Random fuzzy sets and belief functions Application to machine learning

Thierry Denœux

Université de technologie de Compiègne, Compiègne, France Institut Universitaire de France, Paris, France

https://www.hds.utc.fr/~tdenoeux

SIPTA Seminar May 24, 2023

Two models of uncertainty

• Modeling uncertainty: a fundamental problem in AI

- Representation of uncertain/imperfect knowledge
- Reasoning and decision-making with uncertainty
- Quantification of prediction uncertainty in machine learning
- Etc.
- Two of the most widely used models:
 - Dempster-Shafer (DS) theory = belief functions + Dempster's rule (based on random sets, generalizes Bayesian probability theory)
 - Possibility theory = possibility distributions + triangular norms (based on fuzzy sets)
- Claims:
 - These two theories are distinct
 - They are needed simultaneously in some applications
 - \blacktriangleright \rightarrow We need to embed them into a more general framework

The case of statistical inference

- Shafer (1976) proposed to interpret the relative likelihood as defining as a consonant belief function (mathematically equivalent to a possibility distribution).
- Combining the likelihood-based belief function with a Bayesian prior by Dempster's rule yields the Bayesian posterior.
- However, relative likelihood functions from independent samples must be combined by the normalized product t-norm (possibility theory).
- To make this approach consistent, we need a more general mathematical framework encompassing both possibility and DS theories.

Contents of this talk

- Introduction of a new model of uncertainty based on random fuzzy sets (RFSs) + a new combination rule generalizing both Dempster's rule and the normalized product intersection of possibility theory
- ② Definition of practical and easily combinable RFS models allowing us to represent uncertainty on continuous variables (in ℝ, [a, b], ℝ^p, probability simplex, etc.)
- Application to machine learning: neural network model for regression quantifying prediction uncertainty by RFSs

Random fuzzy sets

- Basic definitions
- Combination

2 Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

Application to regression

- Neural network model
- Learning
- Experimental results

A (1) > A (1) > A

Random fuzzy sets

- Basic definitions
- Combination

2 Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Random fuzzy sets

- Basic definitions
- Combination

Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Random fuzzy set

A random fuzzy set (RFS) is a mapping \widetilde{X} from Ω to the set $[0,1]^{\Theta}$ of fuzzy subsets of Θ , such that for any $\alpha \in [0,1]$, the mapping ${}^{\alpha}\widetilde{X}$ from Ω to 2^{Θ} defined as

$${}^{lpha}\widetilde{X}(\omega)={}^{lpha}[\widetilde{X}(\omega)]=\{ heta\in\Theta:\widetilde{X}(\omega)(heta)\geqlpha\}$$

is Σ_{Ω} - Σ_{Θ} strongly measurable (i.e., $\forall B \in \Sigma_{\Theta}, \{\omega \in \Omega : {}^{\alpha}[\widetilde{X}(\omega)] \cap B \neq \emptyset\} \in \Sigma_{\Omega}$). (Couso & Sánchez, 2011)

(日) (同) (日) (日)

Epistemic random fuzzy sets

• We use RFSs as a model of unreliable and fuzzy evidence¹:

- Θ is the domain of an uncertain variable/quantity heta
- Ω is a set of interpretations of a piece of evidence about heta
- If $\omega \in \Omega$ holds, we know that " θ is $\widetilde{X}(\omega)$ ", i.e., θ is constrained by the possibility distribution $\widetilde{X}(\omega)$.
- $\bullet\,$ Example: a witness tells us that "John is tall", and this witness is 50% reliable
 - $\Omega = {\text{rel}, \neg \text{rel}}, p(\text{rel}) = 0.5$
 - θ = John's height in meters, Θ = [0, 2.5]
 - $\widetilde{X}(\text{rel}) = \text{tall}$ (a fuzzy subset of Θ), $\widetilde{X}(\neg \text{rel}) = \Theta$
- This interpretation is different from previous interpretations of RFSs as
 - A model of random mechanism for generating fuzzy data (Puri & Ralescu, Gil)
 - Imperfect knowledge of a random variable (Kruse & Meyer, Couso & Sánchez)

¹T. Denœux. Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence. *Fuzzy Sets and Systems* 424:63–91, 2021 \sim \geq \sim

Belief and plausibility functions

• If interpretation $\omega \in \Omega$ holds, the degrees of possibility and necessity that θ belongs to $B \in \Sigma_{\Theta}$ are

$$\Pi_{\widetilde{X}(\omega)}(B) = \sup_{\theta \in B} \widetilde{X}(\omega)(\theta), \quad N_{\widetilde{X}(\omega)}(B) = 1 - \Pi_{\widetilde{X}(\omega)}(B^c)$$

• The expected necessity and possibility degrees (Zadeh, 1979) are

$$Bel_{\widetilde{X}}(B) = \int_{\Omega} N_{\widetilde{X}(\omega)}(B) dP(\omega), \quad Pl_{\widetilde{X}}(B) = \int_{\Omega} \Pi_{\widetilde{X}(\omega)}(B) dP(\omega).$$

- Function $Bel_{\tilde{X}}$ is a completely monotone capacity (a belief function), and $Pl_{\tilde{X}}$ is the dual plausibility function (Zadeh, 1979; Couso & Sánchez, 2011).
- A RFS is thus (like a random set) a way of specifying a belief function. The RFS model is more flexible.

