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A Neural Network Classifier Based on
Dempster-Shafer Theory

Thierry Denceux

Abstract—A new adaptive pattern classifier based on the as compared to the voting and distance-weiglitédlN proce-
Dempster—Shafer theory of evidence is presented. This method dyres.
uses reference patterns as items of evidence regarding the class |, this paper, an adaptive version of this evidence-theoretic

membership of each input pattern under consideration. This o . . .
evidence is represented by basic belief assignments (BBA's) andclassification rule is proposed. In this approach, the assignment

pooled using the Dempster’s rule of combination. This procedure Of & pattern to a class is made by computing distances to a lim-
can be implemented in a multilayer neural network with specific ited number of prototypes, resulting in faster classification and
architecture consisting of one input layer, two hidden layers and |ower storage requirements. Based on these distances and on the
one output layer. The weight vector, the receptive field and the  gaqree of membership of prototypes to each class, BBAs are
class membership of each prototype are determined by minimizing . . \ )

the mean squared differences between the classifier outputs and _Computed a”q combln_ed using Dempster's ru_Ie. This _”_Jle Can_be
target values. After training, the classifier computes for each implemented in a multilayer neural network with specific archi-
input vector a BBA that provides a description of the uncertainty tecture consisting of one input layer, two hidden layers and one
pertaining to the class of the current pattern, given the available output layer. The weight vector, the receptive field and the class
evidence. This information may be used to implement various membership of each prototype are determined by minimizing

decision rules allowing for ambiguous pattern rejection and th d diff bet the classifi tout d
novelty detection. The outputs of several classifiers may also be € mean squared diiferences between the classiier outputs an

combined in a sensor fusion context, yielding decision procedures target values_. _ _ _ _
which are very robust to sensor failures or changes in the system  The organization of this paper is as follows. Section Il starts

environment. Experiments with simulated and real data demon- with a brief presentation of the D—S theory and its application

strate the excellent performance of this classification scheme asq hattern classification. The new method is then introduced in

compared to existing statistical and neural network techniques. Section Ill, and decision-theoretic issues (including outlier re-

Index Terms—bata fusion, decision making, neural networks, jection and novelty detection) are examined in Section IV. Fi-

pattern classification, pattern recognition, uncertainty. nally, Section V describes numerical experiments which demon-
strate the advantages of the classification scheme proposed in

|. INTRODUCTION this paper.

INCE the early 1980’s, the Dempster—Shafer (D-S) theory
f evidence has generated considerable interest in the
Artificial Intelligence community. In contrast, applications inA. Evidence Theory

s_ta_tistical pattern recognition have until recently been VeTY |n this section, the main concepts underlying the D—S theory
limited. In [22] and [28], D-S theory was shown to providgy evidence are briefly recalled, and some basic notation is
a suitable framework for combining the results of severglyoduced. For a more complete introduction, the reader is
independent clas3|f|§rs, and thereby improve classificatigyited to refer to Shafer's original work [23], and to more
accuracy. In [5], we introduced &-nearest neighborktNN)  s.to-date sources for reports of recent developments [14],
classifier based on evidence-theoretic principles. This meth%] [29]. Note that the general term “D—S theory” in fact
allows to compute a basic belief assignment (BBA) over the s&{compasses several distinct models of reasoning under uncer-
Q of classes [23], in such a way that the mass of belief assigngghty including the theory of hints [14] and the transferable
to the reference set varies between 0 (perfect knowledge) afief model (TBM) [25]. The nonprobabilistic view of the

1 (complete ignorance), depending on the informativeness |gfier model will be adopted in this paper.

the training data with respect to the class membership of the g () pe a finite set of mutually exclusive and exhaustive hy-

pattern under consideratiolhmbiguity and distance reject giheses, called thieame of discernmena basic belief assign-
options were introduced using the concepttoafer andupper ment(BBA) is a functionm from 22 to [0, 1] verifying
expected losses [6]. Simulations with artificial and real-world

data sets revealed a better performance of the proposed scheme m(#) =0 1)
1.

)
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of m. Associated withn. are abeliefor credibility function bel avoided. A belief functions thus has to be transformed into a
and aplausibility function pl, defined, respectively, forall C  probability function for decision making. The only transforma-

Q as tion satisfying elementary rationality requirements was shown
by Smets to be the pignistic transformation [26], in which each
beA) = Z m(B) (3) mass of beliefrn(A) is distributed equally among the elements
BCA of A for all A C Q. This leads to the pignistic probability
pl(4) = Z m(B). (4) distribution defined as
ANB##Y
BetRw) = » %, VweQ (9)

The quantity bel4d) can be interpreted as a global measure

of one’s belief that hypothesid is true, while p{A) may be

viewed as the amount of belief that coyddtentiallybe placed where|A| denotes the cardinality o C 2. As noted in [26],

in A, if further information became available [26]. this approach can be better understood if one makes a distinc-
Two BBA's m; andm, on Q, induced by two independenttion between two levels: eredallevel at which pieces of evi-

items of evidence, can be combined by the so-cdllechpster's dence are taken into consideration and combined, pighéstic

rule of combinatiorto yield a new BBAm = my @ m., called level at which a probability distribution is constructed in order

wCA

the orthogonal sum of.; andms., and defined as: to allow decision-making.
m(0) =0 (5) B. Application to Pattern Classification
> mu(B)ma(C) Let us consider the case where some patteenIR” has to
m(A) = BNC=4 A0, ©6) be classified in_ one oM classesu, - LW using a t_rainipg
Z my(B)m2(O) setX’ of N P-dimensional patterns with known classification.
BAC) Each training vectag? sufficiently close tac according to some

distance measurécan be regarded as a piece of evidence that

The computation ofn is possible if and only if there exist atinfluences our belief concerning the classaofThis item of
least two subset® and C of @ with BN C # 0 such that evidence can be represented by a BBA over the frame of
mi(B) # 0 andm(C) # 0. my andm; are then said to be discernmenf2 = {w,, - --,wa}. If 2% belongs to class,, then
combinable The orthogonal sum is commutative and associghe unit mass should be distributed among two subsef?: of
tive. the singleton{w, } and? itself. If we consider as a reasonable

Alternatively, Smets [24] proposed to use tiienormalized assumption that the portion of belief committed4pshould be
or conjunctiverule of combinatiom, defined for allA C €2by g decreasing function of the distantebetweens andz?, then

m! can be written in the following form:
m=mi Nms & m(4) = Z m1(B)ma(C),

VACQ e ; m' ({wg}) = agy(d) (10)
Note that, using this rule, positive masses can be assigned to mi(A) =0 VAe2"\ {{w,},Q} (12)

the empty set, which violates the condition expressed by (1).

