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- Voioio
Two models of uncertainty

@ Modeling uncertainty: a fundamental problem in Al
> Representation of uncertain/imperfect knowledge
» Reasoning and decision-making with uncertainty
» Quantification of prediction uncertainty in machine learning
» Etc.
@ Two of the most widely used models:
» Dempster-Shafer (DS) theory = belief functions + Dempster's rule (based on
random sets, generalizes Bayesian probability theory)
> Possibility theory = possibility distributions + triangular norms (based on
fuzzy sets)
o Claims:

» These two theories are distinct
» They are needed simultaneously in some applications
» — We need to embed them into a more general framework
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~________Motivatin
The case of statistical inference

@ Shafer (1976) proposed to interpret the relative likelihood as defining as a
consonant belief function (mathematically equivalent to a possibility
distribution).

@ Combining the likelihood-based belief function with a Bayesian prior by
Dempster's rule yields the Bayesian posterior.

@ However, relative likelihood functions from independent samples must be
combined by the normalized product t-norm (possibility theory).

@ To make this approach consistent, we need a more general mathematical
framework encompassing both possibility and DS theories.
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~________Motivatin
Contents of this talk

@ Introduction of a new model of uncertainty based on random fuzzy sets
(RFSs) + a new combination rule generalizing both Dempster’s rule and the
normalized product intersection of possibility theory

@ Definition of practical and easily combinable RFS models allowing us to
represent uncertainty on continuous variables (in R, [a, b], RP, probability
simplex, etc.)

© Application to machine learning: neural network model for regression
quantifying prediction uncertainty by RFSs
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~________Motivatin
Outline

@ Random fuzzy sets
@ Basic definitions
@ Combination

@ Practical models
@ Gaussian random fuzzy numbers
@ Extensions: transformations and mixtures

© Application to regression
@ Neural network model
@ Learning
@ Experimental results
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Outline

@ Random fuzzy sets

Thierr
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Random fuz s Basic definitions

Outline

@ Random fuzzy sets
@ Basic definitions
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Basic definitions

Random fuzzy set

(QaZQaP) (@72@)

A random fuzzy set (RFS) is a mapping X from Q to the set [0,1]® of fuzzy

subsets of ©, such that for any « € [0, 1], the mapping @X from € to 2° defined
as

“X(w) = "X(w)] = {6 € ©: X(w)(6) > a}

is Yo-Yo strongly measurable (i.e., VB € Yo, {w € Q: *[X(w)] N B # 0} € Tq).
(Couso & Sénchez, 2011)
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Basic definitions

Epistemic random fuzzy sets

@ We use RFSs as a model of unreliable and fuzzy evidence!
» © is the domain of an uncertain variable/quantity 6
» Qs a set of interpretations of a piece of evidence about 0
> If w € Q holds, we know that “@ is X(w)", i.e., @ is constrained by the
possibility distribution X (w).
o Example: a witness tells us that “John is tall”, and this witness is 50%
reliable
» Q= {rel, —rel}, p(rel) = 0.5
» 0 = John’s height in meters, © = [0, 2.5]
» X(rel) = tall (a fuzzy subset of ), X(-rel) = ©
@ This interpretation is different from previous interpretations of RFSs as

» A model of random mechanism for generating fuzzy data (Puri & Ralescu, Gil)
> Imperfect knowledge of a random variable (Kruse & Meyer, Couso & Sanchez)

IT. Denceux. Belief functions induced by random fuzzy sets: A general framework for
representing uncertain and fuzzy evidence. Fuzzy Sets and Systems 424:63-91, 2021
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Basic definitions

Belief and plausibility functions

If interpretation w € € holds, the degrees of possibility and necessity that
belongs to B € Yo are

ﬂ;(w)(B) = sup)?(w)(@), Nz

B)=1-Tg, (B
sup o (B) %) (B°)

The expected necessity and possibility degrees (Zadeh, 1979) are

Belg(B) = | Ny, (B)dP(w), Plz(B)= [ Nz, (B)dP(w).
Q Q

Function Bely is a completely monotone capacity (a belief function), and Pl;
is the dual plausibility function (Zadeh, 1979; Couso & Sanchez, 2011).

