Dempster-Shafer theory

Introduction, connections with rough sets and application to clustering

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) http://www.hds.utc.fr/~tdenoeux

> RSKT 2014 Shanghai, China October 25, 2014

1/48

= 990

Theories of uncertainty

Focus of this talk

- Dempster-Shafer (DS) theory (evidence theory, theory of belief functions):
 - A formal framework for reasoning with partial (uncertain, imprecise) information.
 - Has been applied to statistical inference, expert systems, information fusion, classification, clustering, etc.
- Purpose of these talk:
 - Brief introduction or reminder on DS theory, emphasizing some connections with rough sets;
 - Review the application of belief functions to clustering, showing some connections with fuzzy and rough approaches.

Outline

Dempster-Shafer theory

- Mass function
- Belief and plausibility functions
- Connection with rough sets
- 2 Application to clustering
 - Evidential partition
 - Evidential c-means

4/ 48

<u>diasyc</u> ୬९୯

Mass function Belief and plausibility functions Connection with rough sets

Outline

Dempster-Shafer theory

Mass function

- Belief and plausibility functions
- Connection with rough sets

Application to clustering
 Evidential partition

• Evidential c-means

5/48

<u>ieudiasyc</u> I≡ ∽়⊲⇔

Mass function Belief and plausibility functions Connection with rough sets

Mass function

- Let Ω be a finite set called a frame of discernment.
- A mass function is a function $m: \mathbf{2}^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- The subsets A of Ω such that m(A) ≠ 0 are called the focal sets of Ω.
- If $m(\emptyset) = 0$, *m* is said to be normalized (usually assumed).

Mass function Belief and plausibility functions Connection with rough sets

Source

itc

- A mass function is usually induced by a source, defined a 4-tuple (S, 2^S, P, Γ), where
 - S is a finite set;
 - *P* is a probability measure on $(S, 2^S)$;
 - Γ is a multi-valued-mapping from S to 2^{Ω} .

• Γ carries *P* from *S* to 2^{Ω} : for all $A \subseteq \Omega$,

Mass function Belief and plausibility functions Connection with rough sets

Interpretation

- Ω is a set of possible states of the world, about which we collect some evidence. Let ω be the true state.
- *S* is a set of interpretations of the evidence.
- If s ∈ S holds, we know that ω belongs to the subset Γ(s) of Ω, and nothing more.
- m(A) is then the probability of knowing only that $\omega \in A$.

 \sim U (Ω) is the probability of knowing nothing.

Mass function Belief and plausibility functions Connection with rough sets

Example

- A murder has been committed. There are three suspects: $\Omega = \{Peter, John, Mary\}.$
- A witness saw the murderer going away, but he is short-sighted and he only saw that it was a man. We know that the witness is drunk 20 % of the time.

• We have $\Gamma(\neg drunk) = \{Peter, John\}$ and $\Gamma(drunk) = \Omega$, hence

$$m(\{\text{Peter, John}\}) = 0.8, \quad m(\Omega) = 0.2$$

5990

Mass function Belief and plausibility functions Connection with rough sets

Special cases

- A mass function *m* is said to be:
 - logical if it has only one focal set; it is then equivalent to a set.
 - Bayesian if all focal sets are singletons; it is equivalent to a probability distribution.
- A mass function can thus be seen as
 - a generalized set, or as
 - a generalized probability distribution.

1

Mass function Belief and plausibility functions Connection with rough sets

Outline

Dempster-Shafer theory

- Mass function
- Belief and plausibility functions
- Connection with rough sets

Application to clustering
 Evidential partition

• Evidential c-means

11/48

<u>ieudiasyc</u> I≡ ∽়⊲⇔

Mass function Belief and plausibility functions Connection with rough sets

Belief function Degrees of support and consistency

- Let m be a normalized mass function on Ω induced by a source $(S, 2^S, P, \Gamma).$
- Let A be a subset of Ω.
- One may ask:

1 To what extent does the evidence support the proposition $\omega \in A$?

To what extent is the evidence consistent with this proposition?

