(μ2, σ 2
2 , h2). The orthogonal sum of X̃1 and X̃2 is the 

random fuzzy set (�1 × �2, σ1 ⊗ σ2, P̃12, R, βR, ̃X�), where X̃� is the mapping

X̃� : (ω1,ω2) → GFN(M12(ω1,ω2), h1 + h2),

with

M12(ω1,ω2) = h1M1(ω1) + h2M2(ω2)

h1 + h2
,

and P̃12 is the probability measure on �1 × �2 obtained by conditioning P1 × P2 on the fuzzy set �̃∗(ω1, ω2) =
hgt (GFN(M1(ω1), h1),GFN(M2(ω2), h2)). From Lemma 1, the pushforward measure of P̃12 by the random vector 
(M1, M2) is the two-dimensional Gaussian distribution with parameters (μ̃1, ̃μ2, ̃σ1, ̃σ2, ρ). Consequently, M12 is a 
Gaussian random variable with mean

E(M12) = h1E(M1) + h2E(M2)

h1 + h2
= h1μ̃1 + h2μ̃2

h1 + h2
,

and variance

Var(M12) = h2
1Var(M1) + h2

2Var(M2) + 2h1h2Cov(M1,M2)

(h1 + h2)2

= h2
1σ̃

2
1 + h2

2σ̃
2
2 + 2ρh1h2σ̃1σ̃2

(h1 + h2)2 . �

Let us now consider some special cases in which one of two GRFN’s is a Gaussian random variable. The next 
proposition states that the orthogonal sum of a Gaussian random variable and an arbitrary GRFN with finite precision 
is a Gaussian random variable.
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Proposition 10. Let X1 ∼ N(μ1, σ 2
1 ) be a Gaussian random variable and X̃2 ∼ Ñ(μ2, σ 2

2 , h2) a GRFN with finite 
precision h2 < +∞. Their orthogonal sum is a Gaussian random variable X1 ⊕ X̃2 ∼ N(μ̃12, ̃σ 2

12) with

μ̃12 = μ1(1 + h2σ
2
2 ) + μ2h2σ

2
1

1 + h2(σ
2
1 + σ 2

2 )
, (32)

σ̃ 2
12 = σ 2

1 (1 + h2σ
2
2 )

1 + h2(σ
2
1 + σ 2

2 )
, (33)

and the probability density of X1 ⊕ X̃2 is proportional to the product of the pdf of X1 and the contour function of X̃2.

Proof. See Appendix G. �

The following corollary addresses the special case where X̃2 is a possibilistic GRFN.

Corollary 2. Let X1 ∼ N(μ1, σ 2
1 ) be a Gaussian random variable and X̃2 ∼ Ñ(μ2, 0, h2) a possibilistic GRFN. Their 

orthogonal sum X1 ⊕ X̃2 is a Gaussian random variable and its distribution is the conditional distribution of X1 given 
the fuzzy event GFN(μ2, h2).

Proof. From Proposition 10, X1 ⊕ X̃2 ∼ Ñ(μ̃12, ̃σ 2
12) with

μ̃12 = μ1 + μ2h2σ
2
1

1 + h2σ
2
1

and σ̃ 2
12 = σ 2

1

1 + h2σ
2
1

.

Now, we know from Proposition 10 that the density of X1 ⊕ X̃2 is proportional to the product of the density of X1
and the contour function of X̃2, which is ϕ(x; μ2, h2). Consequently, we have

fX1⊕X̃2
(x) =

1
σ 2

1
exp

(
− 1

2
(x−μ1)

2

σ 2
1

)
exp

(
−h2(x−μ2)

2

2(1+h2σ
2
2 )

)
∫ 1

σ 2
1

exp

(
− 1

2
(x−μ1)

2

σ 2
1

)
exp

(
−h2(x−μ2)

2

2(1+h2σ
2
2 )

)
dx

,

which is the conditional density fX1(x|GFN(μ2, h2)). �

Finally, another special case of interest is when both GRFN’s are Gaussian random variables. This case is addressed 
by the following corollary.

Corollary 3. Let X1 ∼ N(μ1, σ 2
1 ) and X2 ∼ N(μ2, σ 2

2 ) be two Gaussian random variables. We have X1 ⊕ X2 ∼
N(μ̃12, σ 2

12) with

μ̃12 = μ1σ
2
2 + μ2σ

2
1

σ 2
1 + σ 2

2

and σ̃ 2
12 = σ 2

1 σ 2
2

σ 2
1 + σ 2

2

.

Proof. Immediate from Proposition 10 by letting h2 tend to +∞ in (32) and (33). �

4.3. Arithmetic operations on GRFN’s

Arithmetic operations can be extended to fuzzy numbers using Zadeh’s extension principles [14,12]. More pre-
cisely, let Ã and B̃ be two fuzzy numbers, and let ∗ be a binary operation on reals. Then the fuzzy number C̃ = Ã ∗ B̃

is defined as

C̃(c) = sup
c=a∗b

min(Ã(a), B̃(b)).

The membership function C̃ is equal to the possibility distribution on c = a∗b, if a and b are constrained, respectively, 
by possibility distributions Ã and B̃ . Unary or n-ary operations can be extended from real to fuzzy numbers in the 
20
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same way. For a certain class of fuzzy number called LR-fuzzy numbers [14, page 54], closed-form expressions exist 
for the addition, subtraction and scalar multiplication of fuzzy numbers. In particular, Gaussian fuzzy numbers with 
positive precision are LR fuzzy numbers and they verify the following equalities [25]:

GFN(m1, h1) + GFN(m2, h2) = GFN(m1 + m2, (h
−1/2
1 + h

−1/2
2 )−2)

GFN(m1, h1) − GFN(m2, h2) = GFN(m1 − m2, (h
−1/2
1 + h

−1/2
2 )−2)

λ · GFN(m,h) = GFN(λm,h/λ2), ∀λ ∈R.