A RFS is thus (like a random set) a way of specifying a belief function. The
RFS model is more flexible.
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Random fuz ts Combination

Outline

@ Random fuzzy sets

@ Combination
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Combination

Combination of independent RFSs

(917217P1) (QQ>22,P2)

wi

X

o We consider two RFSs X : ©; — [0,1]® and X, : Q, — [0,1]° representing
independent pieces of evidence.

o if w; € Q1 and w» € Q, both hold, we can deduce "0 is )~(1(w1) N )N(z(wz)”,
where N denotes fuzzy intersection.

@ We need (1) a definition of fuzzy intersection and (2) a way to handle
possible conflict (inconsistency) between the two sources.
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Combination

Combination of independent RFSs (continued)

@ Fuzzy intersection: the product t-norm is the most suitable for combining
fuzzy information from independent sources. The normalized product
intersection of fuzzy sets/possibility distributions (is defined as

(FO G)(0) = { supo(F - C) f supe(F-G) >0

0 otherwise

is associative.

o With fuzzy sets, conflict is a matter of degree. We define the fuzzy set of
consistent pairs of interpretations as

0% (wy,ws) = sgp (21(w1) : X2(W2))

The probability measure on Q; x €2, is then obtained by conditioning P; x P,
on the fuzzy event ©*. This process is called soft normalization.
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Combination

Product-intersection rule

@ The combined RFS

)?12: leﬂg — [O,l]e
(wl,CU2) d X1(LL)1)@X2(LU2)

associated with the probability measure (Py x P,)(:|©*) is called the product
intersection? of X; and X, (with soft normalization). We write
)?12 = )~<1 2] )~<2-
@ Properties:
© Commutativity, associativity
@ Generalization of Dempster’s rule and the normalized product intersection of
possibility distributions
@ Forall 0 €0,
Ply ex,({0}) = ¢ Plg ({0})PIx,({6})
where ¢ does not depend on 6.

2T. Denceux. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy
sets: general framework and practical models. Fuzzy Sets and Systems-453:1-36, 2023
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Random fuzzy s

General picture

More general

Less general
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Outline

@ Practical models
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Practical models

Motivation

@ In probability theory and statistics, the Gaussian probability distribution is
widely used because it allows for simple calculations and easy manipulation
(conditioning, marginalization, etc.)

@ Until now, a similar workable model has been missing in DS theory to
represent uncertainty on continuous variables (possibility distributions or
p-boxes are not closed under Dempster’s rule)

o Gaussian random fuzzy numbers (GRFNs) and extensions are simple models
of RFSs making it possible to define families of belief functions on R, RP,
[a, b], etc., which can be easily combined by the product-intersection
operator &.
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@ Practical models
@ Gaussian random fuzzy numbers
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Gaussian random fuzzy numbers

Gaussian fuzzy numbers

GFN(—1,1)

o(x)

o
X

@ A Gaussian fuzzy number (GFN) is a normal fuzzy subset of R with
membership function

©(x; m, h) = exp <_g(x - m)2> ’

where m € R is the mode and h € [0, +00] is the precision. It is denoted by
GFN(m, h).

Property: GFN(my, h1) ® GFN(my, hp) = GFN(mq2, h12) with

himy + homo
mio hy + hy an 12 1+ M
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Gaussian random fuzzy numbers

Gaussian random fuzzy numbers

membership degree
0.0 02 04 06 08 1.0

N(0,(0.2)2,0.2)

@ A Gaussian random fuzzy number (GRFN)3 is a GFN whose mode is a
Gaussian random variable (GRV): it can be seen as an uncertain GFN or as a
fuzzy GRV.

@ Formally: a GRFN with mean p, variance o2 and precision h is a RFS
X : Q — [0,1]® defined as X(w) = GFN(M(w), h) where M ~ N(u,02). We
write X ~ /V(/z,az, h).

3T. Denceux. Fuzzy Sets and Systems 453:1-36, 2023
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Gaussian random fuzzy numbers

Special cases

e If h=0, )~<(w) — R for all w: X induces the vacuous belief function on R; it
represents complete ignorance
o If h=+o0, X is equivalent to a GRV with mean p and variance o?:
N(p, 02, 4+00) = N(u, 02)
e If o> =0, X is equivalent to a Gaussian possibility distribution:

N(w,0,h) = GFN(u, h)
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Gaussian random fuzzy numbers

Mathematical formulas

Contour function:

B 1 h(x — p)?
() = s (ot o)

Belief and plausibility of an interval [x, y]:

ety = o (L) ~ 0“2
Pl o ((X%) “’( )]
wonfe () o (Gt )

