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A Neural Network Classifier Based on
Dempster-Shafer Theory

Thierry Denœux

Abstract—A new adaptive pattern classifier based on the
Dempster–Shafer theory of evidence is presented. This method
uses reference patterns as items of evidence regarding the class
membership of each input pattern under consideration. This
evidence is represented by basic belief assignments (BBA’s) and
pooled using the Dempster’s rule of combination. This procedure
can be implemented in a multilayer neural network with specific
architecture consisting of one input layer, two hidden layers and
one output layer. The weight vector, the receptive field and the
class membership of each prototype are determined by minimizing
the mean squared differences between the classifier outputs and
target values. After training, the classifier computes for each
input vector a BBA that provides a description of the uncertainty
pertaining to the class of the current pattern, given the available
evidence. This information may be used to implement various
decision rules allowing for ambiguous pattern rejection and
novelty detection. The outputs of several classifiers may also be
combined in a sensor fusion context, yielding decision procedures
which are very robust to sensor failures or changes in the system
environment. Experiments with simulated and real data demon-
strate the excellent performance of this classification scheme as
compared to existing statistical and neural network techniques.

Index Terms—Data fusion, decision making, neural networks,
pattern classification, pattern recognition, uncertainty.

I. INTRODUCTION

SINCE the early 1980’s, the Dempster–Shafer (D–S) theory
of evidence has generated considerable interest in the

Artificial Intelligence community. In contrast, applications in
statistical pattern recognition have until recently been very
limited. In [22] and [28], D–S theory was shown to provide
a suitable framework for combining the results of several
independent classifiers, and thereby improve classification
accuracy. In [5], we introduced a-nearest neighbor (-NN)
classifier based on evidence-theoretic principles. This method
allows to compute a basic belief assignment (BBA) over the set

of classes [23], in such a way that the mass of belief assigned
to the reference set varies between 0 (perfect knowledge) and
1 (complete ignorance), depending on the informativeness of
the training data with respect to the class membership of the
pattern under consideration.Ambiguity and distance reject
options were introduced using the concepts oflower andupper
expected losses [6]. Simulations with artificial and real-world
data sets revealed a better performance of the proposed scheme
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as compared to the voting and distance-weighted-NN proce-
dures.

In this paper, an adaptive version of this evidence-theoretic
classification rule is proposed. In this approach, the assignment
of a pattern to a class is made by computing distances to a lim-
ited number of prototypes, resulting in faster classification and
lower storage requirements. Based on these distances and on the
degree of membership of prototypes to each class, BBA’s are
computed and combined using Dempster’s rule. This rule can be
implemented in a multilayer neural network with specific archi-
tecture consisting of one input layer, two hidden layers and one
output layer. The weight vector, the receptive field and the class
membership of each prototype are determined by minimizing
the mean squared differences between the classifier outputs and
target values.

The organization of this paper is as follows. Section II starts
with a brief presentation of the D–S theory and its application
to pattern classification. The new method is then introduced in
Section III, and decision-theoretic issues (including outlier re-
jection and novelty detection) are examined in Section IV. Fi-
nally, Section V describes numerical experiments which demon-
strate the advantages of the classification scheme proposed in
this paper.

II. BACKGROUND

A. Evidence Theory

In this section, the main concepts underlying the D–S theory
of evidence are briefly recalled, and some basic notation is
introduced. For a more complete introduction, the reader is
invited to refer to Shafer’s original work [23], and to more
up-to-date sources for reports of recent developments [14],
[25], [29]. Note that the general term “D–S theory” in fact
encompasses several distinct models of reasoning under uncer-
tainty, including the theory of hints [14] and the transferable
belief model (TBM) [25]. The nonprobabilistic view of the
latter model will be adopted in this paper.

Let be a finite set of mutually exclusive and exhaustive hy-
potheses, called theframe of discernment. A basic belief assign-
ment(BBA) is a function from to [0, 1] verifying

(1)

(2)

For any represents the belief that one is willing
to commit exactly to , given a certain piece of evidence. The
subsets of such that are called thefocal elements
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of . Associated with are abeliefor credibility function bel
and aplausibility function pl, defined, respectively, for all

as

bel (3)

(4)

The quantity bel can be interpreted as a global measure
of one’s belief that hypothesis is true, while pl may be
viewed as the amount of belief that couldpotentiallybe placed
in , if further information became available [26].

Two BBA’s and on , induced by two independent
items of evidence, can be combined by the so-calledDempster’s
rule of combinationto yield a new BBA , called
the orthogonal sum of and , and defined as:

(5)

(6)

The computation of is possible if and only if there exist at
least two subsets and of with such that

and . and are then said to be
combinable. The orthogonal sum is commutative and associa-
tive.

Alternatively, Smets [24] proposed to use theunnormalized
or conjunctiverule of combination , defined for all by

(7)

Note that, using this rule, positive masses can be assigned to
the empty set, which violates the condition expressed by (1).
Therefore, as a consequence of the adoption of the unnormalized
rule, this condition has to be removed from the definition of a
BBA. The definition of a belief function also has to be rewritten
as

bel (8)

Smets [24] has shown that these modifications to the standard
theory amount to accepting that none of the hypotheses in
might be true (open-world assumption). This helps to avoid
some counterintuitive effects that may be encountered when
combining contradictory pieces of evidence [24].