As addition of fuzzy numbers is associative, we can express the linear combination of n GFN’s as

n∑
i=1

λi · GFN(mi, hi) = GFN

⎛⎝ n∑
i=1

λimi,

(
n∑

i=1

|λi |h−1/2
i

)−2
⎞⎠ . (34)

Now, let us consider n independent GRFN’s X̃i from probability spaces (�i, σi, Pi) to [0, 1]R defined by

X̃i(ω) = GFN(Mi(ω),hi)

for all ω ∈ �i , where Mi is a Gaussian random variable with mean μi and standard deviation σi , and hi > 0. Let

X̃ =
n∑

i=1

λiX̃i

be the random fuzzy set from (�1 × . . . × �n, σ1 ⊗ . . . ⊗ σn, P1 × . . . × Pn) to [0, 1]R defined by

X̃(ω1, . . . ,ωn) =
n∑

i=1

λi · GFN(Mi(ωi), hi).

If each GRFN X̃i represents our knowledge about the value of some quantity Xi , X̃ represents our knowledge about 
X =∑n

i=1 λiXi . From (34), X̃ ∼ Ñ(μ, σ, h) with

μ =
n∑

i=1

λiμi, σ 2 =
n∑

i=1

λ2
i σ

2
i , and h =

(
n∑

i=1

|λi |h−1/2
i

)−2

.

5. Gaussian random fuzzy vectors

In this section, we introduce Gaussian random fuzzy vectors (GRFV’s), an extension of the model presented in 
Section 4 allowing us to describe knowledge about multidimensional quantities. The main definitions and properties 
are first introduced in Section 5.1. The expression of the orthogonal sum of two GRFV’s is then given in Section 5.2, 
after which the marginalization and vacuous extension of GRFV’s are described in Section 5.3. Finally, our model is 
compared to Dempster’s normal belief function model in Section 5.4.

5.1. Definition and main properties

We consider a p-dimensional variable θ taking values in Rp . Knowledge about θ may be encoded as a p-
dimensional Gaussian fuzzy vector, defined as follows.

Definition 2. We define the p-dimensional Gaussian fuzzy vector (GFV) with center m ∈ Rp and p × p symmetric 
and positive semidefinite precision matrix H as the normalized fuzzy subset of Rp with membership function

ϕ(x;m,H ) = exp

(
−1

2
(x − m)T H (x − m)

)
,

denoted as GFV(m, H ).
21
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As shown in [27], the normalized product of two GFV’s is still a GFV. The following proposition generalizes 
Proposition 3.

Proposition 11. Let GFV(m1, H 1) and GFV(m2, H 2) be two p-dimensional GFV’s with positive definite precision 
matrices H 1 and H 2. We have

ϕ(x;m1,H 1) · ϕ(x;m2,H 2) = ϕ(x;m12,H 12) × exp

(
−1

2
(m1 − m2)

T (H−1
1 + H−1

2 )−1(m1 − m2)

)
,

with

m12 = (H 1 + H 2)
−1(H 1m1 + H 2m2) and H 12 = H 1 + H 2.

Consequently, the following equation holds:

GFV (m1,H 1) � GFV(m2,H 2) = GFV(m12,H 12),

and the height of the product intersection between GFV(m1, H 1) and GFV(m1, H 2) is

hgt (GFV(m1,H 1),GFV(m1,H 2)) = max
x

ϕ(x;m1,H 1)ϕ(x;m2,H 2) (35a)

= exp

(
−1

2
(m1 − m2)

T (H−1
1 + H−1

2 )−1(m1 − m2)

)
. (35b)

Equipped with the notion of GFV, we can now introduce a model of random fuzzy set that can be seen as a GFV 
whose mode is a multidimensional Gaussian random variable. This model is defined formally as follows.

Definition 3. Let (�, σ�, P) be a probability space, M : � → Rp a p-dimensional Gaussian random vector with 
mean μ and variance matrix �, and H a p × p symmetric and positive semidefinite real matrix. The random fuzzy 
set X̃ : � → [0, 1]Rp

defined as

X̃(ω) = GFV(M(ω),H )

is called a Gaussian random fuzzy vector (GRFV), which we denote as X̃ ∼ Ñ(μ, �, H ).

The following proposition generalizes Proposition 6.

Proposition 12. The contour function of GRFV X̃ ∼ Ñ(μ, �, H ) with positive definite precision matrix H is

plX̃(x) = 1

|Ip + �H |1/2 exp

(
−1

2
(x − μ)T (H−1 + �)−1(x − μ)

)
,

where Ip is the p-dimensional identity matrix.

Proof. See Appendix H. �

5.2. Orthogonal sum of Gaussian random fuzzy vectors

The practical interest of GRFV’s arises from the fact that they can be easily combined by the generalized product-
intersection rule. The following lemma and proposition, which generalize, respectively, Lemma 1 and Proposition 9, 
give us the expression of the orthogonal sum of two GRFV’s.

Lemma 2. Let M1 ∼ N (μ1, �1) and M2 ∼ N (μ2, �2) be two independent Gaussian p-dimensional random vectors 
and let H 1 and H 2 be two symmetric and positive definite p × p matrices. Let F̃ be the fuzzy subset of R2p with 
membership function

F̃ (m1,m2) = hgt (GFV(m1,H 1) · GFV(m2,H 2)) ,
22
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and let M be the 2p-dimensional vector (M1, M2). The conditional probability distribution of M given F̃ is 2p-
dimensional Gaussian with mean vector ̃μ and covariance matrix �̃ defined as follows:

�̃ =
(

�−1
1 + H −H

−H �−1
1 + H

)−1

,

μ̃ =
(

H
−1

�−1
1 + Ip −Ip

−Ip H
−1

�−1
2 + Ip

)−1(
H

−1
�−1

1 0

0 H
−1

�−1
2

)(
μ1
μ2

)
, (36)

with

H = (H−1
1 + H−1

2 )−1.