Pl ([x, y]) = <y;“) e (X;’”‘) + plg(x)® (UXh;T“H) +

plx(y) {1 -° <m/yﬁ>}
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Gaussian random fuzzy numbers

Combination of GRFNs

Given two GRFNs X; ~ N(uy,02, hy) and Xp ~ N(puz, 02, hy), we have

Xi ® Xo ~ N(firz, 5%, hi + hy)

with
~ hlﬁl + hzﬁg > h%&% + h%&% + 2,0/’11/72&152

M12=7hl+/72 y 012 = (hy + hy)?

where

~ (1 +ho3) +pohoi  _ po(1+ hof) + pahos
_ , =

T R 021 02) 1+ h(o? + o3)
52 _ 0%(71 + ho3) 52 _ 0'5(71 + ho?)
P l4h02+03) 7 1+h(o?+0d)
h — mh
p= 70102 — and h= P ! 2h
@+ Ro?)(1+ ho3) 1+ h
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Gaussian random fuzzy numbers

Gaussian random fuzzy vectors

@ Multidimensional generalization of GRFNs.

o A p-dimensional Gaussian fuzzy vector (GFV) with mode m € RP and
symmetric and positive semidefinite precision matrix H € RP*P is defined as
the fuzzy subset of RP with membership function

im, H) = exp (3 x = m)TH(x - m) ).

It is denoted as GFV(m, H).

o A Gaussian random fuzzy vector (GRFV) X ~ N(u, X, H) is random fuzzy
set X : Q — [0,1]%° defined as

X(w) = GFV(M(w), H) with M ~ N(u, ¥)

@ The product intersection of two GRFVs is a GRFV.
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Practical models Extensions: transformations and mixtures

@ Practical models

@ Extensions: transformations and mixtures

Random fuzzy sets and belief functions SIPTA Seminar May 24, 2023 25 /56



Extensions: transformations and mixtures

Limitations of the GRFN model

@ The domain of a GRFN is the whole real line, making the model unsuitable
for representing belief functions on a real interval such as (0, 400) or [a, b].

@ A GRFN is unimodal and symmetric about the mean u; these properties may
not always reflect an agent's actual beliefs.

@ We need more flexible parameterized families of random fuzzy numbers and
vectors with different supports and different “shapes”, while maintaining the
closure property under the product-intersection rule.

@ This can be achieved in two complementary ways*:

@ Compose a RFS X:Q— [0, 1]e with a one-to-one mapping from © to

another space A, to obtain a a RFS Y : Q — [0, 1]
@ Define mixtures of RFSs

4T. Denceux. Parametric families of continuous belief functions based on generalized
Gaussian random fuzzy numbers. Preprint hal-04060251, 2023.
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Transformation of a RFS

(Q,Xq,P) (0,30) (A, X0)

@ Let ¢ be a one-to-one mapping from © to some set A. Zadeh's extension
principle allows us to extend v to fuzzy subsets of ©; specifically, we define a
mapping ¢ : [0,1]® — [0, 1]" such that

VF € [0,1°, (F)(\) = sup F(0) = F(¥"(N)).
A=u(0)

o IfFX:Q — [0,1]® is aNRFS, the composed mapping 1;0)? :Q — [0, 1]", such
that (¢ o X)(w) = ¥[X(w)], is a RFS.
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Extensions: transformations and mixtures

Properties

@ Forany CeXp={y(B): B€¥o},
Bel;,5(C) = Belz(471(C))

and
Pl;,%(C) = Plg(¥~1(C))

Q Let X; : Q; — [0,1]° and X : Q, — [0,1]°, be two RFSs representing
independent evidence. We have
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Extensions: transformations and mixtures
Example: Lognormal RFNs

o Let X ~ N(y,02, h) and ) = exp.

o The RFN Y = 1?[?0)? with support equal to (0, +00) is called a lognormal
RFN; we write Y ~ TN(u, 02, h,log).