Having summarized all the available evidence in the form
of a BBA, the question may arise of how to make a decision
regarding the selection of one single hypothesis in. This
problem is not trivial, since the belief and plausibility functions
may induce different rankings of single hypotheses, i.e., it is
possible that, for some subsetsand of , bel bel
whereas pl pl . As remarked by Smets [26], decisions
have to be based on probabilities if Dutch Books are to be

avoided. A belief functions thus has to be transformed into a
probability function for decision making. The only transforma-
tion satisfying elementary rationality requirements was shown
by Smets to be the pignistic transformation [26], in which each
mass of belief is distributed equally among the elements
of for all . This leads to the pignistic probability
distribution defined as

BetP (9)

where denotes the cardinality of . As noted in [26],
this approach can be better understood if one makes a distinc-
tion between two levels: acredal level at which pieces of evi-
dence are taken into consideration and combined, and apignistic
level at which a probability distribution is constructed in order
to allow decision-making.

B. Application to Pattern Classification

Let us consider the case where some pattern has to
be classified in one of classes using a training
set of -dimensional patterns with known classification.1

Each training vector sufficiently close to according to some
distance measurecan be regarded as a piece of evidence that
influences our belief concerning the class of. This item of
evidence can be represented by a BBA over the frame of
discernment . If belongs to class , then
the unit mass should be distributed among two subsets of
the singleton and itself. If we consider as a reasonable
assumption that the portion of belief committed toshould be
a decreasing function of the distancebetween and , then

can be written in the following form:

(10)

(11)

(12)

where is a constant and is a monotonically
decreasing function verifying and
. In [5], an exponential form2 was postulated for

(13)

being a positive constant associated to class. A method
for optimizing parameters and has been described in [30].

The above discussion concerned an arbitrary training pattern
. However, it is unlikely that all training patterns will be

helpful in classifying , so that we can focus our attention on the
set of its nearest neighbors. For each , we
can construct a BBA summarizing the information provided
by concerning the class of. In order to classify , we need to
combine these BBA’s, using one of the two combination rules
mentioned in the previous section. In [5], the normalized rule
was considered, so that the BBA representing the evidence of

1In this paper, the class of each training pattern is assumed to be perfectly
known. However, the method can be easily extended to the more general case
where class labels are imprecise and/or uncertain [5], [7].

2A justification of this choice is provided in [7].
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the nearest neighbors ofwas defined as the orthogonal sum
(5), (6) of the individual , for all

(14)

Since the focal elements of are the classes represented among
, and , we have bel and pl

for . The pignistic probability
distribution is defined as

BetP (15)

for all .
In the case of losses (where the loss incurred by as-

signing a pattern to a class is 1 for misclassification and 0 oth-
erwise) and if no possibility of rejection exists, it is well known
that the Bayes rule leads to selecting the class with maximum
posterior probability [10]. In a similar way, the risk relative to
the pignistic probability distribution is minimized by choosing
the class with maximum pignistic probability [6]. More sophis-
ticated decision strategies will be examined in Section IV.

III. A DAPTIVE CLASSIFIER

A. From Neighbors to Prototypes

The computational complexity of the search for the nearest
neighbors in a training set is known to be an important draw-
back of -NN techniques. This problem may be alleviated by
synthesizing the learning set in the form of a limited number
of representative patterns, orprototypes. We therefore consid-
ered a modification of the procedure described in Section II-B,
in which the assignment of a pattern to a class is made by com-
puting its distances to prototypes: . Each prototype

is assumed to possess a degree of membershipto each class
, with the constraint . Full membership of a

prototype to one class can be considered as a special case where
for some and for .

A BBA describing the uncertainty pertaining to the class
membership of can be computed as a result of a three-step
procedure:

Step 1: The distances between and each prototype
vector are computed according to some metric, for example
the Euclidean one:

(16)

Step 2: The information provided by each prototype is rep-
resented by a BBA depending on the class membership of

, and on . Assuming proportionality between and
, we have

(17)

(18)

where is a decreasing function varying between 1 and 0 and
is a parameter associated to prototype.This def-

inition is quite similar to that given by (10)–(12), except that

positive masses are now assigned to each classfor which
. Note that we have

(19)

and , so that verifies the conditions expressed be
(1) and (2). As before (13), can be defined as

(20)

where is now a positive parameter associated to prototype.
Step 3: The BBA’s are combined using

either the conjunctive rule defined by (7), or the Dempster’s
rule. The former yields an unnormalized BBA

(21)

while the latter yields a normalized BBA:

(22)

It is straightforward to show that with
.

In the case of losses and no reject option, a decision can
then be made to assign input vectorto the class
verifying

(23)

Note that we also have , so that
the consideration of or leads to the same decision.

B. Connectionist Implementation

The classification method just introduced has some similarity
with radial basis function (RBF) networks [18]. A RBF network
is a neural network composed of an input layer, a hidden layer
and an output layer (Fig. 1). The response of hidden unitto an
input vector is defined as a decreasing function of the distance
between and a weight vector . The output signal from the
th output unit with weight vector is obtained as a weighted

sum of the activations in the hidden layer:

(24)

where
th component of vector ;

output from hidden unit;
number of hidden units.

The different parameters can be determined by gradient descent
of some error function.

The evidence-theoretic classifier introduced in this paper can
also be represented in the connectionist formalism as a neural
network with an input layer, two hidden layers and , and
an output layer (Fig. 2). Each layer to corresponds to
one step of the procedure described in the former section:
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Fig. 1. Architecture of a radial basis function network.

Fig. 2. Connectionist implementation of the evidence-theoretic classifier. The
fixed-weight connections between layersL andL , as well as inside layerL ,
are described in Fig. 3.

1) Layer contains units with activation
for . It is identical

to the hidden layer of an RBF network with exponential
activation function.