Mass function Belief and plausibility functions Connection with rough sets

 For any A ⊆ Ω, the probability that the evidence implies (supports) the proposition ω ∈ A is

$$Bel(A) = P(\{s \in S | \Gamma(s) \subseteq A\}) = \sum_{B \subseteq A} m(B).$$

Mass function Belief and plausibility functions Connection with rough sets

Function Bel : 2^Ω → [0, 1] is a completely monotone capacity: it verifies Bel(Ø) = 0, Bel(Ω) = 1 and

$$Bel\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1,...,k\}} (-1)^{|I|+1} Bel\left(\bigcap_{i \in I} A_{i}\right).$$

for any $k \ge 2$ and for any family A_1, \ldots, A_k in 2^{Ω} .

• Conversely, to any completely monotone capacity *Bel* corresponds a unique mass function *m* such that:

$$m(A) = \sum_{\emptyset
eq B \subset A} (-1)^{|A| - |B|} Bel(B), \quad \forall A \subseteq \Omega.$$

• • • • • • • • • • • •

= 200

Mass function Belief and plausibility functions Connection with rough sets

Plausibility function

 The probability that the evidence is consistent with (does not contradict) the proposition $\omega \in A$

$${\it Pl}({\it A})={\it P}(\{{\it s}\in{\it S}|{\scriptstyle \Gamma}({\it s})\cap{\it A}
eq\emptyset\})={\it 1}-{\it Bel}(\overline{{\it A}})$$

• The function $PI : A \rightarrow PI(A)$ is called a plausibility function. itc

15/48

1

heudiasyc = 990

Special cases

- If *m* is Bayesian, then *Bel* = *Pl* and it is a probability measure.
- If the focal sets of *m* are nested (A₁ ⊂ A₂ ⊂ ... ⊂ A_n), *m* is said to be consonant. PI is then a possibility measure:

$$PI(A \cup B) = \max(PI(A), PI(B))$$

for all $A, B \subseteq \Omega$ and *Bel* is the dual necessity measure.

 DS theory thus subsumes both probability theory and possibility theory.

Summary

- A probability measure is precise, in so far as it represents the uncertainty of the proposition ω ∈ A by a single number P(A).
- In contrast, a mass function is imprecise (it assigns probabilities to subsets).
- As a result, in DS theory, the uncertainty about a subset A is represented by two numbers (Bel(A), Pl(A)), with Bel(A) ≤ Pl(A).
- This model is thus reminiscent of rough set theory, in which a set is approximated by lower and upper approximations, due to coarseness of a knowledge base.

• • • • • • • • • • • •

= 900

Mass function Belief and plausibility functions Connection with rough sets

Outline

Dempster-Shafer theory

- Mass function
- Belief and plausibility functions
- Connection with rough sets

Application to clustering
 Evidential partition

Evidential c-means

<u>neudiasyc</u> I≡ ∽∝∾

Mass function Belief and plausibility functions Connection with rough sets

Interval rough sets

Belief and plausibility functions induced by an interval relation

Let S and Ω be two finite sets and R ⊆ S × Ω. R is called an interval relation (Yao and Lingras, 1998) if

$$\Gamma_R(\boldsymbol{s}) = \{\omega \in \Omega | (\boldsymbol{s}, \omega) \in \boldsymbol{R}\} \neq \emptyset,$$

for all $s \in S$.

 Any A ⊆ Ω may be approximated in S by an interval rough set defined by:

> $\underline{R}(A) = \{ s \in S | \Gamma_R(s) \subseteq A \}$ $\overline{R}(A) = \{ s \in S | \Gamma_R(s) \cap A \neq \emptyset \}$

Let *P* be a probability measure on (*S*, 2^S). Then, functions *Bel* and *Pl* defined, for all *A* ⊆ Ω, by

$$Bel(A) = P(\underline{R}(A)), \quad Pl(A) = P(\overline{R}(A))$$

Utc belief and plausibility functions.