Furthermore, the degree of conflict between two GRFV’s X̃1 ∼ Ñ(μ1, �1, H 1) and X̃2 ∼ Ñ(μ2, �2, H 2) is

κ = 1 −
∫

R2p

f (m1,m2)F̃ (m1,m2)dm1dm2 =

1 −
√

|�̃|
|�1||�2| exp

{
−1

2

[
μT

1 �−1
1 μ1 + μT

2 �−1
2 μ2 − μ̃T �̃

−1
μ̃
]}

.

Proof. See Appendix I �

Proposition 13. Let X̃1 ∼ Ñ(μ1, �1, H 1) and X̃2 ∼ Ñ(μ2, �2, H 2) be two independent GRFV’s. We have

X̃1 ⊕ X̃2 ∼ Ñ(μ̃12, �̃12,H 12)

with

H 12 = H 1 + H 2,

μ̃12 = Aμ̃,

and

�̃12 = A�̃AT ,

where A is the constant p × 2p matrix defined as

A = H−1
12

(
H 1 H 2

)
.

Proof. Let M1 and M2 be the Gaussian random vector from (�1, σ1, P1) and (�2, σ2, P2) to (Rp, βRp ) correspond-
ing, respectively, to GRFV’s X̃1 ∼ Ñ(μ1, �1, H 1) and X̃2 ∼ Ñ(μ2, �2, H 2). The orthogonal sum of X̃1 and X̃2 is 
defined by the mapping

X̃� : (ω1,ω2) → GFV(M12(ω1,ω2),H 1 + H 2)

with

M12 = (H 1 + H 2)
−1(H 1M1 + H 2M2) = A

(
M1
M2

)
,

where A is the p × 2p matrix

A = (H 1 + H 2)
−1 (H 1 H 2

)
,

and the probability measure P̃12 on �1 × �2 obtained by conditioning P1 × P2 on the fuzzy set �̃∗(ω1, ω2) =
hgt (GFV(M1(ω1),H 1),GFV(M2(ω2),H 2)). From Lemma 2, the pushforward measure of P̃12 by the random vector 
(M1, M2) is the p-dimensional Gaussian distribution with parameters (μ̃, ̃�). Consequently, M12 is a Gaussian 
random vector with mean
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E(M12) = Aμ̃

and variance

Var(M12) = A�̃AT . �

5.3. Marginalization and vacuous extension

In this section, we consider the marginalization and vacuous extension (defined in Section 3.3) of a GRFV. We 
assume that variable θ taking values in Rp is decomposed as θ = (θ1, θ2) with θ1 ∈ �1 = Rp−k and θ2 ∈ �2 = Rk

for 0 < k < p.

Marginalization. We start with the following lemma.

Lemma 3. Let F̃ = GFV(m, H ) be a p-dimensional Gaussian fuzzy vector with mode m = (m1, m2), where m1 ∈
�1 = Rp−k and m2 ∈ �2 = Rk for 0 < k < p, and precision matrix H with block decomposition

H =
(

H 11 H 12
H 21 H 22

)
.

Assume that H 22 is nonsingular. The projection of F̃ on �1, denoted as F̃ ↓ �1 is the Gaussian fuzzy vector 
GFV(m1, H ′

11) with

H ′
11 = H 1 − H 12H

−1
22 H 21.

Proof. See Appendix J. �

Let us now consider a p-dimensional GRFV X̃ ∼ Ñ(μ, �, H ) representing partial knowledge about θ = (θ1, θ2). 
The marginal RFS for θ1 is given by the following proposition, which follows directly from Lemma 3.

Proposition 14. Let X̃ ∼ Ñ(μ, �, H ) by a p-dimensional GRFV taking values in 2�, with � = �1 × �2, where 
�1 = Rp−k and �2 = Rk for 0 < k < p. Let μ = (μ1, μ2) with μ1 ∈ �1 and μ2 ∈ �2, and consider the block 
decompositions

� =
(

�11 �12
�21 �22

)
and H =

(
H 11 H 12
H 21 H 22

)
.

Assume that H 22 is nonsingular. The marginal of X̃ on �1 is the GRFV X̃1 ∼ Ñ(μ1, �11, H ′
11) with

H ′
11 = H 11 − H 12H

−1
22 H 21.

Vacuous extension. We now consider a Gaussian fuzzy vector GFV(m1, H 11) in �1 = Rp−k for 0 < k < p. Its cylin-
drical extension in � = �1 × �2, with �2 = Rk has the following membership function

ϕ(x) = exp

(
−1

2
(x1 − m1)

T H 11(x1 − m1)

)
,

which can be written as

ϕ(x) = exp

(
−1

2
(x − m)T H (x − m)

)
,

where m is the p-dimensional vector

m =
(

m1
0

)
and H is the p × p matrix
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H =
(

H 11 0
0 0

)
. (37)

Given a GRFV X̃1 ∼ Ñ(μ1, �11, H 11) taking values in 2�1 , it follows immediately that its vacuous extension in 
� = �1 × �2 is the GRFV

X̃1↑(1,2) ∼ Ñ(μ,�,H )

with

μ =
(

μ1
0

)
, � =

(
H 11 0

0 I k

)
,

where I k is the k × k identity matrix, and H given by (37).

Noninteractivity. In Section 3.3, we defined the notion of noninteractive random fuzzy vector. The following proposi-
tion gives a necessary and sufficient condition for a GRFV to be noninteractive.

Proposition 15. A p-dimensional GRFV X̃ ∼ Ñ(μ, �, H ) is non-interactive iff matrices � and H are diagonal.