2) Layer computes the BBA associated to each pro-
totype. It is composed of modules of units
each. The units of moduleare connected to neuron
of the previous layer. The vector of activations

of module corresponds to the belief
masses assigned by

(25)

(26)

3) The BBA’s are then combined
in layer , composed of interconnected modules
of sigma-pi units. The vector of activations

Fig. 3. Details of incoming connections to modulei of layer L . All
connection weights are fixed and equal to unity.

of module in that layer is
defined as

(27)

where is the conjunctive combination of the BBA’s

(28)

(29)

The activation vectors for can be recur-
sively computed using the following formula:

(30)

(31)

This calculation can be performed by each computing el-
ement in module of layer , provided it receives
input from module in the same layer, and from
module of layer (Fig. 3). This can be achieved by
fixed-weight connections between layersand , and
inside layer .

4) The network output vector is
then defined as

(32)



DENŒUX: NEURAL NETWORK CLASSIFIER BASED ON DEMPSTER–SHAFER THEORY 135

or, alternatively

(33)

(34)

Note that, because of the commutativity and associativity of
the conjunctive combination, the network output is independent
from the order in which the prototypes are taken in considera-
tion. It therefore remains unchanged by any permutation of the
upper indices in layers , , and .

Although the architecture of that network looks somewhat
more complex than that of a RBF network, both models in-
volve approximately the same amount of computation. In both
networks, the computation of the activations in the first hidden
layer requires arithmetic operations (where denotes
the number of inputs), and the combination of the outputs from
the first hidden layer can be performed in operations.
Hence, the overall complexity is operations for
the propagation of one input pattern.

C. Parameter Learning

The above network can be trained, in the same way as a RBF
network, by optimizing a performance criterion.

Let us denote by the target output vector
for pattern , with if . An output error for that
pattern can be defined by comparingto the classifier output
vector (or alternatively its normalized version . Since
has components while is of length , we need to
define from a vector of length . This can be achieved by
distributing a fraction of (the mass assigned to the set

of classes) to each class. A transformed output vector
is then defined as

(35)

with . Obviously, , and represent, re-
spectively, the credibility, the plausibility and the pignistic prob-
ability of class , with respect to the BBA . The output error

for a given and input pattern can then be defined as3

(36)

The mean output error for the whole training setof size is
then given by

(37)

If the normalized output vector is used, then a corresponding
transformed output vector and an associated error can be
defined in a similar fashion.

3Other error measures could be used, such as, for example, the cross entropy
measure [1]:

CE(xxx) = � t log (P ) + (1� t ) log (1� P ):

The parameters , , , and can be adjusted so as to
minimize (respectively, ), under the constraints

(38)

(39)

(40)

for all . These constraints can be taken into account
by introducing new parameters, , and such that

(41)

(42)

(43)

and minimizing (respectively, ) with respect to , , ,
and . The derivatives of [respectively, ] with re-
spect to all parameters are given in Appendix A. The derivatives
of (respectively, ) are obtained by summing the deriva-
tives of [respectively, ] for all . As shown in
Appendix A, calculation of the whole gradient can be performed
in linear time with respect to the input dimension, the number

of classes and the numberof prototypes. Convergence to a
local minimum of the error function can be ensured using iter-
ative gradient-based optimization procedures such as described
in [2]. Note that the iterative minimization of corresponds
to what is refered to as “batch learning” in the neural network
literature.

A regularized version of the error criterion allowing to
limit the impact of overparametrization on generalization
performance is described in Appendix B.

IV. DECISION ANALYSIS

Once a classifier has been trained using the method described
in the previous section, the question arises of how to use it for
classifying previously unseen patterns. As mentioned in Sec-
tion II-B, a straightforward decision strategy is to to select the
class with maximum pignistic probability. More complex rules
allowing for rejection of ambiguous patterns and novelty detec-
tion are discussed in this section. A much more detailed discus-
sion on this issue may be found in [6].

To begin with, let us assume that a normalized BBAhas
been computed for pattern, based on training set information.
As in standard Bayesian decision theory, we now consider the
problem of deciding between a finite set of actions, based
on and on the losses incurred for choosing action

whereas the pattern under consideration actually belongs to
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class , for each . The risk relative to the pig-
nistic probability distribution BetP induced by, defined for
each as

BetP (44)

(45)

(46)

With different choices for and ,
the strategy of pignistic risk minimization will lead to different
decision rules. To demonstrate the generality of this approach,
let us examine how pattern rejection may be handled in this
framework.

As remarked by Dubuisson and Masson [9], pattern rejection
may be useful in at least two different situations: 1) when several
classes seem almost equally likely, so that the risk of misclassi-
fication is very high [4] and 2) when the pattern under consid-
eration is surprisingly different for previous data, which may be
caused by gross measurement errors (due to sensor failure for
example), or by the occurrence of an entity from a population
that was not represented in the learning set.

To see how these two situations can be modeled in our ap-
proach, let us consider two distinct cases, corresponding to the
hypotheses of existence or nonexistence of unknown classes, re-
spectively.

Case 1: The training set contains samples from all classes.
The possible actions are then assigned to class for

, denoted by , and rejection . As before,
the losses are defined to be 0 for correct classification and
1 for misclassification. Furthermore, the loss of rejecting a
pattern is assumed to be the same whatever the actual class of
that pattern, and is noted . The risks relative to the pignistic
probability distribution are then

BetP

(47)

(48)

Assignment to the class with the largest pignistic probability is
then decided if that probability is greater than . Rejec-
tion is preferred when the maximum probability is too small,
which may occur when several classes are almost equally likely,
that is to say, for some and , or when

. The first situation corresponds to an ambiguous pat-
tern (situated close to the boundary between two classes), while
the second one corresponds to an outlier (situated at a large dis-
tance from each of the training patterns). The same rule thus
allows to reject both ambiguous patterns and outliers.