イロト イ団ト イヨト イヨト

Random fuzzy sets

- Basic definitions
- Combination

2) Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Combination of independent RFSs

- We consider two RFSs $\widetilde{X}_1 : \Omega_1 \to [0,1]^{\Theta}$ and $\widetilde{X}_2 : \Omega_2 \to [0,1]^{\Theta}$ representing independent pieces of evidence.
- if $\omega_1 \in \Omega_1$ and $\omega_2 \in \Omega_2$ both hold, we can deduce " θ is $\widetilde{X}_1(\omega_1) \cap \widetilde{X}_2(\omega_2)$ ", where \cap denotes fuzzy intersection.
- We need (1) a definition of fuzzy intersection and (2) a way to handle possible conflict (inconsistency) between the two sources.

Thierry Denœux (UTC/IUF)

Combination of independent RFSs (continued)

• Fuzzy intersection: the product t-norm is the most suitable for combining fuzzy information from independent sources. The normalized product intersection of fuzzy sets/possibility distributions (is defined as

$$(\widetilde{F} \odot \widetilde{G})(\theta) = \begin{cases} \frac{\widetilde{F}(\theta)\widetilde{G}(\theta)}{\sup_{\Theta}(\widetilde{F} \cdot \widetilde{G})} & \text{if } \sup_{\Theta}(\widetilde{F} \cdot \widetilde{G}) > 0\\ 0 & \text{otherwise} \end{cases}$$

is associative.

• With fuzzy sets, conflict is a matter of degree. We define the fuzzy set of consistent pairs of interpretations as

$$\widetilde{\Theta}^*(\omega_1,\omega_2) = \sup_{\Theta} \left(\widetilde{X}_1(\omega_1) \cdot \widetilde{X}_2(\omega_2) \right)$$

The probability measure on $\Omega_1 \times \Omega_2$ is then obtained by conditioning $P_1 \times P_2$ on the fuzzy event $\widetilde{\Theta}^*$. This process is called soft normalization.

(a)

Product-intersection rule

• The combined RFS

$$egin{array}{rcl} \widetilde{X}_{12}:&\Omega_1 imes\Omega_2& o&[0,1]^\Theta\ &(\omega_1,\omega_2)&\mapsto&\widetilde{X}_1(\omega_1)\odot\widetilde{X}_2(\omega_2) \end{array}$$

associated with the probability measure $(P_1 \times P_2)(\cdot | \widetilde{\Theta}^*)$ is called the product intersection² of \widetilde{X}_1 and \widetilde{X}_2 (with soft normalization). We write $\widetilde{X}_{12} = \widetilde{X}_1 \oplus \widetilde{X}_2$.

- Properties:
 - Commutativity, associativity
 - Generalization of Dempster's rule and the normalized product intersection of possibility distributions

$$\mathsf{Pl}_{\widetilde{X}_1 \oplus \widetilde{X}_2}(\{\theta\}) = c \, \mathsf{Pl}_{\widetilde{X}_1}(\{\theta\}) \mathsf{Pl}_{\widetilde{X}_2}(\{\theta\})$$

where *c* does not depend on θ .

²T. Denœux. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. *Fuzzy Sets and Systems*:453:1=36, 2023 \equiv \sim 0.

General picture

3

イロト イポト イヨト イヨト

Random fuzzy sets

- Basic definitions
- Combination

Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Motivation

- In probability theory and statistics, the Gaussian probability distribution is widely used because it allows for simple calculations and easy manipulation (conditioning, marginalization, etc.)
- Until now, a similar workable model has been missing in DS theory to represent uncertainty on continuous variables (possibility distributions or p-boxes are not closed under Dempster's rule)
- Gaussian random fuzzy numbers (GRFNs) and extensions are simple models of RFSs making it possible to define families of belief functions on ℝ, ℝ^p, [a, b], etc., which can be easily combined by the product-intersection operator ⊕.

Gaussian random fuzzy numbers

Outline

Random fuzzy sets

- Basic definitions
- Combination

Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Gaussian fuzzy numbers

• A Gaussian fuzzy number (GFN) is a normal fuzzy subset of ${\mathbb R}$ with membership function

$$\varphi(x; m, h) = \exp\left(-\frac{h}{2}(x-m)^2\right),$$

where $m \in \mathbb{R}$ is the mode and $h \in [0, +\infty]$ is the precision. It is denoted by GFN(m, h).

