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We have already seen that the definition of a frame of discernment is, to
some extent, a matter of convention, as its granularity is often a matter of
choice. For instance, the income of a household can be expressed in a real
interval [0, rmax], or in a discrete frame defined, e.g., by the quartiles or the
deciles. Different sources of information may provide evidence represented
in frames of different granularities. Also, when several variables are defined,
we may receive evidence about different subsets of variables, and we may
wish to express the result of the analysis according to some specific subset
containing the variables of interest. In evidential reasoning with uncertain
information, we thus have to express belief functions in different frames with
varying granularities.

1 Varying the granularity of the frame of discern-
ment

Let Ω and Θ be two frames of discernment. We say that Ω is a refinement
of a Θ (or, equivalently, Θ is a coarsening of Ω) if elements of Ω can be
obtained by splitting some or all of the elements of Θ (Figure 1). Formally,
Ω is a refinement of a frame Θ iff there is a mapping ρ : 2Θ → 2Ω such that:

• {ρ({θ}), θ ∈ Θ} ⊆ 2Ω is a partition of Ω, and

• For all A ⊆ Ω, ρ(A) =
⋃
θ∈A ρ({θ}).

Let mΘ be a mass function representing some piece of evidence, and let
Ω be a refinement of Θ. We can carry mΘ from Θ to Ω by transferring each
mass mΘ(A) to ρ(A). The resulting mass function is denoted by mΘ↑Ω and
is called the vacuous extension of mΘ in Ω: for all B ⊆ Ω,

mΘ↑Ω(B) =

{
mΘ(A) if B = ρ(A), A ⊆ Ω,

0 otherwise.
(1)

Conversely, given a mass function mΩ on Ω, how to express it in the
coarser frame Θ? Here, the solution is not so obvious because the mapping
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Figure 1: Refinement of a frame of discernment.

ρ is not invertible. However, we can define two generalized inverses of ρ as

ρ−1(B) = {θ ∈ Θ|ρ({θ}) ⊆ B} (2)

ρ−1(B) = {θ ∈ Θ|ρ({θ}) ∩B 6= ∅}, (3)

for all subset B of Ω. The subsets ρ−1(B) and ρ−1(B) are called, respectively,
the inner and outer reductions of B. A mass function mΩ can then be
expressed in Θ by transferring each mass mΩ(B) to the outer reduction
of B. The resulting mass function is denoted by mΩ↓Θ and is called the
restriction of mΩ in Θ: for all subset A of Θ,

mΩ↓Θ(A) =
∑

ρ−1(B)=A

mΩ(B). (4)

We may observe that, in the process of carrying mΩ from Ω to the coarser
frame Θ, some information may be lost. In particular, if mΩ↓Θ is carried
back to Ω, we will not recover mΩ in general. The resulting mass function
will usually be less informative than mΩ, because

ρ[ρ−1(B)] ⊇ B (5)

for any subset B of Ω, and the inclusion may be strict.

2 Special case of product spaces

2.1 Marginalization and vacuous extension

Let us now assume that we have two frames ΩX and ΩY related to two
different questions about, e.g., the values of two unknown variables X and
Y . Let ΩX×ΩY be the product space. It is a refinement of both ΩX and ΩY .
For instance, we can define the following mapping ρ from 2ΩX to 2ΩX×ΩY :

ρ(B) = B ×Θ, (6)

for all B ⊆ ΩX . The set ρ(B) is called the cylindrical extension of B in
ΩX × ΩY and is denoted by B ↑ ΩX × ΩY .
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Figure 2: Vacuous extension.

The vacuous extension of a mass function mX from ΩX to ΩX × ΩY is
obtained by transferring each mass mX(B) for any subset B of ΩX to the
cylindrical extension of B (Figure 2):

mX↑XY (A) =

{
mX(B) if A = B × ΩY

0 otherwise.
(7)

Conversely, let mXY be a joint mass function on the product space ΩX×
ΩY . Typically, such a mass function represents partial knowledge about the
relation between variablesX and Y . Now, assume that we are only interested
in evidence about ΩX . We then have to compute the restriction of mXY to
the coarser frame ΩX :

mXY ↓X(B) =
∑

A↓ΩX=B

mXY (A), (8)

where A ↓ ΩX denotes the projection of B on ΩX :

A ↓ ΩX = {x ∈ ΩX |∃y ∈ ΩY , (x, y) ∈ A}. (9)

The mass functions mXY ↓X and mXY ↓Y are called the marginals of mXY

and the operation that computes the marginals from a joint mass functions
is called marginalization (Figure 3). We can observe that this operation
extends both set projection and marginalization of joint probability distri-
butions.

2.2 Application to evidential reasoning

Most problems in engineering or economics can be modeled by defining vari-
ables and relations between variables. Based on partial information about
some variables, the problem is then to infer the values of variables of interest.
This problem can be cast in the belief function framework, as relations are
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Figure 3: Marginalization.

sets and can thus be represented by joint mass functions. The three fun-
damental operations in evidential reasoning are Dempster’s rule, marginal-
ization and vacuous extension. For instance, assume for simplicity that we
have only two variables X and Y and we have:

• Partial knowledge of X formalized as a mass function mX , and

• A joint mass function mXY representing an uncertain relation between
X and Y .

These two pieces of evidence can be combined by vacuously extendingmX to
ΩXY and combining mX↑XY with mXY . The combined joint mass function
can then be marginalized on ΩY . Formally,

mY =
(
mX↑XY ⊕mXY

)↓Y
. (10)

We can remark that these operations become infeasible with many variables
and large frames of discernment, but efficient algorithms exist to carry out
the operations in frames of minimal dimensions [1].
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