Therefore, as a consequence of the adoption of the unnormaliyéiere0 < « < 1is a constant and, is a monotonically
rule, this condition has to be removed from the definition of @ecreasing function verifying, (0) = 1 andlimg ... ¢,(d) =
BBA. The definition of a belief function also has to be rewrittef?- In [5], an exponential forfwas postulated fop,:

as 4 4
¢g(d') = exp(—7,(d')?) (13)
bekA)= Y m(B) vAeq (8) . N _
p=BCA v, being a positive constant associated to clagsA method
for optimizing parameters and-, has been described in [30].
Smets [24] has shown that these modifications to the standard'he above discussion concerned an arbitrary training pattern
theory amount to accepting that none of the hypothesés inz’ ¢ X'. However, it is unlikely that all training patterns will be
might be true (open-world assumption). This helps to avolsklpful in classifyinge, so that we can focus our attention on the
some counterintuitive effects that may be encountered whest®,(x) of its k nearest neighbors. For eaghe & (x), we
combining contradictory pieces of evidence [24]. can construct a BBA»' summarizing the information provided
Having summarized all the available evidence in the foriy  concerning the class af In order to classify, we need to
of a BBA, the question may arise of how to make a decisiatbmbine these BBA's, using one of the two combination rules
regarding the selection of one single hypothesis2inThis mentioned in the previous section. In [5], the normalized rule
problem is not trivial, since the belief and plausibility functionsvas considered, so that the BBA representing the evidence of
may .induce different rankings of single hypotheses, i.e., it iSlIn this paper, the class of each training pattern is assumed to be perfectly
possible that, for some subsetsand B of (2, be(4) < bel(_B_) known. Howeve‘r, the method can be easily extended to the more general case
whereas [{l4) > pl(B). As remarked by Smets [26], decisionsvhere class labels are imprecise and/or uncertain [5], [7].
have to be based on probabilities if Dutch Books are to be2A justification of this choice is provided in [7].
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the k nearest neighbors afwas defined as the orthogonal sunpositive masses are now assigned to each elgs®r which

(5), (6) of the individualn?, for all ' € ®(x): ui, > 0. Note that we have
wfg?@ S°omi(A) =) mi{w ) +mi (@) =1 (19)
ACK q=1

Since the focal elements of are the classes represented amo%dmi((b) — 0, so thatm' verifies the conditions expressed be

¢ (), and(2, we have béfw,}) = m({wy}) and pl{w,}) = f '
m{{wg}) + m(Q) forg = 1,---, M. The pignistic probability (1)and (2). As before (13)" can be defined as

distribution is defined as G (d') = exp(— (d))?) (20)
BetR{w,}) = m({w,}) + m() (15) Wwherey’ is now a positive parameter associated to prototype
M Step 3: Then BBAs m?,i = 1,---,n are combined using

for all w, € Q. either the conjunctive rule defined by (7), or the Dempster’'s

In the case off0, 1} losses (where the loss incurred by agle. The former yields an unnormalized BBA
signing a pattern to a class is 1 for misclassification and 0 oth- n
erwise) and if no possibility of rejection exists, it is well known m= ﬂ mt, (22)
that the Bayes rule leads to selecting the class with maximum i=1
posterior probability [10]. In a similar way, the risk relative to

the pignistic probability distribution is minimized by choosingWhlle the latter yields a normalized BBA:

the class with maximum pignistic probability [6]. More sophis- ) n )
ticated decision strategies will be examined in Section IV. m = @ m’. (22)
=1
. ADAPTIVE CLASSIFIER It is straightforward to show that:’ = m/K with K =
A. From Neighbors to Prototypes E(Jz\il m({wy}) + m().

Inthe case of0, 1} losses and no reject option, a decision can

The computational complexity of the search for the neargslan be made to assign input vecioto the clas(x) = w,
neighbors in a training set is known to be an important dra‘Q/érifying !

back of .-NN techniques. This problem may be alleviated by

synthesizing the learning set in the form of a limited number m({w,}) = max m({w,}). (23)
of representative patterns, prototypes We therefore consid- a

ered a modification of the procedure described in Section ll-Riote that we also havey ({w,}) = max, m’'({w,}), so that

puting its distances ta prototypesp®, - - -, p™. Each prototype

1 is assumed to possess a degree of membezn%htpeach class B. Connectionist Implementation

: oM .
wq, With the constrain®y_, w; = 1. Full membership of a The classification method just introduced has some similarity

prototype to one class can be considered as a special case wji¢ ffradial basis function (RBF) networks [18]. A RBF network

ug = 1for Someq .and“l = Oforl 7& ¢ . is a neural network composed of an input layer, a hidden layer
A BBA Qescnbmg the uncertainty pertaining to the clasgnd an output layer (Fig. 1). The response of hiddenzmigin

membership ok can be computed as a result of a three'StEprut vectorz is defined as a decreasing function of the distance

procedure: betweenr and a wei i ignad’
] . ; ght vectay’. The output signad’ from the
Step 1: The distances! beMeenz and eac_h prototype 4th output unit with weight vectow’ is obtained as a weighted
vectorp” are computed according to some metric, for examp €m of the activations in the hidden layer:

the Euclidean one:
d=llz—pll i=1--n. (16) o= ws (24)

Step 2: The information provided by each prototype is repynere
resented by a BBAn' depending on the class membership of i ;i component of vectow?;
p',and on?’. Assuming proportionality between’ ({w,}) and i output from hidden unit;

uy, We have n number of hidden units.

) S The different parameters can be determined by gradient descent

Vge{l,--- M} m'({wg}) = aug¢'(d) (17)  of some error function.
mi(Q) =1—a'¢(d’) (18)  The evidence-theoretic classifier introduced in this paper can
also be represented in the connectionist formalism as a neural

where¢’ is a decreasing function varying between 1 and 0 ame:twork with an input layer, two hidden layets andL-, and
0 < o' < 1is a parameter associated to prototygkhis def- an output layeis (Fig. 2). Each layef,; to Ls corresponds to
inition is quite similar to that given by (10)—(12), except thabne step of the procedure described in the former section:
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Fig. 2. Connectionist implementation of the evidence-theoretic classifier. T
fixed-weight connections between laydrs andL 3, as well as inside layel s,
are described in Fig. 3.

1) Layer L; contains » units with activation s’
o' exp(—vi(d")?) for i = 1,---,n. It is identical

to the hidden layer of an RBF network with exponential

activation function.

2) LayerL, computes the BBAn' associated to each pro-
totype. It is composed of. modules of A + 1 units
each. The units of modulé are connected to neuran
of the previous layer. The vector of activations
(mf,---,m},,,)" of modulei corresponds to the belief
masses assigned by':

m' = (m'({w1}),---,m' ({wn}), m (Q)"  (25)
=(uls’, -, ulys’, 1 — s (26)
3) Then BBAs m‘ i = 1,---,n are then combined

in layer L3, composed ofn interconnected modules
of M + 1 sigma-pi units. The vector of activations
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Fig. 3. Details of incoming connections to moduleof layer Ls. All
connection weights are fixed and equal to unity.

A=
defined as

A= e d), - i ({war ), 1 ()

where ! is the conjunctive combination of the BBA's
1 P i

,#hy41)t of modulei in that layer is

(27)

m-,---,mh
he
pt=mt (28)
ui:ﬂ mF =t nmd i=2---,n  (29)

x>
i

The activation vectorg® for i = 2,---,n can be recur-
sively computed using the following formula:

g = S A T
N3\4+1 = N?\?ilmﬁ\l-l—l' (31)

This calculation can be performed by each computing el-
ement in modulé > 1 of layer L3, provided it receives
input from module: — 1 in the same layer, and from
module: of layer L, (Fig. 3). This can be achieved by
fixed-weight connections between laydrsand L3, and
inside layerLs.

