
Mass function Belief and plausibility functions Special cases and related theories

Representation of evidence
Workshop on belief functions

Thierry Denœux

April, 2016



Mass function Belief and plausibility functions Special cases and related theories

This chapter

In this chapter, we define some of the main concepts of
Dempster-Shafer theory in the finite case.
These notions are sufficient to cope with a large number of
applications.
The extension to infinite spaces involves some mathematical
intricacies and is technically more difficult, except in some simple
(and practically important) cases; it will be addressed later.
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Definitions

Frame of discernment

Let Ω be a finite set of possible answers to some question Q, one
and only one of which is true.
The true answer will be denoted by ω, and an arbitrary element of Ω
by ω.
Shafer (1976) calls such a space a frame of discernment, to
emphasize the fact that it is not a set of “states of nature” objectively
given, but a subjective construction based on our state of knowledge.
For instance, if Q relates to a person’s state of health, Ω might
contain only the diseases known at a certain time. This set could be
later refined or extended if new knowledge became available.
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Definitions

Mass function

A piece of evidence about Q will be represented by a mass function,
defined as a mapping m from the power set 2Ω to the interval [0, 1],
such that m(∅) = 0 and ∑

A⊆Ω

m(A) = 1. (1)

Each number m(A) represents the probability that the evidence
supports exactly the proposition ω ∈ A, and no more specific
proposition.
Any subset A of Ω such that m(A) > 0 is called a focal set of m.
The union of the focal sets of a mass function is called its core.
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Definitions

Special cases

1 If m has only one focal set, it is said to be logical. Logical mass
functions are in one-to-one correspondence with subsets of Ω:
consequently, general mass functions can be viewed as generalized
sets. A particular logical mass function plays a special role in the
theory; it is the vacuous mass function m? defined by m?(Ω) = 1;
such a mass function corresponds to a totally uninformative piece of
evidence.

2 If all focal sets are singletons (i.e., sets of cardinality one), m is said
to be Bayesian. To each Bayesian mass function can be associated a
probability distribution p : Ω→ [0, 1] such that p(ω) = m({ω}) for
all ω ∈ Ω.
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Definitions

Example

Consider the mass on functions on Ω = {a, b, c} shown in below.
Mass function m1 is Bayesian, m2 is logical, m? is vacuous, and m3
has no special form.

A ∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1(A) 0 0.2 0.5 0 0.3 0 0 0
m2(A) 0 0 0 1 0 0 0 0
m?(A) 0 0 0 0 0 0 0 1
m3(A) 0 0.1 0.05 0.2 0.15 0.3 0.1 0.1



Mass function Belief and plausibility functions Special cases and related theories

Semantics

Overview

Mass function
Definitions
Semantics

Belief and plausibility functions
Definitions
Properties

Special cases and related theories
Bayesian mass functions
Consonant mass functions
Relation with imprecise probabilities



Mass function Belief and plausibility functions Special cases and related theories

Semantics

The murder example

A murder has been committed and there are three suspects: Peter,
John and Mary.
The question Q of interest is the identity of the murderer and the
frame of discernment is Ω = {Peter, John,Mary}.
The piece of evidence under study is a testimony: a witness saw the
murderer. However, this witness is short-sighted and he can only
report that he saw a man.
Unfortunately, this testimony is also not fully reliable, because we
know that the witness is drunk 20 % of the time.
How can such a piece of evidence be encoded in the language of
mass functions?
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Semantics

Formalization

We can see here that what the testimony tells us about Q depends
on the answer to another question Q ′: Was the witness drunk at the
time of the murder?
If he was not drunk, we know that the murderer is Peter or John.
Otherwise, we know nothing.
Since there is 80% chance that the former hypothesis holds, we may
assign a 0.8 mass to the set {Peter, John}, and 0.2 to Ω:

m({Peter, John}) = 0.8, m(Ω) = 0.2
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Semantics

A message with random meaning

In the above example, we receive a message (a testimony) about Q,
whose meaning depends on the answer to a related question Q ′ for
which we have a chance model (a probability distribution).
We can compare our evidence to a canonical example where we know
that the outcomes of a random experiment are s1 and s2 with
corresponding chances p1 = 0.8 and p2 = 0.2, and the message can
only be interpreted with knowledge of the outcome.
If the outcome is s1, then the meaning is ω ∈ {Peter, John},
otherwise the meaning is ω ∈ Ω, i.e., the message is totally
uninformative.
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Semantics