Case 2: Some classes may not be represented in the training
set. This may happen for various reasons [6], for example:

1) some classes have very small prior probabilities;
2) Some classes correspond to states of nature that are sys-

tematically avoided for being too dangerous or too costly

(such as certain faults in technological systems for ex-
ample);

3) the number of classes is very high;
4) an exhaustive list of all possible states of nature is not

available (some classes have never been observed and are
not even conceived by the user).

In that case, the set of classes may be partitioned into a set
of known classes and a set containing those states of na-
ture which are not represented in the learning set. Since nothing
is known about set , it can be treated as a singleton:

. The set of classes then contains elements:
. As before, the possible actions are

assignment to one (known or unknown) class, and rejection:
. Let us assume the losses to be 1

for wrong assignment to a known class, 0 for correct classifi-
cation, for rejection, and for wrong assignment to the
unknown class. It seems reasonable to assume , since
declaring a pattern as unknown can be seen as a kind of rejec-
tion, which may have less severe consequences than a misclas-
sification error. The pignistic risks are then

BetP for (49)

(50)

(51)

(52)

The decision rule is then similar to the previous one, except
that assignment to the unknown class is now decided whenever

exceeds some threshold, i.e., when the pattern is very
dissimilar from each of the training patterns.

These decision rules will be demonstrated in the next section.

V. EXPERIMENTAL RESULTS

This section reports some experimental results that demon-
strate various aspects of the classification method presented in
this paper. It is subdivided into three parts.

1) First, a real data set is used to illustrate the form of the
outputs generated by our method, as well as examples
of the decision regions produced by the decision rules
presented in the former section.

2) The performance of our method is then assessed quanti-
tatively on two benchmark classification tasks for which
results from a significant sample of other methods are
available; the results obtained basically show that 1)
our method outperforms most of the other classification
methods tested on these two tasks and 2) it allows for
efficient rejection of outliers.

3) The third part describes an experiment simulating a data
fusion application; two classifiers are trained separately
to classify patterns based on independent feature vectors
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Fig. 4. Maximum credibility for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.5, 0.7, and 0.9.(+: iris virginica,
�: iris versicolor, �: iris setosa).

Fig. 5. Maximum plausibility for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.7, 0.8, and 0.9(+: iris virginica,
�: iris versicolor, �: iris setosa).

(from two different sensors), and their outputs are com-
bined: 1) in the framework of Bayes theory with statistical
and neural network classifiers and 2) in the framework of

D–S theory with our method; our approach proves much
more robust than the other methods to the failure of one
sensor.
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Fig. 6. Ignorance(m(
)) for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.1, 0.3, and 0.5(+: iris virginica, �:
iris versicolor, �: iris setosa).

A. Iris Data

The well-known Anderson iris data consist of 150 samples
belonging to three classes (iris virginica, iris versicolor, and
iris setosa), in a four-dimensional (4-D) feature space. Only two
features (petal width and petal length) were considered in this
analysis. In the training phase, the 150 samples were presented
to a network with six prototypes. The network was trained by
minimizing with . The initial prototype locations
were determined by a simple clustering method. Since the clas-
sification task is very easy in this example, the results will only
be interpreted qualitatively.

Different representations of the outputs produced by the clas-
sifier are shown in Figs. 4–7. Fig. 4 shows the maximum belief
or credibility, i.e., the quantity

bel bel

which may be interpreted as the weight of the evidence directly
supporting the assignment of the input vector to its predicted
class. As expected, the credibility decreases with the distance to
training vectors, as the available information become less reli-
able. The maximum plausibility

pl pl

represented in Fig. 5 reflects the absence of evidence that con-
tradicts the assignment of the input vector to its predicted class.
It is high when there is little ambiguity, and it is minimum in

the vicinity of the boundary between classes, where the avail-
able evidence points simultaneously to several hypotheses with
almost equal strength. At each point of the feature space, the
width of the intervalbel , pl is equal to the mass

, which characterizes the amount of belief that could not
be committed to any particular class because of the weakness of
the available information (Fig. 6); it is larger in those regions of
the feature space which are far away from each of the training
vectors, and can be interpreted as a measure of ignorance. Fi-
nally, the maximum pignistic probability

BetP BetP

is shown in Fig. 7. It corresponds to an equal allocation of the
uncommitted mass to each of the classes, and is particu-
larly useful for decision making, as shown in Section IV.

Three different partitions of the feature space into decision
regions are shown in Figs. 8–10. In all cases, it is assumed that

, for , and the strategy
of pignistic risk minimization is used. In Fig. 8, there is no re-
ject option, and the training set is supposed to be complete (no
unknown class). In that case, one has no other choice than as-
signing each feature vector to one of the known classes, and the
decisions are very close to what would be achieved with a con-
ventional classifier. In Fig. 9, the training set is still assumed
to be complete, but rejection is possible: this option tends to be
chosen for ambiguous patterns and for outliers. In Fig. 10, an
unknown class was explicitly included into the model specifi-
cation. Outliers tend to be categorized as belonging to the un-
known class, while dubious cases are rejected.
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Fig. 7. Maximum pignistic probability for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.7, 0.8, and 0.9(+: iris
virginica, �: iris versicolor, �: iris setosa).