• Property: $\mathsf{GFN}(m_1, h_1) \odot \mathsf{GFN}(m_2, h_2) = \mathsf{GFN}(m_{12}, h_{12})$ with

$$m_{12} = rac{h_1 m_1 + h_2 m_2}{h_1 + h_2}$$
 and $h_{12} = h_1 + h_2$.

Gaussian random fuzzy numbers

- A Gaussian random fuzzy number (GRFN)³ is a GFN whose mode is a Gaussian random variable (GRV): it can be seen as an uncertain GFN or as a fuzzy GRV.
- Formally: a GRFN with mean μ , variance σ^2 and precision h is a RFS $\widetilde{X} : \Omega \to [0, 1]^{\mathbb{R}}$ defined as $\widetilde{X}(\omega) = \operatorname{GFN}(M(\omega), h)$ where $M \sim N(\mu, \sigma^2)$. We write $\widetilde{X} \sim \widetilde{N}(\mu, \sigma^2, h)$.

³T. Denœux. Fuzzy Sets and Systems 453:1–36, 2023

A D > A B > A B >

Special cases

- If h = 0, $\widetilde{X}(\omega) = \mathbb{R}$ for all ω : \widetilde{X} induces the vacuous belief function on \mathbb{R} ; it represents complete ignorance
- If $h = +\infty$, \widetilde{X} is equivalent to a GRV with mean μ and variance σ^2 :

$$\widetilde{N}(\mu, \sigma^2, +\infty) = N(\mu, \sigma^2)$$

• If $\sigma^2 = 0$, \widetilde{X} is equivalent to a Gaussian possibility distribution:

 $\widetilde{N}(\mu, 0, h) = GFN(\mu, h)$

イロト イヨト イヨト イヨト

Mathematical formulas

Contour function:

$$pI_{\widetilde{X}}(x) = \frac{1}{\sqrt{1+h\sigma^2}} \exp\left(-\frac{h(x-\mu)^2}{2(1+h\sigma^2)}\right)$$

Belief and plausibility of an interval [x, y]:

$$\begin{aligned} Bel_{\widetilde{X}}([x,y]) &= \Phi\left(\frac{y-\mu}{\sigma}\right) - \Phi\left(\frac{x-\mu}{\sigma}\right) - \\ pl_{\widetilde{X}}(x) \left[\Phi\left(\frac{(x+y)/2 - \mu}{\sigma\sqrt{h\sigma^2 + 1}}\right) - \Phi\left(\frac{x-\mu}{\sigma\sqrt{h\sigma^2 + 1}}\right) \right] - \\ pl_{\widetilde{X}}(y) \left[\Phi\left(\frac{y-\mu}{\sigma\sqrt{h\sigma^2 + 1}}\right) - \Phi\left(\frac{(x+y)/2 - \mu}{\sigma\sqrt{h\sigma^2 + 1}}\right) \right] \end{aligned}$$

$$Pl_{\widetilde{X}}([x,y]) = \Phi\left(\frac{y-\mu}{\sigma}\right) - \Phi\left(\frac{x-\mu}{\sigma}\right) + pl_{\widetilde{X}}(x)\Phi\left(\frac{x-\mu}{\sigma\sqrt{h\sigma^2+1}}\right) + pl_{\widetilde{X}}(y)\left[1 - \Phi\left(\frac{y-\mu}{\sigma\sqrt{h\sigma^2+1}}\right)\right]$$

Combination of GRFNs

Given two GRFNs $\widetilde{X}_1 \sim \widetilde{N}(\mu_1, \sigma_1^2, h_1)$ and $\widetilde{X}_2 \sim \widetilde{N}(\mu_2, \sigma_2^2, h_2)$, we have

$$\widetilde{X}_1 \oplus \widetilde{X}_2 \sim \widetilde{N}(\widetilde{\mu}_{12}, \widetilde{\sigma}_{12}^2, h_1 + h_2)$$

with

$$\widetilde{\mu}_{12} = \frac{h_1 \widetilde{\mu}_1 + h_2 \widetilde{\mu}_2}{h_1 + h_2}, \quad \widetilde{\sigma}_{12}^2 = \frac{h_1^2 \widetilde{\sigma}_1^2 + h_2^2 \widetilde{\sigma}_2^2 + 2\rho h_1 h_2 \widetilde{\sigma}_1 \widetilde{\sigma}_2}{(h_1 + h_2)^2}$$