Y1 Yi®Ys

o Q o
@ | o | o |
S S S
2 2 2
S | = 2o |
gs 231 gs
© © <
s a o
£+ = =3
Qo oo 7 9o
] 3 |
L] I o
| o N
o o 7 o
o | o o |
s S 5
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Extensions: transformations and mixtures

Logistic-normal RFVs

o Let X ~ N(p, X, H) be a p — 1 dimensional GRFV and v the softmax
transformation from RP~! to the simplex S, of p-dimensional probability
vectors:

exp(x1) exp(Xp—1) 1
1+3°7 jexp(x)’ 14+ 357  exp(x;) 1+ 227 exp(x;)

Ps(x) =

@ The random fuzzy vector Y = 1/15 oXisa logistic-normal RFV; we write
Y ~ TN(;L,): H, g 1). Its support is the simplex Sp.
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_ Extensions: transformations and mixtures
Logistic-normal RFVs: Example

0,0,1) (0,0,1) (0,0,1)

(0,1,0) (1,0,0) (0,1,0) (1,0,0) (0,1,0)
0,0,1) 0,0,1) 0.0,1)

(0,1,0)(1,0,0) 0,1,0)(1,00) ' (0,1,0)
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M

Belief/plausibility

Extensions: transformations and mixtures

ixtures of (transformed) GRFNs

@ Mixtures of GRFNs = a GFN whose mode is a mixture of GRVs,
@ Can be transformed by a one-to-one mappings.
@ Defines new families of RFNs closed under the product-intersection rule.
o Example: Yy ~ 0.5TN(2,1,2,logit) + 0.5TN(—2,1,2, logit),
Yy ~ 0.3TN(—1,0.12,1, logit) 4+ 0.7 T N(1,0.12, 1, logit)

Y1 Y10 Y2
e o e ] .
@ o | ©
© z° z
3 o
o 2s 25
2 3
g g
Qo
< S =<
S B3 2
© [
o
o a. i o
S s =]
o | 2 4
° 4 T T T T T ° L T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
y y y
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~Application toregression |
Outline

© Application to regression
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Evidential Machine Learning

@ Evidential Machine Learning (ML): an approach to ML in which uncertainty
is quantified by belief functions.

o Existing methods mainly address clustering (ECM, EVCLUS, etc.) and
classification (EKNN, ENN, etc.), because these learning tasks only require
belief functions on finite frames.

@ The availability of models for defining and combining belief functions on
continuous frames now makes it possible to tackle other learning tasks, such
as regression.
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The ENNreg model

@ We consider a regression problem: the task is to predict a continuous random
response variable Y from p input variables X = (Xi, ..., X,), based on a
learning set {(x;, yi)}";.

@ We propose a neural network model® (ENNreg), which for an observed input
vector X = x computes a GRFN Y/(x) with associated belief function Bely
representing uncertainty about Y.

@ ENNreg is based on prototypes. The distances to the prototypes are treated
as independent pieces of evidence about the response and are combined by
the product-intersection rule

5T. Denceux. Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets:
the ENNreg model. IEEE Transactions on Fuzzy Systems, 2023.
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Outline

© Application to regression
@ Neural network model
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Neural network model

Propagation equations (1/2)

o Let wy,...,wg denote K vectors in the p-dimensional input space, called
prototypes.

@ The similarity between input vector x and prototype wy is measured by

[sk(x) = exp(—Z 1x — wil]?)|

where 7y, > 0 is a scale parameter.

@ The evidence from prototype wy is represented by a GRFN

Yi(x) ~ N(pui(x), 0%, sic(x) )

where aﬁ and hy are variance and precision parameters, and

k(%) = BLx + Bro

where 3, is a p-dimensional vector of coefficients, and Sy is a scalar
parameter.
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Neural network model

Propagation equations (2/2)

o The output Y/(x) for input x is computed as

Y(x) = Yi(x)B... B Yk(x)

where H denotes product intersection without the normalization step (to
simplify calculations).

o We have Y(x) ~ N(u(x), 02(x), h(x)), with

_ S sk(%) hegen(x)
> sk(x)hi

1(x)

0'2(X) _ Z/i(:l Sz(x)hiali and h(X) _ isk(x)hk
(Zh sk past

ux (UTC/IUF) Random fuzzy sets and belief functions SIPTA Seminar May 24, 2023 38 /56



Neural network architecture

2K units 2K units
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© Application to regression

@ Learning
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Learning

Negative log-likelihood loss (probabilistic forecasts)

@ In the case of a probabilistic forecast with pdf £, we typically measure the
prediction error (or loss) by the negative log-likelihood

L(y,f) =—Inf(y)
@ We actually never observe a real number y with infinite precision, but an
interval [y]e = [y — €,y + €] centered at y. The probability of that interval is
P(lyle) = F(y +€) = F(y — €) = 2f(y)e,
So, L(y,f) = —In P([y].) + cst.
@ Generalization in the case of prediction in the form of a belief function?
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Learning