The network output vectat
then defined as

4)

(m17 o '7m1\l+l)t is

(32)
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or, alternatively The parameters;, v/, o, and«’ can be adjusted so as to
minimize E,, (respectively,E!), under the constraints
m =m/K (33)
M+41 i
E=3 m. (34) 7' >0 (38)
k=1

Note that, because of the commutativity and associativity of 0<a’ <1 (39)

the conjunctive combination, the network output is independent

from the order in which the prototypes are taken in considera- i
tion. It therefore remains unchanged by any permutation of the Z uy =1 (40)
upper indices in layerg+, Lo, and L.

Although the architecture of that network looks somewhat
more complex than that of a RBF network, both models idor all 1 < ¢ < n. These constraints can be taken into account
volve approximately the same amount of computation. In boly introducing new parameters, £*, ands3; such that
networks, the computation of the activations in the first hidden

layer requiresD(n P) arithmetic operations (whetE denotes A= (' )? (41)
the number of inputs), and the combination of the outputs from
the first hidden layer can be performeddi{n M ) operations. ‘ 1
Hence, the overall complexity ©(n(P + M)) operations for o' = T exp(—&) (42)
the propagation of one input pattern.
%
C. Parameter Learning uy = (43)
The above network can be trained, in the same way as a RBF > (B
network, by optimizing a performance criterion. k=1

Let us denote by = (¢1,---,%,)" the target output vector
for patternz, with t; = &, if € w,. An output error for that and minimizingE,, (respectivelyE’) with respect tgst, ', £,
pattern can be defined by compariago the classifier output andﬁ;. The derivatives of,.(x) [respectively,E’ (x)] with re-
vectorm (or alternatively its normalized versian’). Sincet spect to all parameters are given in Appendix A. The derivatives
hasM components whilen is of lengthAM + 1, we need to of F, (respectively,F’) are obtained by summing the deriva-
define fromsm a vector of lengthl/. This can be achieved by tives of £, (z) [respectivelyE. (z)] for all z € X'. As shown in
distributing a fraction of /741 (the mass assigned to the seAppendix A, calculation of the whole gradient can be performed
2 of classes) to each class. A transformed output vetoe=  in linear time with respect to the input dimensifinthe number

(P,1,---, P, pm)" is then defined as M of classes and the numbeof prototypes. Convergence to a
local minimum of the error function can be ensured using iter-
Pog=mq+tvmpyyr  ¢=1,--- M (35)  ative gradient-based optimization procedures such as described

. . in [2]. Note that the iterative minimization df, corresponds

With 0 < » < 1. Obviously, Ry g, P1,q andPy /r,q TEPIESENt, T8 1\ yat'is refered to as “batch learning” in the neural network
spectively, the credibility, the plausibility and the pignistic pro iterature
ability of classw,, with respect to the BBAn. The output error '

) . X A regularized version of the error criterion allowing to
E; () for agiven and input patterss can then be defined as limit the impact of overparametrization on generalization
it performance is described in Appendix B.

Eyz)=5|lP, ~t*=5 ) (Pog—1t)°  (36)

=

g=1 IV. DECISION ANALYSIS
The mean output error for the whole training &ebof size N is Once a classifier has been trained using the method described
then given by in the previous section, the question arises of how to use it for
classifying previously unseen patterns. As mentioned in Sec-
E, = 1 Z E,(z). (37) tion 11-B, a straightforward decision strategy is to to select the
N zcv class with maximum pignistic probability. More complex rules

allowing for rejection of ambiguous patterns and novelty detec-

If the normalized output ve/ct(m’ is used, then a corresponding;ion, are discussed in this section. A much more detailed discus-
transformed output vectd?, and an associated errdf, canbe gjon on this issue may be found in [6].

defined in a similar fashion. To begin with, let us assume that a normalized BBhas

30ther error measures could be used, such as, for example, the cross entR§N computed for pattem based on training set information.

measure [1]: As in standard Bayesian decision theory, we now consider the
o problem of deciding between a finite sdt of actions, based
CE(x) == tq logy(P. ) + (1 —1y) log,(1— P, ). on m and on the losse&(«|w) incurred for choosing action
g=1

« Whereas the pattern under consideration actually belongs to
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classw, for each(«, w) € A x €. The risk relative to the pig- (such as certain faults in technological systems for ex-
nistic probability distribution BetP induced by, defined for ample);
eacha € Aas 3) the number of classes is very high;
4) an exhaustive list of all possible states of nature is not
Ryet(a) = Z Aa|w)BetR{w}) (44) available (some classes have never been observed and are
wEQ not even conceived by the user).
_ Z Malw) Z M (45) In that case, the set of classes may pe partitioned into A set
= e | Al of known classes and a sét containing those states of na-
1 ture which are not represented in the learning set. Since nothing
=y m(A)W > Nalw). (46) is known about set/, it can be treated as a singletdii: =
ACQ weA {w,}. The set of classe€ then containsM + 1 elements:
Q = {wy, -, wnm,wy ). As before, the possible actions are

With different choices ford and Mafw) (¢ € A,w € ), aqqignment to one (known or unknown) class, and rejection:
the strategy of pignistic risk minimization will lead to different 4 _ {a0, a1, -, anr, ). Let us assume the losses to be 1
decision rulgs. To demonstrate_the. generality of this approa@&, wrong assignment to a known class, 0 for correct classifi-
let us examine how pattern rejection may be handled in tmﬁtion,)\o for rejection, and\, for wrong assignment to the
framework. _ ~_unknown class. It seems reasonable to asshme: 1, since

As remarked by Dubuisson and Masson [9], pattern rejectigc|aring a pattern as unknown can be seen as a kind of rejec-

may be useful in at least two different situations: 1) when seveﬁﬂn, which may have less severe consequences than a misclas-
classes seem almost equally likely, so that the risk of misclasSifcation error. The pignistic risks are then

fication is very high [4] and 2) when the pattern under consid-
eration is surprisingly different for previous data, which may be

caused by gross measurement errors (due to sensor failure for Rt (0g) = Z m({w;}) + m(Q) M

example), or by the occurrence of an entity from a population i2q o M+1

that was not represented in the learning set. _ =1-BetR{w,}) forqg=1,--,M (49)
To see how these two situations can be modeled in our ap- Rueelao) = A (50)

proach, let us consider two distinct cases, corresponding to the **Pet\@0/ =40 y

hypotheses of existence or nonexistence of unknown classes, re- _ M

spectively. Rier(an) =M z_:l m({w;}) +m(Q) Ml (51)
Case 1: The training set contains samples from all classes. = Q

The possible actions are then assigned to clags for =X\ <1 — M) . (52)

g € {1,---, M}, denoted byy,, and rejectiony,. As before, M+1

the losses are defined to be 0 for correct classification and
1 for misclassification. Furthermore, the loss of rejecting Bhe decision rule is then similar to the previous one, except
pattern is assumed to be the same whatever the actual clashaf assignment to the unknown class is now decided whenever
that pattern, and is notex,. The risks relative to the pignistic ,(2) exceeds some threshold, i.e., when the pattern is very
probability distribution are then dissimilar from each of the training patterns.