Fig. 8. Decision regions for the iris data, obtained by minimizing the pignistic risk with thef0; 1g loss function. The only possible actions are assignment to one
of the three classes(+: iris virginica, �: iris versicolor, �: iris setosa).

B. Performance Comparison

1) Phoneme Recognition Data:As a first example of a
complex real-world classification task, we considered the
speech recognition data collected by Deterding [8] and used

by Robinson [21] in a benchmarking study of neural network
and statistical classifiers. The data set is composed of feature
vectors obtained by recording examples of the eleven steady
state vowels of English spoken by fifteen speakers [8], [21]
Words containing each of these vowels were uttered once by
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Fig. 9. Decision regions for the iris data, obtained by minimizing the pignistic risk with thef0; 1g loss function. The possible actions are assignment to one of
the three classes, and rejection with loss� = 0:2 (+: iris virginica, �: iris versicolor, �: iris setosa).

Fig. 10. Decision regions for the iris data, obtained by minimizing the pignistic risk with thef0;1g loss function. The possible actions are assignment to one of
the three classes, rejection with loss� = 0:2, and assignment to the unknown class with� = 0:215 (+: iris virginica, �: iris versicolor,�: iris setosa).

the fifteen speakers. Four male and four female speakers were
used to build a training set, and the other four male and three
female speakers were used for building a test set. After suitable
preprocessing, 568 training patterns and 462 test patterns in
a ten-dimensional (10-D) input space were collected. The

results obtained with our method with one to five prototypes
per class are shown in Table I, together with results reported
by Robinson [8] and Hastie and Tibshirani [12] for various
statistical and neural network classifiers. Test error rates are
defined as the proportions of misclassifying samples in the test
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set. Note that, although none of the tested method appears at
first sight to perform very well on this data, the test error rates
obtained should be compared with that of the naive decision
rule choosing the most frequent class in the training set, which
is only equal to 0.91 in that case.

In this and the next experiment (Section V-B2), the initial
prototype locations in our method were determined using a stan-
dard clustering procedure (a variant of the-means algorithm),
starting from random initial conditions. The initial values of the
other parameters were set heuristically to and
for (these values were fixeda priori and were not
optimized). The initial membership values of each prototype
to each class were defined as the proportion of training sam-

ples belonging to class in the neighborhood of prototype.
With this initialization procedure, there was almost no variation
of the results in several runs.

Detailed descriptions of the experimental conditions for the
other methods are given in [12] and [21]. In Robinson’s sim-
ulations, each result was based on a single trial with random
starting weights. In the radial basis function method as defined
by Robinson, prototype locations were placed at the points de-
fined by the input examples, whereas they were placed randomly
in the Gaussian node network.

CART is a decision tree generation procedure developed by
Breimanet al. [3]. MARS (multivariate regression splines) is
an adaptive nonparametric regression technique, able to capture
interactions in a hierarchical manner [11]. Thedegreeis a pa-
rameter of the procedure that limits the order of the interactions
allowed. BRUTO is an adaptive method for estimating an ad-
ditive model using smoothing splines [13]. Both are powerful
flexible discriminant analysis techniques [13].

As shown in Table I, our approach with at least three proto-
types per class dominates the other techniques for this classifi-
cation task.

2) Forensic Glass Data:This data set contains the descrip-
tion of 214 fragments of glass [17] originally collected for a
study in the context of criminal investigation. Each fragment has
a measured reflectivity index and chemical composition (weight
percent of Na, Mg, Al, Si, K, Ca, Ba, and Fe). As suggested
by Ripley [20], 29 instances were discarded, and the remaining
185 were re-grouped in four classes: window float glass (70),
window nonfloat glass (76), vehicle window glass (17) and other
(22). The data set was split randomly in a training set of size 89
and a test set of size 96.

Our method (with normalized outputs) was compared to three
neural network classifiers: learning vector quantization (LVQ)
[15], RBF networks and multilayer perceptrons. Each of the
three methods based on prototypes (ETC, RBF, and LVQ) was
provided with the same initial codebook vectors generated by a
clustering procedure with random initial conditions (except for
the case were the initial prototypes were chosen as the
sample mean in each class). In RBF networks, the second layer
of weights was initialized using a pseudo-inverse approach. The
initial parameters for the evidence-theoretic method were deter-
mined exactly in the same way as in the previous experiment.
The RBF, MLP and evidence-theoretic networks were trained
with the same optimization algorithm (gradient descent with
adaptive learning rates). The numberof prototypes was varied

TABLE I
TEST ERROR RATES FOR THE PHONEME

RECOGNITION DATA. LINES (1)–(11)ARE TAKEN FROM ROBINSON (1989);
LINES (12)–(18)ARE TAKEN FROM HASTIE AND TIBSHIRANI (1994).

ETC: EVIDENCE-THEORETICCLASSIFIER

from 4 to 8, and the number of hidden units for the MLP’s was
varied from 2 to 8. Each learning algorithm was run ten times
in each configuration.

The average test error rates and standard deviations are re-
ported in Table II, and represented graphically in Fig. 11. As
can be seen, our method yields significantly better results than
the three other neural network techniques. The best value of the
mean error rate obtained is 0.29 for 7 prototypes. This value
is to be compared with the experimental results reported by
Ripley [20] with the same data, in an extensive study of sev-
eral statistical and neural network pattern classifiers (Table III).
As indicated by Ripley, the main neural network results used
softmax and maximum-likelihood estimation, and were aver-
aged over five runs using different random initial weights. The
predictive method (Bayesian approach) with six hidden units
was the only neural network method to yield an error rate
below 30%. However, the method used 10 000 random sam-
ples from Gaussians about the peaks found in 20 optimization
runs, and was thus much more computationally intensive than
ours. Only two conventional statistical techniques performed
well on these data: the nearest-neighbor method (with compar-
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Fig. 11. Test error rates for the glass data, as a function of the number of hidden units (LVQ: learning vector quantization; RBF: radial basis functionnetwork;
ETC: evidence-theoretic classifier; MLP: multilayer perceptron).