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Mass function Belief and plausibility functions Connection with rough sets

Interval rough sets

Equivalence with belief functions

Conversely, let *m* be a normalized mass function on a finite set Ω, induced by a source (S, 2^S, P, Γ). The relation

$$oldsymbol{R} = \{(oldsymbol{s}, \omega) \in oldsymbol{S} imes \Omega | \omega \in \Gamma(oldsymbol{s})\}$$

is an interval relation, and

$$Bel(A) = P(\underline{R}(A)), \quad Pl(A) = P(\overline{R}(A)), \quad \forall A \subseteq \Omega.$$

Mass function Belief and plausibility functions Connection with rough sets

Rough mass functions

- Let Ω be the frame of discernment and let *R* be an equivalence relation on Ω defining a partition of Ω.
- Any A ⊆ Ω may be approximated by a (Pawlak) rough set defined by:

 $\underline{R}(A) = \{ \omega \in \Omega | [\omega]_R \subseteq A \}$

 $\overline{R}(A) = \{ \omega \in \Omega | [\omega]_R \cap A \neq \emptyset \}$

- Given a mass function *m* with focal sets A_1, \ldots, A_n , we can define:
 - Its lower approximation \underline{m} with focal sets $\underline{R}(A_1), \ldots, \underline{R}(A_n)$;
 - Its upper approximation \overline{m} with focal sets $\overline{R}(A_1), \ldots, \overline{R}(A_n)$.
- The pair (<u>m</u>, <u>m</u>) may be called a rough mass function. This notion extends that of rough set.

Remark: these notions was introduced by Shafer (1976) with a

 Utc different terminology, before the introduction of rough sets!
 heudiasyc

Evidential partition Evidential *c*-means

Outline

Dempster-Shafer theory

- Mass function
- Belief and plausibility functions
- Connection with rough sets

Application to clustering
 Evidential partition

Evidential c-means

Evidential partition Evidential *c*-means

Clustering

- Attribute vectors x₁,..., x_n (attribute data) or
- Dissimilarities (proximity data).
- Goal: find a meaningful structure in the data set, usually a partition into *c* crisp or fuzzy subsets.
- Belief functions may allow us to express richer information about the data structure.

1 ≤ √
23/48

Different clustering concepts

- Hard clustering: each object belongs to one and only one group. Group membership is expressed by binary variables u_{ik} such that $u_{ik} = 1$ if object *i* belongs to group *k* and $u_{ik} = 0$ otherwise.
- Fuzzy clustering: each object has a degree of membership $u_{ik} \in [0, 1]$ to each group, with $\sum_{k=1}^{c} u_{ik} = 1$.
- Possibilistic clustering: the condition $\sum_{k=1}^{c} u_{ik} = 1$ is relaxed. Each number u_{ik} can be interpreted as a degree of possibility that object *i* belongs to cluster *k*.
- Rough clustering: the membership of object *i* to cluster *k* is described by a pair $(\underline{u}_{ik}, \overline{u}_{ik}) \in \{0, 1\}^2$ indicating its membership to the lower and upper approximations of cluster *k*.

イロト イポト イヨト イヨト

Evidential clustering

- In Evidential clustering, the group membership of each object is described by a (not necessarily normalized) mass function m_i over Ω.
- Example:

Evidential partition

	Ø	$\{\omega_1\}$	$\{\omega_2\}$	$\{\omega_1, \omega_2\}$
m_3	0	1	0	0
m_5	0	0.5	0	0.5
m_6	0	0	0	1
<i>m</i> ₁₂	0.9	0	0.1	0

Relationship with other clustering structures

Evidential partition Evidential *c*-means

Rough clustering as a special case

From evidential to hard/fuzzy/possibilistic clustering

- Let (m_1, \ldots, m_n) be an evidential partition.
- Induced hard partition:

$$u_{ik} = \begin{cases} 1 & \text{if } Pl_i(\{\omega_k\}) = \max_{\ell} Pl_i(\{\omega_\ell\}) \\ 0 & \text{otherwise.} \end{cases}$$

• Induced fuzzy partition:

$$u_{ik} = \frac{PI_i(\{\omega_k\})}{\sum_{\ell} PI_i(\{\omega_\ell\})}$$

• Induced possibilistic partition:

$$u_{ik} = Pl_i(\{\omega_k\})$$

• • • • • • • • • • • •

From evidential to rough clustering

- Let (m_1, \ldots, m_n) be an evidential partition.
- For each *i*, let $A_i \subseteq \Omega$ such that

$$m_i(A_i) = \max_{A \subseteq \Omega} m_i(A).$$

• Lower approximations:

$$\underline{\mu}_{ik} = egin{cases} 1 & ext{if } A_i = \{\omega_k\} \ 0 & ext{otherwise}. \end{cases}$$