Proof. Let X̃1, . . . , ̃Xp be the marginals of X̃ on each of the p coordinates. Let σ 2
1 , . . . , σ 2

p and h1, . . . , hp be the 
diagonal elements of, respectively, � and H . Let � be the set of departure of X̃. Let X̃i↑(1:p) denote the vacuous 
extension of X̃i in Rp , defined by

X̃i↑(1:p)(ω)(x) = exp

(
−h

2
(xi − Mi(ω))2

)
with Mi ∼ N(μi, σ 2

i ). The orthogonal sum

X̃′ = X̃1↑(1:p) ⊕ . . . ⊕ X̃p↑(1:p)

is given by

X̃′(ω)(x) =
p∏

i=1

exp

(
−h

2
(xi − Mi(ω))2

)
= exp

(
−1

2
(x − M ′(ω))T H ′(x − M ′(ω))

)
,

where H ′ is the diagonal matrix with diagonal elements h1, . . . , hp , and M ′ is a random vector with mean μ and 
diagonal covariance matrix �′ with diagonal elements σ 2

1 , . . . , σ 2
p . We have X̃ = X̃′ iff H = H ′ and � = �′, i.e., if 

both H and � are diagonal. �

5.4. Comparison with Dempster’s normal belief functions

In [5], Dempster introduced another class of continuous belief functions in Rp, called normal belief functions.1 It is 
interesting to compare Dempster’s model with ours, as both models generalize the multivariate Gaussian distribution. 
A normal belief function Bel on Rp as defined in [5] is specified by the following components:

• An n-dimensional subspace S of Rp;
• A q-dimensional partition � of S into parallel n − q dimensional subspaces; (If q = 0, � = {S});
• A full-rank q-dimensional Gaussian distribution N(μ, �) on � if q > 0, or the discrete probability measure with 

mass function m(S) = 1 if q = 0.

Belief function Bel is then induced by a random set from �, equipped with the normal distribution N(μ, �) if q > 0
or probability mass function m if q = 0, to the corresponding family of parallel n − q dimensional subspaces of S . 
The following special cases are of interest:

1 Ref. [5] was actually available as a working paper from the Statistical Department of Harvard University since 1990, but it only appeared as a 
book chapter in 2001.
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1. If p = n = q , Bel is a Gaussian probability distribution on Rp;
2. If p > n = q , Bel is a Gaussian probability distribution limited to an n-dimensional subspace of Rp;
3. If p = n and q = 0, Bel is vacuous;
4. If q = 0 while p > n > 0, Bel is logical with S as its only focal set; it is then equivalent to specifying p−n linear 

equations;
5. If n = q = 0, the true point in Rp is known with certainty.

Like GRFV’s, Dempster’s normal belief functions thus include the vacuous belief function, Gaussian probability dis-
tributions, as well as vacuous extensions of marginal Gaussian distributions. However, the two models are clearly 
distinct. Dempster’s model is based on the combination of Gaussian probability distributions and linear equations, 
and is specially useful in relation with linear statistical models such as the Kalman filter [5] or linear regression [24]. 
In contrast, in the GRFV model, focal sets are fuzzy subsets of Rn (n ≤ p) with Gaussian membership functions, 
or cylindrical extensions of such fuzzy subsets. This model allows us to represent not only probabilistic and logical 
evidence, but also fuzzy information. In particular, it includes Gaussian probability distribution and Gaussian possi-
bility distributions as special cases. We could attempt to design an even more general model that would contain both 
Dempster’s normal belief functions and belief functions induced by GRFV’s as special cases. Such a model would al-
low us to reason with Gaussian probability and possibility distributions as well as with linear equations. The rigorous 
development of such a model is left for further research.

6. Conclusions

In this paper, continuing a study started in [9] with the finite case, we have introduced a theory of epistemic random 
fuzzy sets in a general setting. An epistemic random fuzzy set represents a piece of evidence, which may be crisp or 
fuzzy. This framework generalizes both epistemic random sets as considered in the Dempster-Shafer theory of belief 
functions, and possibility distributions considered in possibility theory. Independent epistemic random fuzzy sets 
are combined by the generalized product-intersection rule, which extends both Dempster’s rule for combining belief 
functions and the product intersection rule for combining possibility distributions.

In addition, we have also introduced Gaussian random fuzzy numbers (GRFN’s) and their multidimensional ex-
tensions, Gaussian random fuzzy vectors (GRFV’s) as practical models of random fuzzy subsets of, respectively, R
and Rp with p ≥ 2. A GRFN is described by three parameters: its mode m, its variance σ 2 and its precision h. In this 
setting, a Gaussian random variable can be seen as an infinitely precise GRFN (h = +∞), while a Gaussian possibil-
ity distribution is a constant GRFN (σ 2 = 0). A maximally imprecise GRFN such that h = 0 is said to be vacuous: it 
represents complete ignorance. In GRFV’s, the mode becomes a p-dimensional vector, while the variance and preci-
sion become positive semi-definite p × p square matrices. The practical convenience of GRFN’s and GRFV’s arises 
from the fact that they can easily be combined by the generalized product-intersection rule. Also, formulas for the 
projection and marginal extension of GRFV’s have been derived.

This work opens up several perspectives. Using random fuzzy sets and, in particular, GRFN’s to represent expert 
knowledge about numerical quantities will require the development of adequate elicitation procedures. We also con-
sider using this framework in machine learning, to quantify prediction uncertainty in regression problems. Finally, the 
extension of the model introduced in this paper to take into account linear equations, as well as the development of 
computational procedures for reasoning with GRFV’s over many variables are promising avenues for further research.
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Appendix A. Proof of Proposition 1

Commutativity is obvious. To prove associativity, let us consider three random sets (�i, σi, Pi, �, σ�, Xi), i =
1, 2, 3. Consider the combined random set

(�1 × �2 × �3, σ1 ⊗ σ2 ⊗ σ3,P123,�,σ�,X1∩2∩3), (A.1)
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where

X1∩2∩3(ω1,ω2,ω3) = X1(ω1) ∩ X2(ω2) ∩ X3(ω3),

P123 = (P1 × P2 × P3)(· | �∗
123),

and

�∗
123 = {(ω1,ω2,ω3) ∈ �1 × �2 × �2 : X1∩2∩3(ω1,ω2,ω3) �= ∅}.