These decision rules will be demonstrated in the next section.
Rper(0rg) =1 — BetR({w,})

=1-m{we}) — % g€ {l,---, M} (47) V. EXPERIMENTAL RESULTS

Ryet(cg) = Ao (48) This section reports some experimental results that demon-
strate various aspects of the classification method presented in
Assignment to the class with the largest pignistic probability ihis paper. It is subdivided into three parts.

then decided if that probability is greater than- Ao. Rejec- 1) First, a real data set is used to illustrate the form of the
tion is preferred when the maximum probability is too small, outputs generated by our method, as well as examples
which may occur when several classes are aimost equally likely,  of the decision regions produced by the decision rules
that is to saym({w;}) &~ m({w;}) for somei andj, or when presented in the former section.

m($2) ~ 1. The first situation corresponds to an ambiguous pat- 2) The performance of our method is then assessed quanti-
tern (situated close to the boundary between two classes), while  tatively on two benchmark classification tasks for which

the second one corresponds to an outlier (situated at a large dis- results from a significant sample of other methods are
tance from each of the training patterns). The same rule thus  available; the results obtained basically show that 1)

allows to reject both ambiguous patterns and outliers. our method outperforms most of the other classification
Case 2: Some classes may not be represented in the training  methods tested on these two tasks and 2) it allows for
set. This may happen for various reasons [6], for example: efficient rejection of outliers.
1) some classes have very small prior probabilities; 3) The third part describes an experiment simulating a data

2) Some classes correspond to states of nature that are sys- fusion application; two classifiers are trained separately
tematically avoided for being too dangerous or too costly  to classify patterns based on independent feature vectors
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maximum belief

petal width

-1 0 1 2 3 4 5 6 7 8
petal length

Fig. 4. Maximum credibility for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.5, 0.7+airis0z@ginica,
o: iris versicolor, x: iris setosa.

maximum plausibility

petal width

-1

-1 0 1 2 3 4 5 6 7 8
petal length

Fig. 5. Maximum plausibility for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.7, 0(&;:drid Giginica,
o: iris versicolor, x: iris setosa.

(from two different sensors), and their outputs are com- D-S theory with our method; our approach proves much

bined: 1) in the framework of Bayes theory with statistical more robust than the other methods to the failure of one
and neural network classifiers and 2) in the framework of  sensor.
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Fig. 6. Ignorancém(£2)) for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.1, 0.8;ardsOviiginica, o:
iris versicolor, x: iris setosa.

A. lIris Data the vicinity of the boundary between classes, where the avail-
le evidence points simultaneously to several hypotheses with
almost equal strength. At each point of the feature space, the
Width of the intervalbel({w: }), pl({w: })] is equal to the mass
), which characterizes the amount of belief that could not
rHg&ommitted to any particular class because of the weakness of
e available information (Fig. 6); itis larger in those regions of
e feature space which are far away from each of the training
yectors, and can be interpreted as a measure of ignorance. Fi-
Qally, the maximum pignistic probability

The well-known Anderson iris data consist of 150 sampl
belonging to three classesig virginica, iris versicolor, and
iris setosad, in a four-dimensional (4-D) feature space. Only tw
features (petal width and petal length) were considered in t
analysis. In the training phase, the 150 samples were prese
to a network with six prototypes. The network was trained b
minimizing £/, with » = 1/3. The initial prototype locations
were determined by a simple clustering method. Since the cl
sification task is very easy in this example, the results will onl
be interpreted qualitatively.

Different representations of the outputs produced by the clas- BetR{w, }) = max BetR{w,}),
sifier are shown in Figs. 4—7. Fig. 4 shows the maximum belief e

or credibility, i.e., the quantity
is shown in Fig. 7. It corresponds to an equal allocation of the
uncommitted mass:(€2) to each of the classes, and is particu-
bel({w; }) = maxbel{w,}) larly useful for decision making, as shown in Section IV.
Three different partitions of the feature space into decision
. . . ) . regions are shown in Figs. 8-10. In all cases, it is assumed that
which may be mterpreted as the We_zlght of the ewd_ence dlr_ect)l ilw;) = 1— 6,5, foré,j € {1,--, M}, and the strategy
supporting the assignment of the input vector to its predicted ;o istic risk minimization is used. In Fig. 8, there is no re-
class. As expected, the credibility decreases with the distanc G option, and the training set is supposed to be complete (no
training vectors, as the available information become less reliz nown class). In that case, one has no other choice than as-

able. The maximum plausibility signing each feature vector to one of the known classes, and the

decisions are very close to what would be achieved with a con-
pl({wr}) = max pl({w,}), ventional classifier. In Fig. 9, the training set is still assumed
7 to be complete, but rejection is possible: this option tends to be

chosen for ambiguous patterns and for outliers. In Fig. 10, an

represented in Fig. 5 reflects the absence of evidence that conknown class was explicitly included into the model specifi-

tradicts the assignment of the input vector to its predicted clasation. Outliers tend to be categorized as belonging to the un-

It is high when there is little ambiguity, and it is minimum inknown class, while dubious cases are rejected.
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maximum pignistic probability

petal width

-1 0 1 2 3 4 5 6 7 8
petal length

Fig. 7. Maximum pignistic probability for the iris data, represented as greyscales with light grey as 1 and black as 0, and contours at 0.7, 0.8, &msl 0.9
virginica, o: iris versicolor, x: iris setosa.

Rbet (M classes)

T T T T T T T ¥ T

petal width

3 4 5 6 7 8
petal length

Fig. 8. Decision regions for the iris data, obtained by minimizing the pignistic risk witfidhg} loss function. The only possible actions are assignment to one
of the three classest: iris virginica, o: iris versicolor, x: iris setosa.

B. Performance Comparison by Robinson [21] in a benchmarking study of neural network

and statistical classifiers. The data set is composed of feature
1) Phoneme Recognition DataAs a first example of a vectors obtained by recording examples of the eleven steady

complex real-world classification task, we considered thstate vowels of English spoken by fifteen speakers [8], [21]
speech recognition data collected by Deterding [8] and us@&ébrds containing each of these vowels were uttered once by
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Fig. 9. Decision regions for the iris data, obtained by minimizing the pignistic risk witt@h&} loss function. The possible actions are assignment to one of
the three classes, and rejection with ldgs= 0.2 (+: iris virginica, o: iris versicolor, x: iris setos3.

Rbet (M+1 classes) lambda0 = 0.2 lambdal = 0.215
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Fig. 10. Decision regions for the iris data, obtained by minimizing the pignistic risk witfithe} loss function. The possible actions are assignment to one of
the three classes, rejection with Ioss = 0.2, and assignment to the unknown class wth= 0.215 (4: iris virginica, o: iris versicolor, x: iris setosd.

the fifteen speakers. Four male and four female speakers wessults obtained with our method with one to five prototypes
used to build a training set, and the other four male and thrper class are shown in Table I, together with results reported
female speakers were used for building a test set. After suitable Robinson [8] and Hastie and Tibshirani [12] for various

preprocessing, 568 training patterns and 462 test patternssiatistical and neural network classifiers. Test error rates are
a ten-dimensional (10-D) input space were collected. Thiefined as the proportions of misclassifying samples in the test
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set. Note that, although none of the tested method appears at TABLE |

: P ; TEST ERROR RATES FOR THE PHONEME
first sight to perform very well on this data, the test error ratesRECOGNITION DATA. LINES (1) (11)ARE TAKEN FROM ROBINSON (1989);

Obtalned ShOU|d be Compared Wlth that Of the nalve deCISIOI’] LINES (12)—(18)ARE TAKEN FROM HASTIE AND TIBSHIRANI (1994)

rule choosing the most frequent class in the training set, which ETC: EVIDENCE-THEORETIC CLASSIFIER
is only equal to 0.91 in that case.