where

$$\begin{split} \widetilde{\mu}_{1} &= \frac{\mu_{1}(1 + \overline{h}\sigma_{2}^{2}) + \mu_{2}\overline{h}\sigma_{1}^{2}}{1 + \overline{h}(\sigma_{1}^{2} + \sigma_{2}^{2})}, \quad \widetilde{\mu}_{2} &= \frac{\mu_{2}(1 + \overline{h}\sigma_{1}^{2}) + \mu_{1}\overline{h}\sigma_{2}^{2}}{1 + \overline{h}(\sigma_{1}^{2} + \sigma_{2}^{2})} \\ \widetilde{\sigma}_{1}^{2} &= \frac{\sigma_{1}^{2}(1 + \overline{h}\sigma_{2}^{2})}{1 + \overline{h}(\sigma_{1}^{2} + \sigma_{2}^{2})}, \quad \widetilde{\sigma}_{2}^{2} &= \frac{\sigma_{2}^{2}(1 + \overline{h}\sigma_{1}^{2})}{1 + \overline{h}(\sigma_{1}^{2} + \sigma_{2}^{2})} \\ \rho &= \frac{\overline{h}\sigma_{1}\sigma_{2}}{\sqrt{(1 + \overline{h}\sigma_{1}^{2})(1 + \overline{h}\sigma_{2}^{2})}} \quad \text{and} \quad \overline{h} = \frac{h_{1}h_{2}}{h_{1} + h_{2}} \end{split}$$

2

Gaussian random fuzzy vectors

- Multidimensional generalization of GRFNs.
- A *p*-dimensional Gaussian fuzzy vector (GFV) with mode *m* ∈ ℝ^p and symmetric and positive semidefinite precision matrix *H* ∈ ℝ^{p×p} is defined as the fuzzy subset of ℝ^p with membership function

$$\varphi(\mathbf{x}; \mathbf{m}, \mathbf{H}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{H}(\mathbf{x} - \mathbf{m})\right).$$

It is denoted as $GFV(\boldsymbol{m}, \boldsymbol{H})$.

A Gaussian random fuzzy vector (GRFV) X̃ ~ Ñ(μ, Σ, H) is random fuzzy set X̃ : Ω → [0, 1]^{ℝ^ρ} defined as

$$\widetilde{X}(\omega) = \mathsf{GFV}(oldsymbol{M}(\omega),oldsymbol{H}) \hspace{0.3cm} ext{with} \hspace{0.3cm} oldsymbol{M} \sim N(oldsymbol{\mu},oldsymbol{\Sigma})$$

• The product intersection of two GRFVs is a GRFV.

イロト イポト イヨト イヨト

Random fuzzy sets

- Basic definitions
- Combination

Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Limitations of the GRFN model

- The domain of a GRFN is the whole real line, making the model unsuitable for representing belief functions on a real interval such as (0, +∞) or [a, b].
- A GRFN is unimodal and symmetric about the mean μ ; these properties may not always reflect an agent's actual beliefs.
- We need more flexible parameterized families of random fuzzy numbers and vectors with different supports and different "shapes", while maintaining the closure property under the product-intersection rule.
- This can be achieved in two complementary ways⁴:
 - Compose a RFS X̃ : Ω → [0,1]^Θ with a one-to-one mapping from Θ to another space Λ, to obtain a a RFS Ỹ : Ω → [0,1]^Λ
 - 2 Define mixtures of RFSs

⁴T. Denœux. Parametric families of continuous belief functions based on generalized Gaussian random fuzzy numbers. Preprint hal-04060251, 2023.

Transformation of a RFS

• Let ψ be a one-to-one mapping from Θ to some set Λ . Zadeh's extension principle allows us to extend ψ to fuzzy subsets of Θ ; specifically, we define a mapping $\widetilde{\psi} : [0,1]^{\Theta} \to [0,1]^{\Lambda}$ such that

$$\forall \widetilde{F} \in [0,1]^{\Theta}, \quad \widetilde{\psi}(\widetilde{F})(\lambda) = \sup_{\lambda = \psi(\theta)} \widetilde{F}(\theta) = \widetilde{F}(\psi^{-1}(\lambda)).$$

• If $\widetilde{X} : \Omega \to [0,1]^{\Theta}$ is a RFS, the composed mapping $\widetilde{\psi} \circ \widetilde{X} : \Omega \to [0,1]^{\Lambda}$, such that $(\widetilde{\psi} \circ \widetilde{X})(\omega) = \widetilde{\psi}[\widetilde{X}(\omega)]$, is a RFS.