• Upper approximations:

$$\overline{u}_{ik} = \begin{cases} 1 & \text{if } \omega_k \in A_i \\ 0 & \text{otherwise.} \end{cases}$$

= 200

Algorithms

- EVCLUS (Denoeux and Masson, 2004):
 - Proximity (possibly non metric) data,
 - Multidimensional scaling approach.
- Evidential *c*-means (ECM): (Masson and Denoeux, 2008):
 - Attribute data,
 - HCM, FCM family (alternate optimization of a cost function).
- Relational Evidential *c*-means (RECM): (Masson and Denoeux, 2009): ECM for proximity data.
- Constrained Evidential *c*-means (CECM) (Antoine et al., 2011): ECM with pairwise constraints.
- Constrained EVCLUS (CEVCLUS) (Antoine et al., 2014): EVCLUS with pairwise constraints.

• • • • • • • • • • • •

Outline

Dempster-Shafer theory

- Mass function
- Belief and plausibility functions
- Connection with rough sets

Evidential c-means

31/48

Principle

- Problem: generate an evidential partition $M = (m_1, ..., m_n)$ from attribute data $X = (\mathbf{x}_1, ..., \mathbf{x}_n), \mathbf{x}_i \in \mathbb{R}^p$.
- Generalization of hard and fuzzy *c*-means algorithms:
 - Each class represented by a prototype;
 - Alternate optimization of a cost function with respect to the prototypes and to the evidential partition.

ъ

Fuzzy c-means (FCM)

Minimize

$$J_{ ext{FCM}}(U,V) = \sum_{i=1}^n \sum_{k=1}^c u_{ik}^eta d_{ik}^2$$

with $d_{ik} = ||\mathbf{x}_i - \mathbf{v}_k||$ under the constraints $\sum_k u_{ik} = 1, \forall i$.

Alternate optimization algorithm:

$$\mathbf{v}_{k} = \frac{\sum_{i=1}^{n} u_{ik}^{\beta} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ik}^{\beta}} \quad \forall k = 1, \dots, c,$$
$$u_{ik} = \frac{d_{ik}^{-2/(\beta-1)}}{\sum_{\ell=1}^{c} d_{\ell\ell}^{-2/(\beta-1)}}.$$

イロト イポト イヨト イヨト

l = ∽ < ↔ 33/48

Evidential partition Evidential c-means

ECM algorithm

- Each class ω_k represented by a prototype \mathbf{v}_k .
- Basic ideas:

 - The distance to the empty set is defined as a fixed value δ .

1

ECM algorithm Objective criterion

• Criterion to be minimized:

$$J_{\text{ECM}}(M,V) = \sum_{i=1}^{n} \sum_{\{j/A_j \neq \emptyset, A_j \subseteq \Omega\}} |A_j|^{\alpha} m_{ij}^{\beta} d_{ij}^2 + \sum_{i=1}^{n} \delta^2 m_{i\emptyset}^{\beta},$$

- Parameters:
 - α controls the specificity of mass functions;
 - β controls the hardness of the evidential partition;
 - δ controls the amount of data considered as outliers.
- J_{ECM}(M, V) can be iteratively minimized with respect to M and V using an alternate optimization scheme.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Evidential partition Evidential *c*-means

Butterfly dataset

36/48

2

heudiasyc

= 990

Evidential partition Evidential c-means

4-class data set

37/48

heudiasyc

Evidential partition Evidential *c*-means

4-class data set Hard evidential partition

10 8 \mathbf{X} 2 -4 -6

 \times

2

4

0

-8

-8

-6

-2

-4

6

8

10

< ロ ト < 回 ト < 三 ト < 三</p>

×

38/48

2

heudiasyc

= 990

Evidential partition Evidential c-means

4-class data set

Lower approximations

Evidential partition Evidential *c*-means

4-class data set

Upper approximations

Evidential partition Evidential c-means

Brain data Problem

(a)

(b)

- Magnetic resonance imaging of pathological brain, 2 sets of parameters.
- Three regions: normal tissue (Norm), ventricles + cerebrospinal fluid (CSF/V) and pathology (Path).