Canonical examples

We have seen that, in the constructive approach, probability
judgements can be made by comparing the available evidence to
some canonical example involving a chance setup.
In the Bayesian theory, we compare our evidence to a situation where
the truth is governed by chance (e.g., by thinking of the murderer as
having been selected at random).
In the belief function approach, the canonical example describes a
situation where the meaning of the evidence is governed by chance.
Two scenarios are specially useful to construct canonical examples for
mass functions.
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Semantics

The unreliable machine

The first scenario involves a machine that has two modes of
operation, normal and faulty. We know that in the normal mode it
broadcasts true messages, but we are completely unable to predict
what it does in the faulty mode.
We further assume that the operating mode of the machine is
random and there a chance p that it is in the normal mode.
It is then natural to say that a message ω ∈ A produced by the
machine has a chance p of meaning what it says and a chance 1− p
of meaning nothing.
This leads to the mass function m(A) = p and m(Ω) = 1− p.
Such a mass function, with two focal sets including Ω, is called a
simple mass function.
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Semantics

Random code

The above story is not general enough to cover all kinds of evidence.
More sophisticated scenario: a source holds some true information of
the form ω ∈ A∗ for some A∗ ⊆ Ω.
It sends us this information as an encoded message using a code
chosen at random from a set of codes S = {s1, . . . , sr}, according to
some known probability measure µ.
We know the set of codes as well as the chances of each code to be
selected. If we decode the message using code s, we get a decoded
message of the form ω ∈ Γ(s) for some subset Γ(s) of Ω. Then,

m(A) = µ({s ∈ S |Γ(s) = A}) (2)

is the chance that the original message was “ω ∈ A”, i.e., the
probability of knowing that ω ∈ A, and nothing more.
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Semantics

The random code – continued

(S,	
  2S,µ)	
   Ω	



Γ	
  

si	
  
Γ(si)	
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Semantics

Random set

In the above framework, the mapping Γ : S → 2Ω \ {∅} is called a
multi-valued mapping and the 4-tuple (S , 2S , µ, Γ) is called a source.
We can observe that a source corresponds formally to a random set.
However, the term “random set” may be misleading here, because we
are not interested in situations where a set is selected at random
(such as, e.g., drawing a handful of marbles from a bag).
Here, the true answer to the question of interest is a single element
of Ω and it is not assumed to have been selected at random. Instead,
chances are introduced when comparing our evidence to a situation
where the meaning of a message depends on the result of a random
experiment.
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Semantics

Relation between random sets and mass functions

It is clear that a source (S , 2S , µ, Γ) always induces a mass function.
Conversely, any mass function can be seen as generated by a source.
For instance, if A1, . . . ,An are the focal sets of a mass function m,
we may set S = {1, . . . , n} and µ({i}) = m(Ai ) for 1 ≤ i ≤ n.
However, as we will see later, the concept of a source is more general
than that of mass function, because a source can be used in the
infinite case to generate a belief function even when a mass function
does not exist.
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Definitions

Example

Assume the available evidence to be encoded by a mass function m
on Ω generated by a source (S , 2S , µ, Γ).
How to quantify the uncertainty on the proposition “ω ∈ A”?
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Definitions

Belief function

For any A ⊆ Ω, the probability that the evidence supports (implies)
A is

Bel(A) = µ({s ∈ S |Γ(s) ⊆ A}) (3a)

=
∑
B⊆A

m(B); (3b)

The quantity Bel(A) can be interpreted as a degree of support for
proposition A, or as a degree of belief. The function
Bel : 2Ω → [0, 1] is called a belief function.
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Definitions

Plausibility function

The probability that the evidence does not contradict A is

Pl(A) = µ({s ∈ S |Γ(s) ∩ A 6= ∅}) (4a)

=
∑

B∩A 6=∅

m(B). (4b)

Pl(A) can be seen as the degree to which one fails to doubt A; this
number is called the plausibility of A and the function
Pl : 2Ω → [0, 1] is called a plausibility function.
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Definitions

Relation between belief and plausibility

The uncertainty pertaining to the proposition ω ∈ A is quantified by
two numbers: Bel(A) and Pl(A).
We have

Bel(A) ≤ Pl(A)

Pl(A) = 1− Bel(A)

Special case: if m(Ω) = 1, then

Bel(A) = 0, ∀A ⊂ Ω

Pl(A) = 1, ∀A ⊆ Ω,A 6= ∅
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Properties

Complete monotonicity

Theorem

A function Bel : 2Ω → [0, 1] is a belief function iff it satisfies the following
conditions:

1 Bel(∅) = 0;
2 Bel(Ω) = 1;
3 For any k ≥ 2 and any collection A1, . . . ,Ak of subsets of Ω,

Bel

(
k⋃

i=1

Ai

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I |+1Bel

(⋂
i∈I

Ai

)
. (5)

A function verifying (5) for given k is said to be monotone of order k . A
belief function is monotone of order k for any k (monotone of order
infinite).
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Properties

Möbius transform

Theorem

Let Bel : 2Ω → [0, 1] be a belief function induced by a mass function m.
Then

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B), (6)

for all A ⊆ Ω.
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Properties

Completely alternating capacity

Theorem

A function Pl : 2Ω → [0, 1] is a plausibility function iff it satisfies the
following conditions:

1 Pl(∅) = 0;
2 Pl(Ω) = 1;
3 For any k ≥ 2 and any collection A1, . . . ,Ak of subsets of Ω,

Pl

(
k⋂

i=1

Ai

)
≤

∑
∅6=I⊆{1,...,k}

(−1)|I |+1Pl

(⋃
i∈I

Ai

)
. (7)

A set function verifying (7) is said to be alternating of order infinite, or
completely alternating. A plausibility function is thus a completely
alternating set function Pl such that Pl(∅) = 0 and Pl(Ω) = 1.
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Properties

Recovering m from Pl

Theorem

Let Pl : 2Ω → [0, 1] be a plausibility function induced by a mass function
m. Then

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B), (8)

for all A ⊆ Ω.
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Properties

Equivalence of representations

From the above results, it is clear that, given any of the three
functions m, Bel and Pl , we can recover the other two.
Consequently, these three functions can be seen as different facets of
the same information.
In the sequel, we will sometimes use the term “belief function” to
refer to any of these functions, when there will be no risk of
confusion.
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Bayesian mass functions

Bayesian belief functions are Probability measures

If m is Bayesian, then

Bel(A) = Pl(A) =
∑
ω∈A

m({ω})

for any A ⊆ Ω.
Furthermore, for any two disjoint subsets A and B of Ω,

Bel(A ∪ B) =
∑

ω∈A∪B
m({ω}) =∑

ω∈A
m({ω}) +

∑
ω∈B

m({ω}) = Bel(A) + Bel(B). (9)

Consequently, belief functions induced by Bayesian mass functions are
probability measures and are equal to their dual plausibility functions.
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Bayesian mass functions

Bayesian belief function=Probability measure

Conversely, it is clear that each probability measure P is a belief
function induced by the Bayesian mass function m such that
m({ω}) = P({ω}) for all ω ∈ Ω.
The set of probability measures is thus exactly the set of belief
functions induced by Bayesian mass functions.
This results shows us that the language of belief functions is more
general than that of probability theory.
As we will see, the conditioning operation, which plays a major role
in updating beliefs based on new evidence in the Bayesian
framework, can also be seen as a special case of a more general
operation in the belief function framework.
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Consonant mass functions

Consonant plausibility functions are possibility measures

A mass function m is said to be consonant if its focal sets are nested,
i.e., if they can be arranged in an increasing sequence A1 ⊂ . . . ⊂ Ar .

Theorem
Let m be a consonant mass function. Then, the belief and plausibility
functions verify the following properties for all A,B ⊆ Ω,

Bel(A ∩ B) = min(Bel(A),Bel(B)), (10)

Pl(A ∪ B) = max(Pl(A),Pl(B)). (11)

Properties (10) and (11) characterize, respectively, possibility and
necessity measures, which form the basis of Possibility theory
introduced by Zadeh (1978).
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Consonant mass functions

Contour function

An important consequence of (11) is that function Pl can be
deduced from its restriction to singletons.
More precisely, let pl : Ω→ [0, 1] be the contour function of m,
defined by pl(ω) = Pl({ω}), for all ω ∈ Ω.
For all A ⊆ Ω,

Pl(A) = max
ω∈A

pl(ω). (12)

The condition Pl(Ω) = 1 implies that maxω∈Ω pl(ω) = 1. The
contour function pl is then the possibility distribution associated to
the possibility measure Pl .
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Consonant mass functions

Possibility measures are consonant plausibility functions

Theorem

Let π be a possibility distribution on the frame Ω = {ω1, . . . , ωn}, with
elements arranged by decreasing order of plausibility, i.e.,