Properties

• For any
$$C \in \Sigma_{\Lambda} = \{\psi(B) : B \in \Sigma_{\Theta}\},\$$

$$Bel_{\widetilde{\psi}\circ\widetilde{X}}(C) = Bel_{\widetilde{X}}(\psi^{-1}(C))$$

and

$$Pl_{\widetilde{\psi}\circ\widetilde{X}}(C) = Pl_{\widetilde{X}}(\psi^{-1}(C))$$

• Let $\widetilde{X}_1 : \Omega_1 \to [0,1]^{\Theta}$ and $\widetilde{X}_2 : \Omega_2 \to [0,1]^{\Theta}$, be two RFSs representing independent evidence. We have

$$\left| \widetilde{\psi} \circ (\widetilde{X}_1 \oplus \widetilde{X}_2) = (\widetilde{\psi} \circ \widetilde{X}_1) \oplus (\widetilde{\psi} \circ \widetilde{X}_2)
ight|$$

3

Example: Lognormal RFNs

• Let
$$\widetilde{X} \sim \widetilde{N}(\mu, \sigma^2, h)$$
 and $\psi = \exp$.

• The RFN $\widetilde{Y} = \widetilde{\psi} \circ \widetilde{X}$ with support equal to $(0, +\infty)$ is called a lognormal RFN; we write $\widetilde{Y} \sim T\widetilde{N}(\mu, \sigma^2, h, \log)$.

< 🗇 🕨

Logistic-normal RFVs

Let X̃ ~ Ñ(μ, Σ, H) be a p − 1 dimensional GRFV and ψ_S the softmax transformation from ℝ^{p−1} to the simplex S_p of p-dimensional probability vectors:

$$\psi_{\mathcal{S}}(\mathbf{x}) = \left[\frac{\exp(x_1)}{1 + \sum_{j=1}^{p} \exp(x_j)}, \dots, \frac{\exp(x_{p-1})}{1 + \sum_{j=1}^{p} \exp(x_j)}, \frac{1}{1 + \sum_{j=1}^{p} \exp(x_j)}\right]^{T}$$

• The random fuzzy vector $\widetilde{Y} = \widetilde{\psi}_{S} \circ \widetilde{X}$ is a logistic-normal RFV; we write $\widetilde{Y} \sim T\widetilde{N}(\mu, \Sigma, H, \psi_{S}^{-1})$. Its support is the simplex S_{p} .

Logistic-normal RFVs: Example

Mixtures of (transformed) GRFNs

- Mixtures of GRFNs = a GFN whose mode is a mixture of GRVs.
- Can be transformed by a one-to-one mappings.
- Defines new families of RFNs closed under the product-intersection rule.
- Example: $\widetilde{Y}_1 \sim 0.5 T \widetilde{N}(2, 1, 2, \text{logit}) + 0.5 T \widetilde{N}(-2, 1, 2, \text{logit}),$ $\widetilde{Y}_2 \sim 0.3 T \widetilde{N}(-1, 0.1^2, 1, \text{logit}) + 0.7 T \widetilde{N}(1, 0.1^2, 1, \text{logit})$

Random fuzzy sets

- Basic definitions
- Combination

Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Evidential Machine Learning

- Evidential Machine Learning (ML): an approach to ML in which uncertainty is quantified by belief functions.
- Existing methods mainly address clustering (ECM, EVCLUS, etc.) and classification (EKNN, ENN, etc.), because these learning tasks only require belief functions on finite frames.
- The availability of models for defining and combining belief functions on continuous frames now makes it possible to tackle other learning tasks, such as regression.

The ENNreg model

- We consider a regression problem: the task is to predict a continuous random response variable Y from p input variables X = (X₁,..., X_p), based on a learning set {(x_i, y_i)}ⁿ_{i=1}.
- We propose a neural network model⁵ (ENNreg), which for an observed input vector X = x computes a GRFN Ỹ(x) with associated belief function Bel_{Ỹ(x)} representing uncertainty about Y.
- ENNreg is based on prototypes. The distances to the prototypes are treated as independent pieces of evidence about the response and are combined by the product-intersection rule

35 / 56

⁵T. Denœux. Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets: the ENNreg model. *IEEE Transactions on Fuzzy Systems*, 2023. a + () + (

Random fuzzy sets

- Basic definitions
- Combination

2 Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Propagation equations (1/2)

- Let w₁,..., w_K denote K vectors in the p-dimensional input space, called prototypes.
- The similarity between input vector \boldsymbol{x} and prototype \boldsymbol{w}_k is measured by

$$s_k(\mathbf{x}) = \exp(-\gamma_k^2 \|\mathbf{x} - \mathbf{w}_k\|^2)$$

where $\gamma_k > 0$ is a scale parameter.

• The evidence from prototype \boldsymbol{w}_k is represented by a GRFN

$$\widetilde{Y}_k(oldsymbol{x})\sim \widetilde{N}(\mu_k(oldsymbol{x}),\sigma_k^2,oldsymbol{s}_k(oldsymbol{x})h_k)$$

where σ_k^2 and h_k are variance and precision parameters, and

$$\mu_k(\mathbf{x}) = \boldsymbol{\beta}_k^T \mathbf{x} + \beta_{k0}$$

where β_k is a *p*-dimensional vector of coefficients, and β_{k0} is a scalar parameter.