Extension
o L(y,Y)=—In Belg([y]e) does not work (does not reward imprecision).
o L(y,Y)=—In PI3([y]c) also does not work (minimized when Y is vacuous).
@ Proposal:

Laely: Y) = =AIn Bely([yle) — (1 = A)In Ply([y]c)

with A € [0,1] and € > 0.
@ Smaller values of \ correspond to more cautious predictions.

ux (UTC/IUF) Random fuzzy sets and belief functions SIPTA Seminar May 24, 2023 42 / 56



Influence of A\

L.(0,N(1,1, h)) L.(0,N(5,1, h))
9
o
e & 1
© w _|
3 ?
o o
o
< -
o -
o~ -
o - o -
T T T T T T T T
1e-03 1e-01 1e+01 1e+03 1e-03 1e-01 1e+01 1e+03
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Learning

Training

@ The network is training by minimizing the regularized average loss

1 n . f K P K

R

C)(\,E),E,p(w) = ; Z‘CA,G(.VH Y(XI'; \U))+ K Z hie + ? 27/%’
i=1 k=1 k=1

—_— —m
Cr,e(V) Ri(W) Ra (W)

where

» Ri(V) has the effect of reducing the number of prototypes used for the
prediction (setting hx = 0 amounts to discarding prototype k)

> Ry(W) shrinks the solution towards a linear model (setting v« = 0 for all k
yields a linear model).

@ Heuristics: A = 0.9, e = 0.01oy, £ and p tuned using a validation set or
cross-validation.
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Learning

Calibration

e For any a € (0, 1], we define an a-level belief prediction interval (BPI) as an
interval B, (x) centered at p(x), such that Be/;,(x)(Ba(x)) =a.

@ The predictions will be said to be calibrated if, for all « € (0, 1], a-level BPIs
have a coverage probability at least equal to «, i.e,

\va €(0,1], Px.y (Y € Ba(X)) > (r‘ (1)

@ As in the probabilistic case, the calibration of evidential predictions can be
checked graphically using a calibration plot (see infra).

@ The precision output h(x) can be multiplied by a constant ¢ > 0 to ensure
(1) with predictions as precise as possible.
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Application to regression Learning

Example

We consider iid data with one-dimensional input X ~ Unif(—2,2) and

X+2
Y =X+ (sin3X)}+=—=U, U~ N(0,1
(sin3X) NG (0,1)

@ Learning and validation sets of size
n = 300.

@ Network with K = 30 prototypes
initialized by the k-means algorithm.

@ ¢ and p determined by minimizing
the validation MSE.

@ Shown: expected values p(x) (red)
with BPIs at levels 0.5, 0.9 and 0.99
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Application to ol Learning

Calibration curves

1.0

0.4 0.6 0.8

coverage rate

0.2

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
a

Calibration curves for the probabilistic Pls ji(x) £ u(114)/20(x) (in blue) and the
BPIs (in red)
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Outline

© Application to regression

@ Experimental results
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Data sets

Experimental results

n p response
Boston 506 13 medv
Energy 768 8 Y2
Concrete 1030 8 strength
Yacht 308 6 Y
Wine 1599 11 quality
kin8nm 8192 8 V9
Crime 1994 100 ViolentCrimesPerPop
Residential 372 103 V10
Airfoil 1503 5 Y
Bike 731 9 cnt
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Experimental results

Comparison with classical methods (RMS)