We will show that we get the same result by combining X1 with X2 first, and then combining the result with X3. 
Combining the first two random sets, we get

(�1 × �2, σ1 ⊗ σ2,P12,�,σ�,X1∩2),

with X1∩2(ω1, ω2) = X1(ω1) ∩ X2(ω2), P12 = (P1 × P2)(· | �∗
12) and

�∗
12 = {(ω1,ω2) ∈ �1 × �2 : X1∩2(ω1,ω2) �= ∅}.

Combining it with X3 we get

(�1 × �2 × �3, σ1 ⊗ σ2 ⊗ σ3,P(12)3,�,σ�,X1∩2∩3), (A.2)

with P(12)3 = (P12 × P3)(· | �∗
123). Comparing (A.1) and (A.2), we see that we only need to show that P(12)3 = P123. 

For any event C ⊆ �∗
123 and any ω3 ∈ �3, let Cω3 = {(ω1, ω2) ∈ �1 × �2 : (ω1, ω2, ω3) ∈ C}. By definition of the 

product measure P12 × P3 (see [18, page 144]), we have

P(12)3(C) = (P12 × P3)(C)

(P12 × P3)(�
∗
123)

= 1

(P12 × P3)(�
∗
123)

∫
P12(Cω3)dP3(ω3) (A.3)

Now, as C ⊆ �∗
123, for any (ω1, ω2) ∈ Cω3 , X1(ω1) ∩ X2(ω2) �= ∅. Consequently, Cω3 ⊆ �∗

12, so

P12(Cω3) = (P1 × P2)(Cω3)

(P1 × P2)(�
∗
12)

. (A.4)

From (A.3) and (A.4), we get

P(12)3(C) = 1

(P12 × P3)(�
∗
123)(P1 × P2)(�

∗
12)

∫
(P1 × P2)(Cω3)dP3(ω3) (A.5a)

= (P1 × P2 × P3)(C)

(P12 × P3)(�
∗
123)(P1 × P2)(�

∗
12)

. (A.5b)

Now,

P123(C) = (P1 × P2 × P3)(C)

(P1 × P2 × P3)(�
∗
123)

. (A.6)

As P(12)3(�
∗
123) = P123(�

∗
123) = 1, the denominators in (A.5b) and (A.6) are equal, and P(12)3 = P123.

Appendix B. Proof of Proposition 4

Commutativity is obvious. To prove associativity, consider three random fuzzy sets

(�i, σi,Pi,�,σ�, X̃i), i = 1,2,3.

Let �̃∗
12 be the fuzzy subset of �1 × �2 with membership function

�̃∗
12(ω1,ω2) = hgt

(
X̃1(ω1)X̃2(ω2)

)
,

and let �̃∗
(12)3 and �̃∗

123 be the fuzzy subsets of �1 × �2 × �3 defined, respectively, as

�̃∗
(12)3(ω1,ω2,ω3) = hgt

([
X̃1(ω1) � X̃2(ω1)

]
X̃3(ω3)

)
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and

�̃∗
123(ω1,ω2,ω3) = hgt

(
X̃1(ω1)X̃2(ω2)X̃3(ω3)

)
.

Let P̃12 = (P1 × P2)(· | �̃∗
12), P̃(12)3 = (P̃12 × P3)(· | �̃∗

(12)3), and P̃123 = (P1 × P2 × P3)(· | �̃∗
123). We only need to 

show that P̃(12)3 = P̃123. For any B ∈ σ1 ⊗ σ2 ⊗ σ3, we have

P̃(12)3(B) ∝
∫

�1×�2

∫
�3

B(ω1,ω2,ω3)hgt
([

X̃1(ω1) � X̃2(ω1)
]
X̃3(ω3)

)
dP3(ω3)dP̃12(ω1,ω2)

∝
∫
�1

∫
�2

∫
�3

B(ω1,ω2,ω3)hgt
([

X̃1(ω1) � X̃2(ω1)
]
X̃3(ω3)

)×
hgt

(
X̃1(ω1)X̃2(ω2)

)
dP3(ω3)dP2(ω2)dP1(ω1).

Now,

hgt
([

X̃1(ω1) � X̃2(ω1)
]
X̃3(ω3)

)= hgt

(
X̃1(ω1)X̃2(ω1)

hgt(X̃1(ω1)X̃2(ω2))
X̃3(ω3)

)
= hgt(X̃1(ω1)X̃2(ω2)X̃3(ω3))

hgt(X̃1(ω1)X̃2(ω1))
.

Hence,

P̃(12)3(B) ∝
∫
�1

∫
�2

∫
�3

B(ω1,ω2,ω3)hgt
(
X̃1(ω1)X̃2(ω2)X̃3(ω3)

)
dP3(ω3)dP2(ω2)dP1(ω1),

which proves that P̃(12)3 = P̃123, and the associativity of ⊕.

Appendix C. Proof of Proposition 6

We have

plX̃(x) =EM [ϕ(x;M,h)] (C.1)

=
+∞∫

−∞
ϕ(x;m,h)φ(m;μ,σ)dm (C.2)

= 1

σ
√

2π

+∞∫
−∞

exp

(
−h

2
(x − m)2

)
exp

(
− (m − μ)2

2σ 2

)
dm. (C.3)

From Proposition 3, the integrand can be written as

exp

(
− (m − μ0)

2

2σ 2
0

)
exp

(
− h(x − μ)2

2(1 + hσ 2)

)
,

with

μ0 = xh + μ/σ 2

h + 1/σ 2 = xhσ 2 + μ

hσ 2 + 1

and

σ0 =
√

1

h + 1/σ 2 = σ√
1 + hσ 2

.