Thierry Denœux (UTC/IUF)

Propagation equations (2/2)

• The output $\widetilde{Y}(\mathbf{x})$ for input \mathbf{x} is computed as

$$\widetilde{Y}(\boldsymbol{x}) = \widetilde{Y}_1(\boldsymbol{x}) \boxplus \ldots \boxplus \widetilde{Y}_{\mathcal{K}}(\boldsymbol{x})$$

where \boxplus denotes product intersection without the normalization step (to simplify calculations).

• We have $\widetilde{Y}(\boldsymbol{x}) \sim \widetilde{\textit{N}}(\mu(\boldsymbol{x}), \sigma^2(\boldsymbol{x}), h(\boldsymbol{x}))$, with

$$\mu(\mathbf{x}) = \frac{\sum_{k=1}^{K} s_k(\mathbf{x}) h_k \mu_k(\mathbf{x})}{\sum_{k=1}^{K} s_k(\mathbf{x}) h_k}$$

$$\sigma^2(\mathbf{x}) = \frac{\sum_{k=1}^{K} s_k^2(\mathbf{x}) h_k^2 \sigma_k^2}{\left(\sum_{k=1}^{K} s_k(\mathbf{x}) h_k\right)^2} \quad \text{and} \quad h(\mathbf{x}) = \sum_{k=1}^{K} s_k(\mathbf{x}) h_k$$

(日) (同) (日) (日)

Neural network architecture

Learning

Outline

Random fuzzy sets

- Basic definitions
- Combination

Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Negative log-likelihood loss (probabilistic forecasts)

• In the case of a probabilistic forecast with pdf \hat{f} , we typically measure the prediction error (or loss) by the negative log-likelihood

$$\mathcal{L}(y,\widehat{f}) = -\ln \widehat{f}(y)$$

• We actually never observe a real number y with infinite precision, but an interval $[y]_{\epsilon} = [y - \epsilon, y + \epsilon]$ centered at y. The probability of that interval is

$$\widehat{P}([y]_{\epsilon}) = \widehat{F}(y+\epsilon) - \widehat{F}(y-\epsilon) pprox 2\widehat{f}(y)\epsilon,$$

So, $\mathcal{L}(y, \hat{f}) = -\ln \widehat{P}([y]_{\epsilon}) + \text{cst.}$

• Generalization in the case of prediction in the form of a belief function?

イロト イポト イヨト イヨト

Learning

Extension

- $\mathcal{L}_{\epsilon}(y, \widetilde{Y}) = -\ln Bel_{\widetilde{Y}}([y]_{\epsilon})$ does not work (does not reward imprecision).
- *L_ϵ(y, Ỹ) = − ln Pl_{γ̃}([y]_ϵ) also does not work (minimized when Ỹ is vacuous).* Proposal:

$$\mathcal{L}_{\lambda,\epsilon}(y,\widetilde{Y}) = -\lambda \ln \operatorname{Bel}_{\widetilde{Y}}([y]_{\epsilon}) - (1-\lambda) \ln \operatorname{Pl}_{\widetilde{Y}}([y]_{\epsilon})$$

with $\lambda \in [0, 1]$ and $\epsilon > 0$.

 \bullet Smaller values of λ correspond to more cautious predictions.

Influence of λ

< 17 ▶

Training

• The network is training by minimizing the regularized average loss

$$C_{\lambda,\epsilon,\xi,\rho}^{(R)}(\Psi) = \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{\lambda,\epsilon}(y_i, \widetilde{Y}(\boldsymbol{x}_i; \Psi))}_{C_{\lambda,\epsilon}(\Psi)} + \underbrace{\frac{\xi}{K} \sum_{k=1}^{K} h_k}_{R_1(\Psi)} + \underbrace{\frac{\rho}{K} \sum_{k=1}^{K} \gamma_k^2}_{R_2(\Psi)},$$

where

- R₁(Ψ) has the effect of reducing the number of prototypes used for the prediction (setting h_k = 0 amounts to discarding prototype k)
- ► $R_2(\Psi)$ shrinks the solution towards a linear model (setting $\gamma_k = 0$ for all k yields a linear model).
- Heuristics: $\lambda = 0.9$, $\epsilon = 0.01 \hat{\sigma}_Y$, ξ and ρ tuned using a validation set or cross-validation.

Calibration

- For any α ∈ (0, 1], we define an α-level belief prediction interval (BPI) as an interval B_α(x) centered at μ(x), such that Bel_{Ỹ(x)}(B_α(x)) = α.
- The predictions will be said to be calibrated if, for all α ∈ (0,1], α-level BPIs have a coverage probability at least equal to α, i.e,

$$\forall \alpha \in (0,1], \quad P_{\boldsymbol{X},Y} \left(Y \in \mathcal{B}_{\alpha}(\boldsymbol{X}) \right) \geq \alpha$$
(1)

- As in the probabilistic case, the calibration of evidential predictions can be checked graphically using a calibration plot (see infra).
- The precision output h(x) can be multiplied by a constant c > 0 to ensure (1) with predictions as precise as possible.