In this and the next experiment (Section V-B2), the initie Classifier test error rate
prototype locations in our method were determined usingast: (1) gjngle-layer perceptron 0.67
dard clustering procedure (a variant of theneans algorithm), 9 Multi.l ¢ 88 hidd .
starting from random initial conditions. The initial values of the (2 Multi-layer perceptron (88 hidden units) 049
other parameters were set heuristicallyte= 0.1 anda? = 0.5 (3)  Multi-layer perceptron (22 hidden units) 0.55
fori =1,.--,n (these values were fixeglpriori and were not (4)  Multi-layer perceptron (11 hidden units) 0.56
optimized). The initial membership value$ of each prototype (5)  Radial Basis Function (528 hidden units) 0.47
1 to each class, were defined as the proportion of training sam 6 Radial Basis Functi hidd .
ples belonging to class, in the neighborhood of prototype (6)  Radial Basis Function (88 hidden units) 0-52
With this initialization procedure, there was almost no variatic  (7) ~ Gaussian node network (528 hidden units) 0.45
of the results in several runs. (8)  Gaussian node network (88 hidden units) 0.47

Detailed descriptions of the experimental conditions for tF gy Gaussian node network (22 hidden units) 0.46
other methods are given in [12] and [21]. In Robinson’s sim (10) Gaussian node network (11 hidden units) 053
ulations, each result was based on a single trial with randc :
starting weights. In the radial basis function method as defin _(11) Nearest neighbor 0.44
by Robinson, prototype locations were placed at the points ¢ (12) Linear Discriminant Analysis 0.56
_fined by the in_put examples, whereas they were placed randor (13) Quadratic Discriminant Analysis 0.53
in the Gaussian node network.

(14) CART 0.56

CART is a decision tree generation procedure developed
Breimanet al. [3]. MARS (multivariate regression splines) is  (15) CART (linear combination splits) 0.54
an adaptive nonparametric regression technique, abletocap  (16) BRUTO 0.44
interactions in a hierarchical manner [11]. Tctjnegreel_s a pa- (17) MARS (degree=1) 0.45
rameter of the procedure that limits the order of the interactio )

)

allowed. BRUTO is an adaptive method for estimating an a (18

MARS (degree=2) 0.42

ditive model using smoothing splines [13]. Both are powerft  (19) ETC (11 hidden units) 0.47

flexible discriminant analysis techniques [13]. (20) ETC (22 hidden units) 0.42
As shown in Tablg I, our approach with gt least thrge prot (21) ETC (33 hidden units) 0.38

types per class dominates the other techniques for this class ) )

cation task. (22) ETC (44 hidden units) 0.37
2) Forensic Glass Data:This data set contains the descrip  (21) ETC (55 hidden units) 0.37

tion of 214 fragments of glass [17] originally collected for a
study in the context of criminal investigation. Each fragment has
ameasured reflectivity index and chemical composition (weigftbm 4 to 8, and the number of hidden units for the MLP’s was
percent of Na, Mg, Al, Si, K, Ca, Ba, and Fe). As suggestagried from 2 to 8. Each learning algorithm was run ten times
by Ripley [20], 29 instances were discarded, and the remainiimgeach configuration.
185 were re-grouped in four classes: window float glass (70), The average test error rates and standard deviations are re-
window nonfloat glass (76), vehicle window glass (17) and otheorted in Table II, and represented graphically in Fig. 11. As
(22). The data set was split randomly in a training set of size 8&n be seen, our method yields significantly better results than
and a test set of size 96. the three other neural network techniques. The best value of the
Our method (with normalized outputs) was compared to thregean error rate obtained is 0.29 for 7 prototypes. This value
neural network classifiers: learning vector quantization (LVQ$ to be compared with the experimental results reported by
[15], RBF networks and multilayer perceptrons. Each of thHReipley [20] with the same data, in an extensive study of sev-
three methods based on prototypes (ETC, RBF, and LVQ) warsl statistical and neural network pattern classifiers (Table I1).
provided with the same initial codebook vectors generated byAa indicated by Ripley, the main neural network results used
clustering procedure with random initial conditions (except faoftmax and maximum-likelihood estimation, and were aver-
the casen = 4 were the initial prototypes were chosen as thaged over five runs using different random initial weights. The
sample mean in each class). In RBF networks, the second lageedictive method (Bayesian approach) with six hidden units
of weights was initialized using a pseudo-inverse approach. Tlwas the only neural network method to yield an error rate
initial parameters for the evidence-theoretic method were detbelow 30%. However, the method used 10000 random sam-
mined exactly in the same way as in the previous experimeptes from Gaussians about the peaks found in 20 optimization
The RBF, MLP and evidence-theoretic networks were trainedns, and was thus much more computationally intensive than
with the same optimization algorithm (gradient descent witburs. Only two conventional statistical techniques performed
adaptive learning rates). The numiassf prototypes was varied well on these data: the nearest-neighbor method (with compar-
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Fig. 11. Test error rates for the glass data, as a function of the number of hidden units (LVQ: learning vector quantization; RBF: radial basmefuackpn
ETC: evidence-theoretic classifier; MLP: multilayer perceptron).

TABLE 1 TABLE Il
TESTERRORRATES FOR THEFORENSICGLASS EXAMPLE WITH DIFFERENT TEST ERRORRATES FOR THEGLASS DATA, FROM [20]
VALUES OF n (MEANS OF TEN RUNS WITH STANDARD DEVIATIONS). THE
METHODS ARELEARNING VECTOR QUANTIZATION (LVQ), RADIAL BASIS

FUNCTION (RBF) NETWORK, MULTI-LAYER PERCEPTRON(MLP) AND Classifier test error rate
EVIDENCE-THEORETIC CLASSIFIER (ETC) (1)  Linear Discriminant Analysis 0.41
n 9 3 4 5 6 7 8 (2)  Nearest neighbor 0.26
vQ 0.64 0.47 0.45 0.41 0.33 (3)  Multi-layer perceptron (2 hidden) 0.38
£000 +000 +002 %003 =006 (4)  Multi-layer perceptron (2 hidden), predictive 0.38
RBF 0.36 0.38 0.38 0.38 0.35 (5)  Multi-layer perceptron (6 hidden) 0.33
£000 £00I 001 £001 <4003 (6)  Multi-layer perceptron (6 hidden), predictive 0.28
MLP 043 0.42 0 4.3 0 4.4 0 4.2 0 4.1 0 4.1 (7)  Multi-layer perceptron (6 hidden), logistic outputs 0.39
) ’ ’ ) ) ) ) (8) CART 0.28

+002 +£003 +£002 +004 £002 005 +£0.04
(99 BRUTO 0.42
.32 . . .29 .