Consequently,
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plX̃(x) = 1

σ
√

2π
exp

(
− h(x − μ)2

2(1 + hσ 2)

) +∞∫
−∞

exp

(
− (m − μ0)

2

2σ 2
0

)
dm

︸ ︷︷ ︸
σ0

√
2π

(C.4)

= 1√
1 + hσ 2

exp

(
− h(x − μ)2

2(1 + hσ 2)

)
. (C.5)

Appendix D. Proof of Proposition 7

If h = 0, we have, trivially, BelX̃([x, y]) = 0 and P lX̃([x, y]) = 1 for all x ≤ y. Let us assume that h > 0. We have

P lX̃([x, y]) = P (M ≤ x)E[ϕ(x;M,h) | M ≤ x]+
P (x < M ≤ y) × 1 + P (M > y)E[ϕ(y;M,h) | M > y], (D.1)

which can be written as

P lX̃([x, y]) = 


(
x − μ

σ

)
E[ϕ(x;M,h) | M ≤ x]+




(
y − μ

σ

)
− 


(
x − μ

σ

)
+[

1 − 


(
y − μ

σ

)]
E[ϕ(y;M,h) | M > y]. (D.2)

Conditionally on M ≤ x, M has a truncated normal distribution on (−∞, x] with pdf

f (m) = 1

σ
√

2π

exp
(−(m−μ)2

2σ 2

)


(

x−μ
σ

) 1(−∞,x](m).

Consequently,

E[ϕ(x;M,h) | M ≤ x] = 1

σ
√

2π

1



(

x−μ
σ

) x∫
−∞

exp

(
−h

2
(x − m)2

)
exp

(
− (m − μ)2

2σ 2

)
dm

︸ ︷︷ ︸
σ0

√
2π


(
x−μ0

σ0

)
exp

(
− (x−μ)2

2(h−1+σ2)

)
, (D.3)

so

E[ϕ(x;M,h) | M ≤ x] = 1



(

x−μ
σ

)plX̃(x)


(
x − μ

σ
√

hσ 2 + 1

)
.

Using similar calculations, we find

E[ϕ(y;M,h) | M > y] = 1

1 − 

( y−μ

σ

)plX̃(y)

[
1 − 


(
y − μ

σ
√

hσ 2 + 1

)]
,

which concludes the proof of (24).
Now, let us consider (23). We have

BelX̃([x, y]) = 1 − P lX̃((−∞, x] ∪ [y,+∞)),

and

P lX̃((−∞, x] ∪ [y,+∞)) = P (M ≤ x) × 1+
P (x < M ≤ (x + y)/2)E[ϕ(x;M,h) | x < M ≤ (x + y)/2]+

P ((x + y)/2 < M ≤ y)E[ϕ(x;M,h) | (x + y)/2 < M ≤ y] + P (M > y) × 1, (D.4)
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which can be written as

P lX̃((−∞, x] ∪ [y,+∞)) = 


(
x − μ

σ

)
+[




(
(x + y)/2 − μ

σ

)
− 


(
x − μ

σ

)]
E[ϕ(x;M,h) | x < M ≤ (x + y)/2]+[




(
y − μ

σ

)
− 


(
(x + y)/2 − μ

σ

)]
E[ϕ(x;M,h) | (x + y)/2 < M ≤ y]+

1 − 


(
y − μ

σ

)
. (D.5)

Conditionally on x < M ≤ (x + y)/2, M has a truncated normal distribution on (x, (x + y)/2] with pdf

f (m) = 1

σ
√

2π

exp
(−(m−μ)2

2σ 2

)


(

(x+y)/2−μ
σ

)
− 


(
x−μ

σ

)1(x,(x+y)/2](m).

Consequently,

E[ϕ(x;M,h) | x < M ≤ (x + y)/2] = 1

σ
√

2π

1



(

(x+y)/2−μ
σ

)
− 


(
x−μ

σ

)×
(x+y)/2∫

x

exp

(
−h

2
(x − m)2

)
exp

(
− (m − μ)2

2σ 2

)
dm

︸ ︷︷ ︸
σ0

√
2π
[


(

(x+y)/2−μ0
σ0

)
−


(
x−μ0

σ0

)]
exp

(
− (x−μ)2

2(h−1+σ2)

)
, (D.6)

or

E[ϕ(x;M,h) | x < M ≤ (x + y)/2] =
1



(

(x+y)/2−μ
σ

)
− 


(
x−μ

σ

)plX̃(x)

[



(
(x + y)/2 − μ

σ
√

hσ 2 + 1

)
− 


(
x − μ

σ
√

hσ 2 + 1

)]
. (D.7)

Similarly, we find

E[ϕ(y;M,h) | (x + y)/2 < M ≤ y] =
1



( y−μ

σ

)− 

(

(x+y)/2−μ
σ

)plX̃(y)

[



(
y − μ

σ
√

hσ 2 + 1

)
− 


(
(x + y)/2 − μ

σ
√

hσ 2 + 1

)]
. (D.8)

The expressions of P lX̃((−∞, x] ∪ [y, +∞)) and BelX̃([x, y]) follow.

Appendix E. Proof of Proposition 8

Let X̃(ω) = GFN(M(ω), h) be the image of ω ∈ � by X̃, with M ∼ N(μ, σ 2). For any α ∈ (0, 1], its alpha-cut is 
the random interval

αX̃(ω) =
[
M(ω) −

√−2 lnα

h
,M(ω) +

√−2 lnα

h

]
.

Consequently, from (16), the lower and upper expectation of X̃ are

E∗(X̃) = μ −
1∫ √−2 lnα

h
dα,
0
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and

E∗(X̃) = μ +
1∫

0

√−2 lnα

h
dα.

By the change of variable β = √−2(lnα)/h, we get

1∫
0

√−2 lnα

h
dα = h

+∞∫
0

β2 exp

(
−hβ2

2

)
dβ.

Now, the second-order moment of the normal distribution N(0, 1/h) is√
h

2π

+∞∫
−∞

β2 exp

(
−hβ2

2

)
dβ = 1

h
,

from which we get

h

+∞∫
0

β2 exp

(
−hβ2

2

)
dβ = h · 1

h

√
π

2h
=
√

π

2h
.