Learning

Example

We consider iid data with one-dimensional input $X \sim \text{Unif}(-2,2)$ and

$$Y = X + (\sin 3X)^3 + \frac{X+2}{4\sqrt{2}}U, \quad U \sim N(0,1)$$

- Learning and validation sets of size n = 300.
- Network with *K* = 30 prototypes initialized by the k-means algorithm.
- ξ and ρ determined by minimizing the validation MSE.
- Shown: expected values μ(x) (red) with BPIs at levels 0.5, 0.9 and 0.99

(日)、(同)、(三)、(

Calibration curves

Calibration curves for the probabilistic PIs $\mu(x) \pm u_{(1+\alpha)/2}\sigma(x)$ (in blue) and the BPIs (in red)

Thierry Denœux (UTC/IUF

Random fuzzy sets

- Basic definitions
- Combination

2 Practical models

- Gaussian random fuzzy numbers
- Extensions: transformations and mixtures

3 Application to regression

- Neural network model
- Learning
- Experimental results

イロト イ団ト イヨト イヨト

Data sets

	п	р	response
Boston	506	13	medv
Energy	768	8	Y2
Concrete	1030	8	strength
Yacht	308	6	Y
Wine	1599	11	quality
kin8nm	8192	8	V9
Crime	1994	100	ViolentCrimesPerPop
Residential	372	103	V10
Airfoil	1503	5	Y
Bike	731	9	cnt

<ロ> <回> <回> <回> <回> <回> < => < => < =>

Comparison with classical methods (RMS)

	ENNreg	RBF	RVM	SVM	GP	RF	MLP
Boston	$\textbf{2.87} \pm \textbf{0.14}$	3.31 ± 0.19	3.42 ± 0.17	3.17 ± 0.15	3.70 ± 0.22	$\textbf{3.11} \pm \textbf{0.14}$	$\textbf{3.14} \pm \textbf{0.14}$
Energy	1.06 ± 0.05	2.06 ± 0.08	1.79 ± 0.05	1.39 ± 0.06	2.58 ± 0.07	1.75 ± 0.06	$\textbf{0.95} \pm \textbf{0.16}$
Concr.	5.10 ± 0.12	6.30 ± 0.19	6.38 ± 0.16	5.62 ± 0.13	6.93 ± 0.13	$\textbf{4.64} \pm \textbf{0.12}$	$\textbf{4.82} \pm \textbf{0.16}$
Yacht	$\textbf{0.44}\pm\textbf{0.04}$	2.00 ± 0.20	1.88 ± 0.20	1.93 ± 0.11	6.12 ± 0.31	0.96 ± 0.08	0.50 ± 0.05
Wine	0.63 ± 0.01	0.63 ± 0.01	0.80 ± 0.02	0.61 ± 0.01	0.61 ± 0.01	$\textbf{0.56} \pm \textbf{0.01}$	0.77 ± 0.01
kin8nm	0.08 ± 0.00	0.11 ± 0.00	_	0.09 ± 0.00	0.08 ± 0.00	0.14 ± 0.00	$\textbf{0.07} \pm \textbf{0.00}$
Crime	$\textbf{0.14}\pm\textbf{0.00}$	0.14 ± 0.00	$\textbf{0.14}\pm\textbf{0.00}$	$\textbf{0.14}\pm\textbf{0.00}$	$\textbf{0.14}\pm\textbf{0.00}$	$\textbf{0.14}\pm\textbf{0.00}$	$\textbf{0.14} \pm \textbf{0.00}$
Resid.	$\textbf{0.11}\pm\textbf{0.01}$	0.16 ± 0.01	0.17 ± 0.01	0.15 ± 0.01	0.22 ± 0.01	0.16 ± 0.01	0.14 ± 0.01
Airfoil	$\textbf{1.46} \pm \textbf{0.03}$	1.70 ± 0.04	2.58 ± 0.04	2.37 ± 0.04	2.49 ± 0.04	$\textbf{1.44}\pm\textbf{0.04}$	1.53 ± 0.04
Bike	$\textbf{6.59} \pm \textbf{0.19}$	$\textbf{6.49} \pm \textbf{0.15}$	$\textbf{6.64} \pm \textbf{0.14}$	7.11 ± 0.16	7.55 ± 0.14	6.86 ± 0.17	9.68 ± 0.20

2

イロト イヨト イヨト イヨト

Comparison with SOTA methods (RMS & NLL)