ETC 03 030 030 0.2 0.32 (10) MARS (degree=1) 0.37
+000 +0.00 £002 £0.02 +£0.02 (11) MARS (degree=2) 0.31
{12) Projection pursuit regression 0.40

atively high computational and storage requirements), and the

tree structured classifier (CART). Note however that no methad corruption and was varied from 0 to 1 (the 9 input features
was significantly better than ours (only differences of moreave standard deviations between 0.003 and 1.4). A classifier
than 4% are significant at the 5% level [20]). According tevas trained by our method using the (uncorrupted) learning set,
Ripley, the estimated lower bound for the Bayes risk was 11%nd was used to classify corrupted samples using the decision
but no method comes close to this bound, which is probabilyle presented in Section IV (case 1), for various values of
too conservative. Ao Fig. 12 shows the error and rejection rates as a function

The robustness of our method to outliers and its ability tf )y, for o = 0 (solid lines) ands = 0.5 (dashed lines).

reject them using the decision rules described in Section Despite the importance of the corruption, the performance of
were also investigated using these data. For that purpose, outltbesclassifier is not dramatically affected. The error rate of 0.29
were artificially introduced in the test data set by replacing eaglithout rejection obtained with the original data can still be
input vectorz by five copies corrupted by additive noise, ofattained at the cost of rejecting approximately one third of the
the formx + ¢, wheree is a realization of a random vectordata. As a comparison, a multilayer perceptron with six hidden
of nine independent Gaussian variables with zero mean amits was trained using the same learning data, and used to
standard deviationr. Parametet allows to control the degree classify the corrupted test data using the Bayes decision rule
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Fig. 12. Robustness experiment with the glass data: error rates (increasing curves) and rejection rates (decreasing curves) as.&fuoctiom BT C method

applied to the uncorrupted data (solid lines) and corrupted dataswith0.5 (dashed lines).
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Fig. 13. Robustness experiment with the glass data: error rates (increasing curves) and rejection rates (decreasing curves) as a furictitimedf1LP
classifier (6 hidden units) applied to the uncorrupted data (solid lines) and corrupted datawith5 (dashed lines).

with the same loss function as above. The error and rejectimjection rate, respectively. This classifier is thus less robust to
rates forec = 0 (solid line) ande = 0.5 (dashed line) are outliers than the previous one, and its rejection rule is much less
shown as a function ok in Fig. 13. With uncorrupted data, efficient in controlling the error rate. Fig. 14 shows the error
the MLP classifier has an error rate without rejection of 0.38ates obtained by the MLP and ETC methods, with 0, 0.1, and
and rejection effectively allows to decrease the error rate @03 rejection rates (the 0.1 and 0.3 rates are only obtainable by
any desired level. However, the performance of the classifigre ETC method), as a function af These results confirm the
collapses with the introduction of noise in the test data set. Thaich better performance of the ETC method in the presence
achievable error rates are around 0.73 and 0.30 for 0 and 56%4orrupted inputs.



144 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 2, MARCH 2000

08 ! ! T ! ! ! ! ! !

0.7

error rate
ol
n

o
»

0.3

0.2

o1 A S S S U S SN b
0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1
noise standard deviation

Fig. 14. Test error rates on the glass data as a function of noise standard dewjdtiothe MLP classifier and the ETC method with 0, 10, and 30% rejection
rates.

C. Sensor Fusion Experiment )
s X classifier
d C1

The main distinctive feature of our method as compare
conventional statistical or neural network classifiers concer global

the nature of the outputs, which consist in a sebbft- 1 be- / fusion s - ion

lief masses assigned to each individual clasd to the set2
of all classes. The fraction of the mass assigneft teflects ¢, y classifier

—

a lack of information available to make a decision, and can | C2
used as an indication of the reliability of the classification pro-

cedure regarding the pattern under consideration. Sensor fusion

provides a realistic context in which the value of this |nd|caﬁj'gCI igsm Jrhcel 'SZ?]ZOI’SélrJél(;)gzp[r)?gﬁgﬂesszgﬁgpcz\gfozstéei}gg;;{:fé?

tion can be assessed. Assume that two classifig@ndC> are  The outputs of both classifiers are combined using either the Bayes rule
trained separately to perform a classification task based on inéfe-probabilistic classifiers, or the Dempster's rule for evidence-theoretic
pendent feature vectogsandy provided by two sensor§; and ~ ¢assifiers.

Ss, respectively. A sensor fusion mechanism is used to combine

the outputs from these two classifiers (Fig. 15). Then, in caselpt; andy are assumed to be conditionally independent in each
failure of one sensor, sa, the system should be able to declass, therf(z, ylw;) = f(x|wi)f(y|w;:), and we have

tect the fact that classifier; becomes less reliable, and should
consequently decrease its influence on the final decision. If the
reliability of classifierC; is correctly assessed, then the per-

flx|w;) f(ylw) P(w;)

formance of the whole system should never get worse than the Plwilz.y) = f(z,y) (54)
performance of classifief’, alone. (wz|x)P(wZ|y) f()f(y)

Before we describe our simulation experiment, let us = P(w;) 7z, y) (55)
examine how this fusion problem can be treated using two P(wiz)P(w;]y)
different frameworks: Bayes decision theory and D-S theory. x Pl . (56)

First, assume that; andC; are probabilistic classifiers pro-
viding estimates foP (w; |z) andP(w;|y), respectively. I and
y are observed simultaneously, then the classification shouldiygnce, the probability distribution givarandy can be obtained
based onP(w;|z, y) for : = 1,2, which can be computed as  py multiplying the posterior probabilities provided by each clas-

sifier, dividing by the priors, and renormalizing.
Plarlz,y) = flz, y|lw:) P(w;) (53) WhenC; andC, are evidence-theoretic classifiers, their out-
K f(z,y) : puts are BBA's that can be denoted-|z) andm(-|y), respec-
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tively. Sincex andy are independent pieces of evidence, the TABLE IV
Dempster’s rule of combination can be applied: TESTERRORRATES FOR THESENSORFUSION PROBLEM (UNCORRUPTEDDATA)
Method x alone y alone xandy
m(-|z,y) = m(|z) & m(ly). (57) ETC 0106 0.48  0.061
MLP 0.113  0.142 0.063
Note that this combination rule does not make use of the prior RBF 0.133 0.159 0.083
probabilities, as was the case with the Bayes rule. QUAD 0101  0.141 0.049

To compare the behavior of both data fusion procedures, we
devised the following experiment. We considered a two-class
problem (with equal priors) and two Gaussian random feature

5 5 : L
vectorsz € R” andy € IR” with following class-conditional the pest result is obtained by the quadratic rule, which has the

BAYES 0.071 0.121 0.028

probability distributions: advantage in this case of being based on the true probabilistic
model (with estimated parameters).