TABLE II
TEST ERRORRATES FOR THEFORENSICGLASS EXAMPLE WITH DIFFERENT

VALUES OFn (MEANS OFTEN RUNS WITH STANDARD DEVIATIONS). THE

METHODS ARELEARNING VECTORQUANTIZATION (LVQ), RADIAL BASIS

FUNCTION (RBF) NETWORK, MULTI-LAYER PERCEPTRON(MLP) AND

EVIDENCE-THEORETICCLASSIFIER (ETC)

atively high computational and storage requirements), and the
tree structured classifier (CART). Note however that no method
was significantly better than ours (only differences of more
than 4% are significant at the 5% level [20]). According to
Ripley, the estimated lower bound for the Bayes risk was 11%,
but no method comes close to this bound, which is probably
too conservative.

The robustness of our method to outliers and its ability to
reject them using the decision rules described in Section IV
were also investigated using these data. For that purpose, outliers
were artificially introduced in the test data set by replacing each
input vector by five copies corrupted by additive noise, of
the form , where is a realization of a random vector
of nine independent Gaussian variables with zero mean and
standard deviation. Parameter allows to control the degree

TABLE III
TEST ERRORRATES FOR THEGLASS DATA, FROM [20]

of corruption and was varied from 0 to 1 (the 9 input features
have standard deviations between 0.003 and 1.4). A classifier
was trained by our method using the (uncorrupted) learning set,
and was used to classify corrupted samples using the decision
rule presented in Section IV (case 1), for various values of

. Fig. 12 shows the error and rejection rates as a function
of , for (solid lines) and (dashed lines).
Despite the importance of the corruption, the performance of
the classifier is not dramatically affected. The error rate of 0.29
without rejection obtained with the original data can still be
attained at the cost of rejecting approximately one third of the
data. As a comparison, a multilayer perceptron with six hidden
units was trained using the same learning data, and used to
classify the corrupted test data using the Bayes decision rule
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Fig. 12. Robustness experiment with the glass data: error rates (increasing curves) and rejection rates (decreasing curves) as a function of� , for the ETC method
applied to the uncorrupted data (solid lines) and corrupted data with� = 0:5 (dashed lines).

Fig. 13. Robustness experiment with the glass data: error rates (increasing curves) and rejection rates (decreasing curves) as a function of� , for the MLP
classifier (6 hidden units) applied to the uncorrupted data (solid lines) and corrupted data with� = 0:5 (dashed lines).

with the same loss function as above. The error and rejection
rates for (solid line) and (dashed line) are
shown as a function of in Fig. 13. With uncorrupted data,
the MLP classifier has an error rate without rejection of 0.38,
and rejection effectively allows to decrease the error rate to
any desired level. However, the performance of the classifier
collapses with the introduction of noise in the test data set. The
achievable error rates are around 0.73 and 0.30 for 0 and 50%

rejection rate, respectively. This classifier is thus less robust to
outliers than the previous one, and its rejection rule is much less
efficient in controlling the error rate. Fig. 14 shows the error
rates obtained by the MLP and ETC methods, with 0, 0.1, and
0.3 rejection rates (the 0.1 and 0.3 rates are only obtainable by
the ETC method), as a function of. These results confirm the
much better performance of the ETC method in the presence
of corrupted inputs.
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Fig. 14. Test error rates on the glass data as a function of noise standard deviation�, for the MLP classifier and the ETC method with 0, 10, and 30% rejection
rates.

C. Sensor Fusion Experiment

The main distinctive feature of our method as compared to
conventional statistical or neural network classifiers concerns
the nature of the outputs, which consist in a set of be-
lief masses assigned to each individual classand to the set
of all classes. The fraction of the mass assigned toreflects
a lack of information available to make a decision, and can be
used as an indication of the reliability of the classification pro-
cedure regarding the pattern under consideration. Sensor fusion
provides a realistic context in which the value of this indica-
tion can be assessed. Assume that two classifiersand are
trained separately to perform a classification task based on inde-
pendent feature vectorsand provided by two sensors and

, respectively. A sensor fusion mechanism is used to combine
the outputs from these two classifiers (Fig. 15). Then, in case of
failure of one sensor, say , the system should be able to de-
tect the fact that classifier becomes less reliable, and should
consequently decrease its influence on the final decision. If the
reliability of classifier is correctly assessed, then the per-
formance of the whole system should never get worse than the
performance of classifier alone.

Before we describe our simulation experiment, let us
examine how this fusion problem can be treated using two
different frameworks: Bayes decision theory and D–S theory.

First, assume that and are probabilistic classifiers pro-
viding estimates for and , respectively. If and

are observed simultaneously, then the classification should be
based on for , which can be computed as

(53)

Fig. 15. The sensor fusion problem. SensorS provides feature vectorxxx
to classifierC , and sensorS provides feature vectoryyy to classifierC .
The outputs of both classifiers are combined using either the Bayes rule
for probabilistic classifiers, or the Dempster’s rule for evidence-theoretic
classifiers.