Appendix F. Proof of Lemma 1

The conditional density of (M1, M2) is

f (m1,m2 | F̃ ) = f (m1,m2)F̃ (m1,m2)∫∫
f (m1,m2)F̃ (m1,m2)dm1dm2

. (F.1)

The numerator on the right-hand side of (F.1) is

1

2πσ1σ2
exp

{
−1

2

[(
m1 − μ1

σ1

)2

+
(

m2 − μ2

σ2

)2
]}

exp

{
−h(m1 − m2)

2

2

}

= 1

2πσ1σ2
exp

{
−1

2

[
m2

1

(
1

σ 2
1

+ h

)
− 2m1μ1

σ 2
1

+ μ2
1

σ 2
1

+

m2
2

(
1

σ 2
2

+ h

)
− 2m2μ2

σ 2
2

+ μ2
2

σ 2
2

− 2hm1m2

]}
. (F.2)

Now, the two-dimensional Gaussian density with parameters (μ̃1, ̃μ2, ̃σ1, ̃σ2, ρ) equals

1

2πσ̃1σ̃2

√
1 − ρ2

exp

{
− 1

2(1 − ρ)2

[(
m1 − μ̃1

σ̃1

)2

− 2ρ

(
m1 − μ̃1

σ̃1

)(
m2 − μ̃2

σ̃2

)
+
(

m2 − μ̃2

σ̃2

)2
]}

. (F.3)

Equating the second and first-order terms inside the exponentials in (F.2) and (F.3) gives us

σ̃1 = 1

1 − ρ2

(
1

σ 2
1

+ h

)−1

(F.4a)

σ̃2 = 1

1 − ρ2

(
1

σ 2
2

+ h

)−1

(F.4b)

ρ = hσ1σ2√
(1 + hσ 2)(1 + hσ 2)

(F.4c)
1 2
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μ̃1 = μ1σ̃
2
1

σ 2
1

+ ρμ2
σ̃1σ̃2

σ 2
2

(F.4d)

μ̃2 = μ2σ̃
2
2

σ 2
2

+ ρμ1
σ̃1σ̃2

σ 2
1

. (F.4e)

Replacing ρ by its expression (F.4c) in (F.4a) and (F.4b) yields (28c) and (28d). Replacing ρ, σ̃1 and σ̃2 by their 
expressions in (F.4d) and (F.4e) gives (28a) and (28b).

Finally, the degree of conflict between GRFN’s X̃1 ∼ Ñ(μ1, σ 2
1 , h1) and X̃2 ∼ Ñ(μ2, σ 2

2 , h2) is

κ = 1 − (P1 × P2)(�̃
∗),

with

(P1 × P2)(�̃
∗) =

∫∫
f (m1,m2)F̃ (m1,m2)dm1dm2.

Taking the ratio of (F.2) to (F.3), we get∫∫
f (m1,m2)F̃ (m1,m2)dm1dm2 =

σ̃1σ̃2

σ1σ2

√
1 − ρ2 exp

{
−1

2

[
μ2

1

σ 2
1

+ μ2
2

σ 2
2

]
+ 1

2(1 − ρ2)

[
μ̃2

1

σ̃ 2
1

+ μ̃2
2

σ̃ 2
2

− 2ρ
μ̃1μ̃2

σ̃1σ̃2

]}
.

Appendix G. Proof of Proposition 10

From (29), h12 = +∞ and the combined GRFN Ñ(μ̃12, ̃σ 2
12, h12) is probabilistic. From (30) and (31),

μ̃12 = lim
h1→+∞

μ̃1 + h2
h1

μ̃2

1 + h2
h1

= μ̃1,

and

σ̃ 2
12 = lim

h1→+∞

σ̃ 2
1 + h2

2
h2

1
σ̃ 2

2 + 2ρ h2
h1

σ̃1σ̃2

(1 + h2
h1

)2
= σ̃ 2

1 .

From (28f),

h = lim
h1→+∞

h2

1 + h2
h1

= h2.

From (28a) and (28c),

μ̃1 = μ1(1 + h2σ
2
2 ) + μ2h2σ

2
1

1 + h2(σ
2
1 + σ 2

2 )
,

and

σ̃ 2
1 = σ 2

1 (1 + h2σ
2
2 )

1 + h2(σ
2
1 + σ 2

2 )
.

Now, using Proposition 3, the product of the probability density of X1 and the contour function of X̃2 can be written 
as

fX1(x)plX̃2
(x) ∝ exp

(
−1

2

(x − μ1)
2

σ 2
1

)
exp

(
−h2(x − μ2)

2

2(1 + h2σ
2
2 )

)

∝ exp

(
− 1

2σ 2
12

(x − μ12)
2

)
,
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with

1

σ 2
12

= 1

σ 2
1

+ h2

1 + h2σ
2
2

= 1 + h2(σ
2
1 + σ 2

2 )

σ 2
1 (1 + h2σ

2
2 )

and

μ12 =
1
σ 2

1
μ1 + h2

1+h2σ
2
2
μ2

1
σ 2

1
+ h2

1+h2σ
2
2

= μ1(1 + h2σ
2
2 ) + μ2h2σ

2
1

1 + h2(σ
2
1 + σ 2

2 )
.

We can check that μ12 = μ̃1 and σ 2
12 = σ̃ 2

1 .

Appendix H. Proof of Proposition 12

We have

plX̃(x) = EM [ϕ(x;M,H )] (H.1)

=
∫
Rp

ϕ(x;m,H )φ(m;μ,�)dm (H.2)

= 1

(2π)p/2|�|1/2

∫
Rp

exp

(
−1

2
(x − m)T H (x − m)

)
× (H.3)

exp

(
−1

2
(m − μ)�−1(m − μ)

)
dm. (H.4)

From Proposition 3, the integrand can be written as

exp

(
−1

2
(m − μ0)

T �−1
0 (m − μ0)

)
exp

(
−1

2
(x − μ)T (H−1 + �)−1(x − μ)

)
,

with

μ0 = (H + �−1)−1(Hx + �−1μ)

and

�0 = (H + �−1)−1.