Image 1 highlights CSF/V (dark), image 2 highlights pathology ... heudiasyc heudiasyc

Evidential partition Evidential *c*-means

Brain data Results in grey level space

Evidential partition Evidential c-means

Brain data Image segmentation

Pathology (left); CSF and ventricles (center); normal brain tissues (right). The lower approximations of the clusters are represented by light grey areas, the upper approximations by the union of light and dark grey areas.

Determining the number of groups

- If a proper number of classes is chosen, the prototypes will cover the clusters and most of the mass will be allocated to singletons of Ω.
- On the contrary, if *c* is too small or too high, the mass will be distributed to subsets with higher cardinality or to Ø.
- Nonspecificity of a mass function:

$$\mathcal{N}(m) \triangleq \sum_{A \in 2^{\Omega} \setminus \emptyset} m(A) \log_2 |A| + m(\emptyset) \log_2 |\Omega|,$$

• Proposed validity index of an evidential partition:

$$N^{*}(c) \triangleq \frac{1}{n \log_{2}(c)} \sum_{i=1}^{n} \left[\sum_{A \in 2^{\Omega} \setminus \emptyset} m_{i}(A) \log_{2} |A| + m_{i}(\emptyset) \log_{2}(c) \right],$$

$$\lim_{\substack{i \in n \text{ browspin}}} \lim_{\substack{i \in 2^{\Omega} \setminus \emptyset}} m_{i}(A) \log_{2} |A| + m_{i}(\emptyset) \log_{2}(c) \right],$$

$$\lim_{\substack{i \in n \text{ browspin}}} \lim_{\substack{i \in 2^{\Omega} \setminus \emptyset}} \lim_{\substack{i \in 2^{\Omega} \setminus \emptyset}} m_{i}(A) \log_{2} |A| + m_{i}(\emptyset) \log_{2}(c) \right],$$

$$\lim_{\substack{i \in 2^{\Omega} \setminus \emptyset}} \lim_{\substack{i \in 2^$$

Evidential partition Evidential *c*-means

Determining the number of groups

Result with the 4-class dataset

- Dempster-Shafer theory and Rough set theory have different agendas:
 - DS theory formalizes reasoning with uncertainty;
 - Rough set theory is a tool for knowledge extraction from databases.
- However, they are both concerned with coarseness of representation, and they have strong connections from a formal point of view:
 - A belief function Ω can be seen as being generated from a probability measure on some underlying space S and an interval relation between S and Ω.
 - The notions of lower and upper approximations of a set induced by an equivalence relation can be extended to mass functions.

- When applied to clustering, DS theory leads to the notion of evidential partition, which generalizes most previous clustering structures, including rough clustering.
- Several algorithms have been proposed to generate an evidential partition from proximity or attribute data:
 - EVCLUS;
 - Evidential *c*-means and its variants (proximity data, optimized distance measure, etc.)
- These algorithms may also be used to generate a rough clustering structure.
- A detailed comparison with, e.g., the rough *c*-means algorithm (Lingras and West, 2004) remains to be done (see a first approach in Joshi and Lingras, 2012).

< D > < P > < D > <</pre>

References

cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux and M.-H. Masson. EVCLUS: Evidential Clustering of Proximity Data. IEEE Transactions on SMC B, 34(1):95-109, 2004.

M.-H. Masson and T. Denœux. ECM: An evidential version of the fuzzy c-means algorithm. Pattern Recognition, 41(4):1384-1397, 2008.

itc

V. Antoine, B. Quost, M.-H. Masson and T. Denoeux. CECM: Constrained Evidential C-Means algorithm. Computational Statistics and Data Analysis, 56(4):894-914, 2012.

B. Lelandais, S. Ruan, T. Denoeux, P. Vera, I. Gardin. Fusion of multi-tracer PET images for Dose Painting. Medical Image Analysis, 18(7):1247-1259, 2014.