Fla|w:) ~N (i, 25) Ina se_can step, the impact of the failure of one sensor on

Flylws) ~N (i, 52) the classification accuracy of the system was simulated by cor-

rupting the test set with additive noise. Each input vegtaas
replaced by a corrupted versiary- ¢, wheree is a realization
fori = 1,2, with of a normal random vector with zero mean and standard devia-
tion o. Parametes was varied from 0 to 10 to simulate various
—1)t levels of noise. The test performances of the data fusion proce-
dures based on each of the five classifiers are shown in Fig. 16.
As can be seen, the procedures based on conventional classi-
fiers are dramatically affected by the corruption of one of the
two feature vectors. In contrast, the error rate of the procedure
based on our method increases only moderately with noise level,
, P . and it ever gets higher than the error rate of the classifier based
p=0-L0" iy =(-11,-1) on feature vectog alone: the procedure is much more robust to

M1 :(171717171)t NQI(_lv_lv_

7t
o
oo oo

1

5 0 1
0 0 0
i=160 0 Yo=10
0 0 0

0 1 0

OO Wo o

(21

/ 3 00 / 300 strong changes in the distribution of input data.
Y1=10 30 Yo=10 20 To increase the robustness of conventional classifiers to out-
0 0 3 0 0 1

liers, Dubuisson and Masson [9] have suggested to modify the
Bayes decision rule by adding a “distance rejection” mecha-
Vectorsz andy were assumed to be conditionally independentjsm: a pattern that was improbable under the current proba-
that is to sayf(z, y|w:) = f(z|w;) f(y|w;) fori=1,2. bilistic model (or, equivalently, that was far from all training

Training and cross-validation sets of 60 and 100 labeled sasamples) is rejected. Following this idea, the four classifiers
ples, respectively, were generated independently for each of ttsed in this study were modified as follows. For RBF and MLP
two classification tasks (class prediction franand fromy, re-  classifiers, the distance rejection rule was
spectively). A test set of 5000 sampleg®fy) was also gener-
ated to evaluate the combination procedure.

Four different kinds of classifiers were trained on each
learning set: multilayer perceptrons, RBF networks, quadratic
discriminant analysis (i.e., the plug-in sample rule with hewherep’ is the nearest prototype #oandd . is the maximum
eroscedastic normal model [16]), and our method. For the thidistance between prototypeand each of the training vectors.
neural-network techniques, the number of hidden units wésote that the prototypes generated by the RBF network were
varied from 2 to 6, and the architecture yielding the lowestsed to implement novelty detection in the MLP network.) For
cross-validation error was selected. For each method, the tthe quadratic classifier, the rule was
classifiers based on each “sensor” were then applied to the test
data, and their outputs were merged using the appropriate com- 2 s
bination rule (the Bayesian rule for MLP, RBF and quadratic It f(@) < funin: rejects,
classifiers, and Dempster’s rule for our method).

In a first step, the whole procedure (data generation, trainin@eref(z) is the estimated probability density atand Finin
and testing) was repeated ten times. The results obtained byiththe lowest estimated density observed in the training set. A
four methods and by the Bayes classifier (the optimal decisisimilar procedure was used for the Bayes classifier, but the true
rule based on the true probabilities and class-conditional datensities were used instead of the estimated ones.
sities) are shown in Table IV. The differences in error rates ob-The error rates obtained by each of the four modified pro-
tained by the four learning methods are small, as could be eedures and the evidence-theoretic method for different noise
pected given the relatively low complexity of the classificatiofevels are shown in Fig. 17. We can see that distance rejection ef-
problems involved. The RBF method has the largest error, whflectively increases the robustness of the conventional methods,

if [|lx —p|| > di,..: rejecte,

max*
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Fig. 16. Results of the sensor fusion experiment: test error rates as a function of noise standard deviaganethods are evidence-theoretic classifier (ETC),
multilayer-perceptron (MLP), radial basis function network (RBF), quadratic classifier (QUAD) and Bayes classifier (BAYES).
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Fig. 17. Results of the sensor fusion experiment: test error rates as a function of noise standard devidiomethods are the evidence-theoretic classifier

(ETC), and conventional classifiers with distance rejection: multilayer-perceptron (MLP), radial basis function network (RBF), quadifitic (§a$8D) and
Bayes classifier (BAYES).

particularly for high levels of noise. However, the evidence-the- VI. CONCLUSIONS

oretic method still has the best performance, even when com-

pared to the modified Bayes procedure, which uses additionalA new pattern classification method based on the Demp-
information concerning the data generation process. This gostdr—Shafer theory of evidence has been presented. This
behavior of our method may be explained by the effective uapproach can be seen as combining ideas from supervised
that it makes of the information about the reliability of each clagteural network models with local representation, and the
sifier, contained in the quantities(Q2|z) andm(Q|y). evidence-theoretid-NN rule described in [5]. As in RBF



DENCEUX: NEURAL NETWORK CLASSIFIER BASED ON DEMPSTER-SHAFER THEORY 147

networks, classification is based on assessing the similantjth m = N_; m’. The error for pattera is

of the input pattern with a set of reference patterns. This

information is converted in the form of BBA's, which are then M

pomplned usmg'Dgr.npsters rule of compmgtmn. T_he system E,(z) = % Z (P, — tq)Q (64)
is trained by optimizing a performance criterion. This method

. . . . q=1
can be implemented in a neural network architecture with two
hidden layers and one output layer. After training, each of the h
neural network weights receives a natural interpretation. Eaft
rototype is characterized by a weight vectr a receptive
p yp y g Ctor p Py =mg+vmargs. (65)

field parametery’ and a membership degre;% to each class
w,. The parameter’ can be interpreted as an indication of the perivatives w.rt.3i: The derivative of, (z) w.r.t. 3¢ is
relative importance of the considered prototype in classifyir]ﬁVen by ! !
new patterns. This method has exhibited excellent performance

in several classification tasks as compared to some of the most

widely used statistical and neural network classifiers, and has  9E, (%) M

OE,(x) oul

proved extremely robust to strong changes in the distribution 3/3;1 = £ oul 9 /3;1 (66)
of input data. B .
The introduction of Dempster—Shafer theory in statistical pat- — 9E, <‘”) —25)°F;
tern recognition has several advantages, some of which were al- oy A, Mo 2
ready mentioned in [5]. The classifier's output for each input <Z (/3?)2>
vector has the form of a basic belief assignment, which essen- =1
tially differs from a probability distribution in that it potentially LA 4
assigns belief masses to all sets of classes. In particular, the mass 2/33'2 (B - 2(/35')3
; ; i OE,(x) 1=1
assigned the whole frame of discernmenteflects the partial ; 5 (67)
lack of information available for decision making. This indica- I Mo
tion can be used for rejecting the pattern under consideration <Z (/3f)2>
if the associated uncertainty is too high, thus allowing to im- ‘ =1
plement efficient novelty detection procedures. The same infor- 203 OE,(x) M 9
mation could also be used qualitatively in situations where the aY; 2 I’ Z ()
classifier is essentially used as an aid to support human decision <Z (/3;)2> oot
making. A further feature of Dempster—Shafer theory consists —1
in the possibility of explicitly introducing unknown states of na- Moo (x)
ture in the model, without making any assumption about these — Z (5?2 ”i (68)
states. This makes the proposed method particularly suitable to =1 Oy
complex classification tasks in which complete specification of
the problem is difficult or impossible, such as encountered i_rbt US NoW ComputéE, (z) /dui:
medical diagnosis or system monitoring. v J
APPENDIX A JE,(z) i OB, (z) Omy, (68)
Gradient Calculation with Unnormalized Output&Ve first 8u; B Pt Omy, 3u; '

assume that the unnormalized outpuis used. Let us first re-

call the propagation equations for input pattetn ) ‘ ]
Fori=1,---,n: Since thekth outputm,, does not depend ouf; for j # k, this

sum simplifies in

d' =z - p'| (58) SE.(@) 8E.(z) om,
s =al exp(—(n'd")?) (59) v - O (70)
i PRt 8u]¢ om; 8u]¢
o = (1 + exp(—£1)) (60)
. .o . . it - 8mj
m’ :(U’lezv"'auj\/lszal - SZ) (61) _(PVJ _tj) auz : (71)
Z (BL)? In order to expres#m; /8uj, we use the commutativity and
b1 associativity of then operator to rewrite the output BB as
the conjunctive combination of two terms, one of which does
The output vectorn is defined as not depend on the parameters associated to protétype

m = (m({wi}), -, m({wam}), m(2)), (63) m=m'nm, (72)
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Fig. 18. Improvement of generalization by weight decay: average test error rates on Gaussian data as a function of ofypnbietypes for RBF — - —),