ENNreg RBF RVM SVM GP RF MLP
Boston 2.87 £ 0.14 331 £0.19 342+ 0.17 317 £0.15 3.70 £0.22 3.11 + 0.14 3.14 £ 0.14
Energy 1.06 £ 0.05 2.06 +0.08 1.79 +0.05 1.39 £ 0.06 258 £ 0.07 1.75 + 0.06 0.95 + 0.16
Concr. 510 £0.12 6.30 £0.19 6.38 +0.16 5.62 + 0.13 6.93 +0.13 4.64 + 0.12 4.82 + 0.16
Yacht  0.44 + 0.04 2.00 +0.20 1.88+0.20 1.93 +0.11 6.12 £ 0.31 0.96 + 0.08 0.50 £ 0.05
Wine 0.63 £0.01 0.63 +0.01 0.80 £ 0.02 0.61 +0.01 0.61 &+ 0.01 0.56 £+ 0.01 0.77 &+ 0.01
kin8nm 0.08 £ 0.00 0.11 £ 0.00 - 0.09 + 0.00 0.08 £ 0.00 0.14 £ 0.00 0.07 + 0.00
Crime 0.14 = 0.00 0.14 + 0.00 0.14 + 0.00 0.14 + 0.00 0.14 + 0.00 0.14 + 0.00 0.14 £ 0.00
Resid.  0.11 £0.01 0.16 +0.01 0.17 £ 0.01 0.15+ 0.01 0.22 +0.01 0.16 £ 0.01 0.14 + 0.01
Airfoil  1.46 + 0.03 1.70 & 0.04 258 £ 0.04 2.37 +0.04 2.49 £ 0.04 1.44 + 0.04 1.53 £ 0.04
Bike 6.59 + 0.19 6.49 + 0.15 6.64 + 0.14 7.11 + 0.16 7.55 + 0.14 6.86 + 0.17 9.68 £ 0.20
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Experimental results

Comparison with SOTA methods (RMS & NLL)

RMS
ENNreg PBP MC-dropout Deep ens.  Deep ev. reg.
Boston 2.87 + 0.14 3.01 + 0.18 2.97 + 0.19 3.28 + 1.00 3.06 + 0.16
Energy 1.06 + 0.05 1.80 + 0.05 1.66 + 0.04 2.09 £ 0.29 2.06 £ 0.10
Concr. 5.10 +£ 0.12 5.67 + 0.09 5.23 + 0.12 6.03 £ 0.58 5.85 + 0.15
Yacht 0.44 £ 0.04 1.02 £0.05 1.11 +0.09 1.58 + 0.48 1.57 + 0.56
Wine 0.63 + 0.01 0.64 + 0.01 0.62 + 0.01 0.64 + 0.04 0.61 + 0.02
kin8nm 0.08 £ 0.00 0.10 £ 0.00 0.10 + 0.00 0.09 + 0.00 0.09 £ 0.00
NLL
ENNreg PBP MC-dropout Deep ens. Deep ev. reg.
Boston  2.53 + 0.07 2.57 £ 0.09 2.46 + 0.06 2.41 + 0.25 2.35 £+ 0.06
Energy 1.14 £ 0.07 2.04 +£0.02 1.99 +£0.02 1.38 £0.22 1.39 £+ 0.06
Concr. 3.38 +0.13 3.16 +£ 0.02 3.04 + 0.02 3.06 + 0.18 3.01 + 0.02
Yacht 0.13 £ 0.12 1.63 +0.02 1.55+0.03 1.18+0.21 1.03 £0.19
Wine 0.94 + 0.01 0.97 +0.01 0.93 £ 0.01 0.94 + 0.12 0.89 + 0.05
kinBhm -1.19 £ 0.00 -0.90 + 0.01 -0.95 + 0.01 -1.20 £ 0.02 -1.24 4+ 0.01
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Calibration plots
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Probabilistic predictions (blue), raw evidential predictions (red) and adjusted
evidential predictions (green).
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Application to ol Experimental results

Calibration plots

Concrete Wine
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Probabilistic predictions (blue), raw evidential predictions (red) and adjusted
evidential predictions (green).
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Summary

@ The theory of epistemic RFSs extends both possibility theory and DS theory.
It allows one to represent and reason with uncertain, imprecise and vague
information.

@ We have defined flexible families of RFNs and RFVs indexed by 3 parameters
(mode, variance and precision). They make it possible to define belief
functions on continuous frames that can be easily manipulated and
combined, overcoming a limitation of DS theory.

@ The ENNreg model is a regression neural network based on the combination
of GRFNs. The network output for input vector x is a GRFN defined by three
numbers:

> a point prediction p(x)
» a variance o%(x) measuring random uncertainty
> a precision h(x) representing epistemic uncertainty

o Experimental results show that ENNreg performs as well as, or better than
state-of-the-art regression methods, while providing conservative (cautious)
predictions.
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References on epistemic RFSs

cf. https://www.hds.utc.fr/~tdenoeux
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References on the ENNreg model

cf. https://www.hds.utc.fr/~tdenoeux

ﬁ T. Denceux
Quantifying Prediction Uncertainty in Regression using Random Fuzzy Sets:
the ENNreg model.
IEEE Transactions on Fuzzy Systems, 2023.
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https://CRAN.R-project.org/package=evreg
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