If and are assumed to be conditionally independent in each
class, then , and we have

(54)

(55)

(56)

Hence, the probability distribution givenand can be obtained
by multiplying the posterior probabilities provided by each clas-
sifier, dividing by the priors, and renormalizing.

When and are evidence-theoretic classifiers, their out-
puts are BBA’s that can be denoted and , respec-
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tively. Since and are independent pieces of evidence, the
Dempster’s rule of combination can be applied:

(57)

Note that this combination rule does not make use of the prior
probabilities, as was the case with the Bayes rule.

To compare the behavior of both data fusion procedures, we
devised the following experiment. We considered a two-class
problem (with equal priors) and two Gaussian random feature
vectors and with following class-conditional
probability distributions:

for , with

Vectors and were assumed to be conditionally independent,
that is to say for .

Training and cross-validation sets of 60 and 100 labeled sam-
ples, respectively, were generated independently for each of the
two classification tasks (class prediction fromand from , re-
spectively). A test set of 5000 samples of was also gener-
ated to evaluate the combination procedure.

Four different kinds of classifiers were trained on each
learning set: multilayer perceptrons, RBF networks, quadratic
discriminant analysis (i.e., the plug-in sample rule with het-
eroscedastic normal model [16]), and our method. For the three
neural-network techniques, the number of hidden units was
varied from 2 to 6, and the architecture yielding the lowest
cross-validation error was selected. For each method, the two
classifiers based on each “sensor” were then applied to the test
data, and their outputs were merged using the appropriate com-
bination rule (the Bayesian rule for MLP, RBF and quadratic
classifiers, and Dempster’s rule for our method).

In a first step, the whole procedure (data generation, training
and testing) was repeated ten times. The results obtained by the
four methods and by the Bayes classifier (the optimal decision
rule based on the true probabilities and class-conditional den-
sities) are shown in Table IV. The differences in error rates ob-
tained by the four learning methods are small, as could be ex-
pected given the relatively low complexity of the classification
problems involved. The RBF method has the largest error, while

TABLE IV
TESTERRORRATES FOR THESENSORFUSION PROBLEM (UNCORRUPTEDDATA)

the best result is obtained by the quadratic rule, which has the
advantage in this case of being based on the true probabilistic
model (with estimated parameters).

In a second step, the impact of the failure of one sensor on
the classification accuracy of the system was simulated by cor-
rupting the test set with additive noise. Each input vectorwas
replaced by a corrupted version , where is a realization
of a normal random vector with zero mean and standard devia-
tion . Parameter was varied from 0 to 10 to simulate various
levels of noise. The test performances of the data fusion proce-
dures based on each of the five classifiers are shown in Fig. 16.
As can be seen, the procedures based on conventional classi-
fiers are dramatically affected by the corruption of one of the
two feature vectors. In contrast, the error rate of the procedure
based on our method increases only moderately with noise level,
and it ever gets higher than the error rate of the classifier based
on feature vector alone: the procedure is much more robust to
strong changes in the distribution of input data.

To increase the robustness of conventional classifiers to out-
liers, Dubuisson and Masson [9] have suggested to modify the
Bayes decision rule by adding a “distance rejection” mecha-
nism: a pattern that was improbable under the current proba-
bilistic model (or, equivalently, that was far from all training
samples) is rejected. Following this idea, the four classifiers
used in this study were modified as follows. For RBF and MLP
classifiers, the distance rejection rule was

if reject

where is the nearest prototype toand is the maximum
distance between prototypeand each of the training vectors.
(Note that the prototypes generated by the RBF network were
used to implement novelty detection in the MLP network.) For
the quadratic classifier, the rule was

if reject

where is the estimated probability density atand
is the lowest estimated density observed in the training set. A
similar procedure was used for the Bayes classifier, but the true
densities were used instead of the estimated ones.

The error rates obtained by each of the four modified pro-
cedures and the evidence-theoretic method for different noise
levels are shown in Fig. 17. We can see that distance rejection ef-
fectively increases the robustness of the conventional methods,
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Fig. 16. Results of the sensor fusion experiment: test error rates as a function of noise standard deviation�. The methods are evidence-theoretic classifier (ETC),
multilayer-perceptron (MLP), radial basis function network (RBF), quadratic classifier (QUAD) and Bayes classifier (BAYES).

Fig. 17. Results of the sensor fusion experiment: test error rates as a function of noise standard deviation�. The methods are the evidence-theoretic classifier
(ETC), and conventional classifiers with distance rejection: multilayer-perceptron (MLP), radial basis function network (RBF), quadratic classifier (QUAD) and
Bayes classifier (BAYES).

particularly for high levels of noise. However, the evidence-the-
oretic method still has the best performance, even when com-
pared to the modified Bayes procedure, which uses additional
information concerning the data generation process. This good
behavior of our method may be explained by the effective use
that it makes of the information about the reliability of each clas-
sifier, contained in the quantities and .

VI. CONCLUSIONS

A new pattern classification method based on the Demp-
ster–Shafer theory of evidence has been presented. This
approach can be seen as combining ideas from supervised
neural network models with local representation, and the
evidence-theoretic -NN rule described in [5]. As in RBF
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networks, classification is based on assessing the similarity
of the input pattern with a set of reference patterns. This
information is converted in the form of BBA’s, which are then
combined using Dempster’s rule of combination. The system
is trained by optimizing a performance criterion. This method
can be implemented in a neural network architecture with two
hidden layers and one output layer. After training, each of the
neural network weights receives a natural interpretation. Each
prototype is characterized by a weight vector, a receptive
field parameter and a membership degree to each class

. The parameter can be interpreted as an indication of the
relative importance of the considered prototype in classifying
new patterns. This method has exhibited excellent performance
in several classification tasks as compared to some of the most
widely used statistical and neural network classifiers, and has
proved extremely robust to strong changes in the distribution
of input data.