1 = π(ω1) ≥ π(ω2) ≥ . . . ≥ π(ωn),

and let Ai denote the set {ω1, . . . , ωi}, for 1 ≤ i ≤ n. Then, π is the
contour function for a mass function m obtained by the following formula:

m(Ai ) = π(ωi )− π(ωi+1), 1 ≤ i ≤ n − 1, (13)
m(Ω) = π(ωn). (14)
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Consonant mass functions

Example

Consider, for instance, the following possibility distribution defined
on the frame Ω = {a, b, c , d}:

ω a b c d

π(ω) 0.3 0.5 1 0.7

The corresponding mass function is

m({c}) = 1− 0.7 = 0.3
m({c , d}) = 0.7− 0.5 = 0.2

m({c , d , b}) = 0.5− 0.3 = 0.2
m({c, d , b, a}) = 0.3.
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Relation with imprecise probabilities

Coherent lower and upper probabilities

Let P be a non empty set of probability measures on some frame Ω.
Its lower and upper envelopes are set functions defined as follows:

P∗(A) = inf
P∈P

P(A), (15a)

P∗(A) = sup
P∈P

P(A). (15b)

for all subsets A of Ω.
Functions P∗ and P∗ are called, respectively, coherent lower and
upper probabilities.
Clearly, P∗(A) = 1− P∗(A) for all A, which is reminiscent of the
relation between belief and plausibility functions.
What is the relation between these notions?
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Relation with imprecise probabilities

Credal set

To each belief function Bel we can associate the set of probability
measures P that dominate Bel , i.e., the set of probability measures
such that P(A) ≥ Bel(A) for all subset A of Ω.
Because of the relation Bel(A) = 1− Pl(A), we also have
P(A) ≤ Pl(A) for all A, or

Bel(A) ≤ P(A) ≤ Pl(A), ∀A ⊆ Ω. (16)

Any probability measure P verifying (16) is said to be compatible
with Bel , and the set P(Bel) of all probability measures compatible
with Bel is called the credal set of Bel .
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Relation with imprecise probabilities

Allocation of probability

An arbitrary element of P(Bel) can be obtained by distributing each
mass m(A) among the elements of A.
More precisely, let us call an allocation of m any function

α : Ω× 2Ω \ {∅} → [0, 1] (17)

such that, for all A ⊆ Ω,∑
ω∈A

α(ω,A) = m(A). (18)

Each quantity α(ω,A) can be viewed as a part of m(A) allocated to
the element ω of A.
By summing up the numbers α(ω,A) for each ω, we get a
probability mass function on Ω,

pα(ω) =
∑
A3ω

α(ω,A). (19)
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Relation with imprecise probabilities

Belief functions are coherent lower probabilities

It can be shown (Dempster, 1967) that the set of probability
measures constructed in that way is exactly equal to the credal set
P(Bel).
Furthermore, the bounds in (16) are attained. A belief function is
thus a coherent lower probability.
However, a coherent lower probability is not always a belief function.
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Relation with imprecise probabilities

A counterexample

Suppose a fair coin is tossed twice, in such a way that the outcome
of the second toss may depend on the outcome of the first toss.
The outcome of the experiment can be denoted by
Ω = {(H,H), (H,T ), (T ,H), (T ,T )}.
Let H1 = {(H,H), (H,T )} and H2 = {(H,H), (T ,H)} the events
that we get Heads in the first and second toss, respectively.
Let P be the set of probability measures on Ω which assign
P(H1) = P(H2) = 1/2 and have an arbitrary degree of dependence
between tosses.
Let P∗ be the lower envelope of P.
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Relation with imprecise probabilities

A counterexample – continued

It is clear that P∗(H1) = 1/2, P∗(H2) = 1/2 and P∗(H1 ∩ H2) = 0
(as the occurrence Heads in the first toss may never lead to getting
Heads in the second toss).
Now, in the case of complete positive dependence,
P(H1 ∪ H2) = P(H1) = 1/2, hence P∗(H1 ∪ H2) ≤ 1/2.
We thus have

P∗(H1 ∪ H2) < P∗(H1) + P∗(H2)− P∗(H1 ∩ H2), (20)

which violates the complete monotonicity condition (5) for k = 2.
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Relation with imprecise probabilities

Two different theories

Mathematically, the notion of coherent lower probability is thus more
general than that of belief function.
However, the definition of the credal set associated with a belief
function is purely formal, as these probabilities have no particular
interpretation in our framework.
The theory of belief functions is not a theory of imprecise
probabilities.
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