ETC withp = 0 (—) and ETC withp = 0.01 (— —).

with T’ = Nx; m*. The vector and
4 4 4 4 . OFE,(x) i
m = (), - (e )@Y (73) L = (P — s ). (79)
J
can be computed by solving the following systemadf+ 1 Derivatives W.r-t-ﬁf, ¢, andp}: The derivatives off, (x)
equations: w.rt. o', zi‘, and p; can be expressed as a function of
OE,(x)/0s":
my =mj(Mm'; + M p1) + My
j=1,---, M 74 OF, (x 8E,(x) 9s' OE,(x i N2 i
MMA1 =My 1T M1, (75) 77 s T s
dE,(xz) OFE,(x) 0s' d d
.- agt 95t 9t of &
yielding ¢ 9, (z) 5 ‘ o
=g (= d))(1-ala’  (81)
;= my — ”éﬂ4+177;3'/m3\4+1 —1,-.., M (76) aE,,E:v) _ aEuE‘”) asz
mi 4+ mhy g ap; ds* Ip5
; _ M1 OE () _ ..y ; 4
mp41 = 7 . (77) — v PAYAR 1
LY VS Js 2(n")"s (zj — pj)- (82)

Note that the denominators in the above equations are alwwg therefore need to compuii®, (z)/9s':
positive, since pure,, :

m§\4+1 =1-s">0.
OE,(z) <A OE,(x) OF,,

With this notation: dst L= OP,; Os
iz :

M

(83)

om.: . . . o ) ) amj 8mM+1
au; =s'(m'; + M'nm41), (78) - (Poj —15) < o5t TV o ) :

J =1
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Since Hence, using (78)
mJ :U/;(mzj +m11\4+1)—m1j (84) aE:/(z) :5 (mj+m 1\4-1-1)
5 ds' o’ K
m .
% = — mzj\4+1 (85) 1 M
A Ey =) = D (Bop—t)bn |-
k=1

we have 97)

J\ . .

851 Z AT ) =T VT ), LASHY

= (86) O, (x) Mil OE! (z) Omy (98)

which can be introduced in (80)—(82). Jst 8mk 851 ’

Gradient Calculation with Normalized Outputdf the nor-
malized output vectam’ is used, we consider the error functiorin this sum, all the terms have already been calculated [(84),

for input «: (85), and (96)], excep@E!, (x)/Imps41:
M
=30 (-t (87) OE,(z) _ <~ 0B(z) 0P, 99
5=l Omyr1 OF,, Omu
with 1M
=5z > (Px—t) (WK = ), (100)
Py =mf+ vy (88) =
m' =m/K (89)

with completes the calculation of the gradient®f(x) and
L, (z) w.r.t. all the parameters.

K= Z M- (90) Complexity Considerationst et us first consider the case of

unnormalized outputs. For eaéh= 1, .- -, n, the calculations

can be done in the following order:

M+1

T_he expressions f(_)r the_ d_erivatives w.pt, ', € andp; 1) calculation ofi@® using (76) and (77),
derived above are st!ll valid if one re_placé$ by E!. How- 2) calculation ofaE,,(:c)/auj» forj=1,---, M using (79),
ever, we now have different expressions &, (z)/0w; and 3) calculation of the terms TM, (812 and
OE, (x)/0s". M. (8?2 OE,(x)/0u] in (68),
As before: 4) calculation oBE, (z)/d3; for j = 1 , M using (68),
5) calculation of 9E,(x )/83 ( y/9¢t,  and
8E’ O (z) Omy, OE,(z)/on using (80), (81), and (86)
Z 8mk 8uj (91) 6) calculation o0 E, (x)/dp; for j = 1,---, P using (82).
a E’ (z) om, Steps 1-5 requir®(Af) arithmetic operations, and step 6 can
=_* J ; (92) be performed usin@ () operations. Hence, the complexity of
om; - Ou; the whole gradient calculation in that cas&ig.(M + P)).
In the case of normalized outputs, the only difference resides
but we now have in the calculation of the derivatives w.nt; ands’. The former

can be computed using a constant number of operations using

97) after calculation of the terfl /K) M . (P!, —t1) Py 1,
OB (x) <L 9E.(x) OP., ©97) M/ K) S, (P = t) Pk

- v ; (93) Wwhile the latter require©)(M ) operations. Hence, the com-
am; f~ op,, Om; plexity of the gradient calculation is alg&(n(A/ + P)) in that

M p o/ case.
_ ( l,/k ) <gmk Ty 7(;‘]\4-1—1) (94)

k=1 mi mi APPENDIX B

M

1 ’ ' A common approach for improving generalization in neural
T K2 ; (P"i"‘ B ) (O K — P i) (95) network classifiers consists in penalizing complexity by means

of a weight-decay term added to the error function [19], [27].
-1 (P, — te) Py The definition of such a term is particularly easy in our model
K? vk Y since the parameter’ controls the influence of each hidden

) unit ¢ on the output: whemy' = 0, m‘ is the vacuous BBA

+ By —t) (96)  and consequently has no effect on the classification. Therefore,
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a natural choice for a penalty term¥8._; «'. The criterion to

be minimized then becomes

Co=E,+p) o (101)
=1
or
C,=E,+p > o, (102)
=1

wherep is a regularization parameter. Parametean be either
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[8] D. H. Deterding, “Speaker normalization for automatic speech recogni-
tion,” Ph.D. dissertation, Univ. Cambridge, U.K., 1989.

[9] B. Dubuisson and M. Masson, “A statistical decision rule with incom-
plete knowledge about classe®attern Recognit.vol. 26, no. 1, pp.
155-165, 1993.

[10] R. O. Duda and P. E. HarRattern Classification and Scene Anal-
ysis  New York: Wiley, 1973.

[11] J. Friedman, “Multivariate adaptive regression splines (with discus-
sion),” J. Amer. Stat. Assqovol. 19, no. 1, pp. 1-141, 1991.

[12] T. J. Hastie and R. J. Tibshirani, “Nonparametric regression and clas-
sification—Part II: Nonparametric classification,” ifrom Statistics
to Neural NetworksV. Cherkassly, J. H. Friedman, and H. Wechsler,
Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 70-82.

[13] T.J.Hastie, R.J. Tibshirani, and A. Buja, “Flexible discriminant analysis
by optimal scoring,” AT&T Bell Labs., Tech. Rep., 1993.
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idence-theoretic classifiers (with = 0 andp = 0.01) were
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