The introduction of Dempster–Shafer theory in statistical pat-
tern recognition has several advantages, some of which were al-
ready mentioned in [5]. The classifier’s output for each input
vector has the form of a basic belief assignment, which essen-
tially differs from a probability distribution in that it potentially
assigns belief masses to all sets of classes. In particular, the mass
assigned the whole frame of discernmentreflects the partial
lack of information available for decision making. This indica-
tion can be used for rejecting the pattern under consideration
if the associated uncertainty is too high, thus allowing to im-
plement efficient novelty detection procedures. The same infor-
mation could also be used qualitatively in situations where the
classifier is essentially used as an aid to support human decision
making. A further feature of Dempster–Shafer theory consists
in the possibility of explicitly introducing unknown states of na-
ture in the model, without making any assumption about these
states. This makes the proposed method particularly suitable to
complex classification tasks in which complete specification of
the problem is difficult or impossible, such as encountered in
medical diagnosis or system monitoring.

APPENDIX A

Gradient Calculation with Unnormalized Outputs:We first
assume that the unnormalized outputis used. Let us first re-
call the propagation equations for input pattern

For

(58)

(59)

(60)

(61)

(62)

The output vector is defined as

(63)

with . The error for pattern is

(64)

with

(65)

Derivatives w.r.t. : The derivative of w.r.t. is
given by

(66)

(67)

(68)

Let us now compute

(69)

Since the th output does not depend on for , this
sum simplifies in

(70)

(71)

In order to express , we use the commutativity and
associativity of the operator to rewrite the output BBA as
the conjunctive combination of two terms, one of which does
not depend on the parameters associated to prototype

(72)
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Fig. 18. Improvement of generalization by weight decay: average test error rates on Gaussian data as a function of numbern of prototypes for RBF(� � �),
ETC with � = 0 (——) and ETC with� = 0:01 (� �).

with . The vector

(73)

can be computed by solving the following system of
equations:

(74)

(75)

yielding

(76)

(77)

Note that the denominators in the above equations are always
positive, since

With this notation:

(78)

and

(79)

Derivatives w.r.t. , , and : The derivatives of
w.r.t. , , and can be expressed as a function of

(80)

(81)

(82)

We therefore need to compute

(83)



DENŒUX: NEURAL NETWORK CLASSIFIER BASED ON DEMPSTER–SHAFER THEORY 149

Since

(84)

(85)

we have

(86)
which can be introduced in (80)–(82).

Gradient Calculation with Normalized Outputs:If the nor-
malized output vector is used, we consider the error function
for input

(87)

with

(88)

(89)

(90)

The expressions for the derivatives w.r.t., , , and
derived above are still valid if one replaces by . How-
ever, we now have different expressions for and

.
As before:

(91)

(92)

but we now have

(93)

(94)

(95)

(96)

Hence, using (78)

(97)

Lastly

(98)

In this sum, all the terms have already been calculated [(84),
(85), and (96)], except

(99)

(100)

with completes the calculation of the gradient of and
w.r.t. all the parameters.

Complexity Considerations:Let us first consider the case of
unnormalized outputs. For each , the calculations
can be done in the following order:

1) calculation of using (76) and (77),
2) calculation of for using (79),
3) calculation of the terms and

in (68),
4) calculation of for using (68),
5) calculation of , , and

using (80), (81), and (86),
6) calculation of for using (82).

Steps 1–5 require arithmetic operations, and step 6 can
be performed using operations. Hence, the complexity of
the whole gradient calculation in that case is .

In the case of normalized outputs, the only difference resides
in the calculation of the derivatives w.r.t. and . The former
can be computed using a constant number of operations using
(97) after calculation of the term ,
while the latter requires operations. Hence, the com-
plexity of the gradient calculation is also in that
case.

APPENDIX B

A common approach for improving generalization in neural
network classifiers consists in penalizing complexity by means
of a weight-decay term added to the error function [19], [27].
The definition of such a term is particularly easy in our model
since the parameter controls the influence of each hidden
unit on the output: when , is the vacuous BBA
and consequently has no effect on the classification. Therefore,
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a natural choice for a penalty term is . The criterion to
be minimized then becomes

(101)

or

(102)

where is a regularization parameter. Parametercan be either
determined by cross-validation or fixed to a given value chosen
from experience.

The gradient of (respectively, is identical to that of
(respectively, except for

(103)

The efficiency of this method in eliminating irrelevant proto-
types was tested on two-class Gaussian data. Class 1 was com-
posed of two Gaussian clusters with means and
and the same covariance matrix(the identity matrix). Class 2
was composed of a single cluster with mean and covari-
ance matrix . The prior probability of each cluster was equal
to 1/3.

The generalization performances of RBF networks and ev-
idence-theoretic classifiers (with and were
tested for numbers of prototypes ranging from 2 to 16, for ten
independent training sets of 60 samples. The probabilities of
misclassification were estimated using a test set of size 5000.
The initialization procedure was the same as in the previous ex-
ample.

The average test error rates as a function of the number of
prototypes are plotted in Fig. 18. The best performance is at-
tained with two prototypes by all three methods. The error rate
increases as a function offor RBF networks and evidence-the-
oretic method without regularization, but remains stable for ev-
idence-theoretic method with regularization.
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