Consequently,

plX̃(x) = 1

(2π)p/2|�|1/2 exp

(
−1

2
(x − μ)T (H−1 + �)−1(x − μ)

)
× (H.5)∫

Rp

exp

(
−1

2
(m − μ0)

T �−1
0 (m − μ0)

)
dm

︸ ︷︷ ︸
(2π)p/2|�0|1/2

(H.6)

=
( |�0|

|�|
)1/2

exp

(
−1

2
(x − μ)T (H−1 + �)−1(x − μ)

)
(H.7)

= 1

|I + �H |1/2 exp

(
−1

2
(x − μ)T (H−1 + �)−1(x − μ)

)
. (H.8)
p
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Appendix I. Proof of Lemma 2

The conditional density of M = (M1, M2) is

f (m1,m2 | F̃ ) = f (m1,m2)F̃ (m1,m2)∫
R2p f (m1,m2)F̃ (m1,m2)dm1dm2

. (I.1)

The numerator on the right-hand side of (I.1) is

f (m1,m2)F̃ (m1,m2) = φ(m1;μ1,�1)φ(m2;μ2,�2) × exp

{
−1

2
(m1 − m2)

T H (m1 − m2)

}
, (I.2)

which can be written as

f (m1,m2)F̃ (m1,m2) = 1

(2π)p|�1�2|1/2 exp

(
−Z

2

)
with

Z = mT
1 (�−1

1 + H )m1 + mT
2 (�−1

2 + H )m2 − 2mT
1 Hm2 − 2mT

1 �−1
1 μ1−

2mT
2 �−1

2 μ2 + μT
1 �−1

1 μ1 + μT
2 �−1

2 μ2. (I.3)

Now, the 2p-dimensional Gaussian density with mean ̃μ and covariance matrix �̃ equals

φ(m; μ̃, �̃) = 1

(2π)p|�̃|1/2
exp

{
−1

2
(m − μ)T �̃

−1
(m − μ)

}
. (I.4)

Decomposing vector ̃μ as ̃μ = (μ̃1, ̃μ2), with ̃μ1, ̃μ2 ∈Rp , and �̃−1
as

�̃
−1 =

(
A B

B C

)
,

where A, B and C are p × p matrices, we can rewrite (I.4) as

φ(m; μ̃, �̃) = 1

(2π)p|�̃|1/2
exp

{
−1

2
Z′
}

with

Z′ = mT
1 Am1 − 2mT

1 Aμ̃1 + μ̃T
1 Aμ̃1 + mT

2 Cm2 − 2mT
2 Cμ̃2 + μ̃T

2 Cμ̃u+
2mT

2 Bm1 − 2mT
2 Bμ1 − 2mT

1 Bμ2 + 2μT
2 Bμ1. (I.5)

Equating the second-order terms in (I.3) and (I.5), we get

A = �−1
1 + H , C = �−1

2 + H , B = −H .

Equating the first-order terms, we get

�−1
1 μ1 = Aμ̃1 + Bμ̃2 = (�−1

1 + H )μ̃1 − Hμ̃2, (I.6a)

�−1
2 μ2 = Bμ̃1 + Cμ̃2 = −Hμ̃1 + (�−1

2 + H )μ̃2. (I.6b)

Multiplying both sides of (I.6a) and (I.6b) by H
−1

, we get

(H
−1

�−1
1 + Ip)μ̃1 − μ̃2 = H

−1
�−1

1 μ1 (I.7)

−μ̃1 + (H
−1

�−1
2 + Ip)μ̃2 = H

−1
�−1

2 μ2, (I.8)

which can be written in matrix form(
H

−1
�−1

1 + Ip −Ip

−Ip H
−1

�−1
2 + Ip

)(
μ̃1
μ̃2

)
=
(

H
−1

�−1
1 0

0 H
−1

�−1
2

)(
μ1
μ2

)
,

from which we obtain (36).
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Finally, the degree of conflict between GRFV’s X̃1 ∼ Ñ(μ1, �1, H 1) and X̃2 ∼ Ñ(μ2, �2, H 2) is

κ = 1 − (P1 × P2)(�̃
∗) = 1 −

∫
R2p

f (m1,m2)F̃ (m1,m2)dm1dm2.

Taking the ratio of (I.2) to (I.4), we get∫
R2p

f (m1,m2)F̃ (m1,m2)dm1dm2 =
√

|�̃|
|�1||�2| exp

{
−1

2

[
μT

1 �−1
1 μ1 + μT

2 �−1
2 μ2 − μ̃T �̃

−1
μ̃
]}

.

Appendix J. Proof of Lemma 3

The membership function of the projection of fuzzy vector GFV(m, H ) on �1 is

ϕ(x1) = max
x2

exp

(
−1

2
(x − m)T H (x − m)

)
= exp

(
−1

2
min
x2

Z

)
, (J.1)

with Z = (x − m)T H (x − m). Now,

Z = (x1 − m1,x2 − m2)

(
H 11 H 12
H 21 H 22

)(
x1 − m1
x2 − m2

)
(J.2a)

= (x1 − m1)
T H 11(x1 − m1) + (x2 − m2)

T H 21(x1 − m1)+ (J.2b)

(x1 − m1)
T H 12(x2 − m2) + (x2 − m2)

T H 22(x2 − m2).

Using H 21 = H T
12, the gradient of Z with respect to x2 can be written as

∂Z

∂x2
= 2H 21(x1 − m1) + 2H 22(x2 − m2).

Setting ∂Z
∂x2

= 0, and assuming H 22 to be nonsingular, we get

(x2 − m2) = −H−1
22 H 21(x1 − m1). (J.3)

Replacing (x2 − m2) by its expression (J.3) in (J.2) and using (J.1), we finally get

ϕ(x1) = exp

(
−1

2
(x1 − m1)

T H ′
11(x1 − m1)

)
,

with

H ′
11 = H 11 − H 12H

−1
22 H 21.
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