	RMS					
	ENNreg	PBP	MC-dropout	Deep ens.	Deep ev. reg.	
Boston	$\textbf{2.87} \pm \textbf{0.14}$	$\textbf{3.01} \pm \textbf{0.18}$	$\textbf{2.97} \pm \textbf{0.19}$	$\textbf{3.28} \pm \textbf{1.00}$	$\textbf{3.06} \pm \textbf{0.16}$	
Energy	$\textbf{1.06} \pm \textbf{0.05}$	1.80 ± 0.05	1.66 ± 0.04	2.09 ± 0.29	2.06 ± 0.10	
Concr.	$\textbf{5.10} \pm \textbf{0.12}$	5.67 ± 0.09	$\textbf{5.23} \pm \textbf{0.12}$	6.03 ± 0.58	5.85 ± 0.15	
Yacht	$\textbf{0.44} \pm \textbf{0.04}$	1.02 ± 0.05	1.11 ± 0.09	1.58 ± 0.48	1.57 ± 0.56	
Wine	$\textbf{0.63} \pm \textbf{0.01}$	$\textbf{0.64} \pm \textbf{0.01}$	$\textbf{0.62} \pm \textbf{0.01}$	$\textbf{0.64} \pm \textbf{0.04}$	$\textbf{0.61} \pm \textbf{0.02}$	
kin8nm	$\textbf{0.08}\pm\textbf{0.00}$	0.10 ± 0.00	0.10 ± 0.00	0.09 ± 0.00	0.09 ± 0.00	

	-		NLL		
	ENNreg	PBP	MC-dropout	Deep ens.	Deep ev. reg.
Boston	2.53 ± 0.07	2.57 ± 0.09	$\textbf{2.46} \pm \textbf{0.06}$	$\textbf{2.41} \pm \textbf{0.25}$	$\textbf{2.35} \pm \textbf{0.06}$
Energy	$\textbf{1.14} \pm \textbf{0.07}$	2.04 ± 0.02	1.99 ± 0.02	$\textbf{1.38} \pm \textbf{0.22}$	1.39 ± 0.06
Concr.	3.38 ± 0.13	3.16 ± 0.02	$\textbf{3.04} \pm \textbf{0.02}$	$\textbf{3.06} \pm \textbf{0.18}$	$\textbf{3.01} \pm \textbf{0.02}$
Yacht	$\textbf{0.13} \pm \textbf{0.12}$	1.63 ± 0.02	1.55 ± 0.03	1.18 ± 0.21	$1.03\ {\pm}0.19$
Wine	$\textbf{0.94} \pm \textbf{0.01}$	0.97 ± 0.01	$\textbf{0.93} \pm \textbf{0.01}$	$\textbf{0.94} \pm \textbf{0.12}$	$\textbf{0.89} \pm \textbf{0.05}$
kin8nm	-1.19 \pm 0.00	-0.90 \pm 0.01	-0.95 \pm 0.01	-1.20 \pm 0.02	$\textbf{-1.24}\pm0.01$

2

<ロ> (日) (日) (日) (日) (日)

Calibration plots

Probabilistic predictions (blue), raw evidential predictions (red) and adjusted evidential predictions (green).

A

Calibration plots

Probabilistic predictions (blue), raw evidential predictions (red) and adjusted evidential predictions (green).

< 🗇 🕨

Summary

- The theory of epistemic RFSs extends both possibility theory and DS theory. It allows one to represent and reason with uncertain, imprecise and vague information.
- We have defined flexible families of RFNs and RFVs indexed by 3 parameters (mode, variance and precision). They make it possible to define belief functions on continuous frames that can be easily manipulated and combined, overcoming a limitation of DS theory.
- The ENNreg model is a regression neural network based on the combination of GRFNs. The network output for input vector **x** is a GRFN defined by three numbers:
 - a point prediction $\mu(\mathbf{x})$
 - a variance $\sigma^2(\mathbf{x})$ measuring random uncertainty
 - a precision h(x) representing epistemic uncertainty
- Experimental results show that ENNreg performs as well as, or better than state-of-the-art regression methods, while providing conservative (cautious) predictions.

イロト イポト イヨト イヨト

References on epistemic RFSs

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux

Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence.

Fuzzy Sets and Systems, 424:63–91, 2021

T. Denœux

Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. *Fuzzy Sets and Systems*, 453:1–36, 2023

T. Denœux

Parametric families of continuous belief functions based on generalized Gaussian random fuzzy numbers.

Preprint hal-04060251, 2023. https://hal.science/hal-04060251

(日) (同) (日) (日)

References on the ENNreg model

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux

Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets: the ENNreg model.

IEEE Transactions on Fuzzy Systems, 2023. https://doi.org/10.1109/TFUZZ.2023.3268200

T. Denœux

evreg: Evidential Regression R package version 1.0.2, 2023. Available: https://CRAN.R-project.org/package=evreg

(日) (同) (日) (日)