
EK-NNclus: A clustering procedure based on the

evidential K-nearest neighbor rule

Thierry Denœux∗1, Orakanya Kanjanatarakul∗† and
Songsak Sriboonchitta‡

∗ Sorbonne Universités
Université de Technologie de Compiègne, CNRS,

UMR 7253 Heudiasyc, France
† Faculty of Management Sciences,

Chiang Mai Rajabhat University, Thailand
‡ Faculty of Economics, Chiang Mai University, Thailand

1Corresponding author. Phone: +33 344 234 496, fax: +33 344234477, email:
tdenoeux@utc.fr.



Abstract

We propose a new clustering algorithm based on the evidentialK nearest-
neighbor (EK-NN) rule. Starting from an initial partition, the algorithm,
called EK-NNclus, iteratively reassigns objects to clusters using the EK-
NN rule, until a stable partition is obtained. After convergence, the cluster
membership of each object is described by a Dempster-Shafer mass function
assigning a mass to each cluster and to the whole set of clusters. The mass
assigned to the set of clusters can be used to identify outliers. The method
can be implemented in a competitive Hopfield neural network, whose en-
ergy function is related to the plausibility of the partition. The procedure
can thus be seen as searching for the most plausible partition of the data.
The EK-NNclus algorithm can be set up to depend on two parameters, the
number K of neighbors and a scale parameter, which can be fixed using
simple heuristics. The number of clusters does not need to be determined
in advance. Numerical experiments with a variety of datasets show that
the method generally performs better than density-based and model-based
procedures for finding a partition with an unknown number of clusters.

Keywords: Dempster-Shafer Theory, Evidence Theory, Hopfield neural
networks, Unsupervised learning, Credal partition.



1 Introduction

Clustering may be defined as the search for groups in data, in an unsuper-
vised way. Over the years, the initial concepts of hierarchical and partitional
clustering have been extended to the search for more complex data struc-
tures, leading to the notions of fuzzy [2], possibilistic [19], rough [22], or
credal clustering [7, 27]. In spite of the huge amount of work done in this
area, the design of computationally efficient algorithms able to reveal an
informative structure in data remains a topic of considerable interest.

In the so-called “decision-directed” approach to clustering [page 536] [10],
prior knowledge is used to design a classifier, which is used to label the
samples. The classifier is then updated, and the process is repeated until no
changes occur in the labels. For instance, the well-known c-means algorithm
is based on this principle: here, the nearest-prototype classifier is used to
label the samples, and it is updated by taking as prototypes the centers of
each cluster. The classification EM algorithm [4] is also based on the same
principle, with an arbitrary parametric classifier and maximum likelihood
estimation.

In recent years, new approaches to classification and clustering using
the Dempster-Shafer theory of belief functions [5, 31] have been developed.
For supervised classification, one of the most widely used method is the
evidential K-nearest neighbor (EK-NN) rule [6,42]. Variants of this method
have been proposed in [21,23,24,30,41]. This approach has been successfully
applied in many domains including bioinformatics [32, 33, 38, 39], medical
image processing [3], remote sensing [41], machine diagnosis [37], process
control [34], among others. In unsupervised learning, the notion of credal
partition has been introduced in [7]. In a credal partition, the member of
an object to clusters is described by a Dempster-Shafer mass function. The
ECM algorithm, a c-means-like algorithm that generates credal partitions,
was introduced in [27]. Variants of this algorithm were proposed in [20, 26,
40].

In this paper, we introduce a new decision-directed evidential clustering
algorithm based on the EK-NN rule. Starting from an initial random par-
tition, the label of each sample is updated in turn using the EK-NN rule.
We prove that this algorithm, (called Ek-NNclus) converges to a fixed point
that corresponds, under some assumptions, to the most plausible partition
of the data. We also show that the algorithm can be implemented in a
competitive Hopfield neural network [15, 16], which allows its possible par-
allelization. The method is simple and depends on a small number of easily
tunable parameters. In particular, it does not require to fix the number

1



of clusters in advance. After convergence, one obtains a credal partition,
which is more informative than a fuzzy partition and allows us to easily
detect outliers.

The rest of this paper is organized as follows. The background on belief
functions, the EKNN rule and credal clustering will first be recalled in
Section 2. The new clustering algorithm will then be introduced and its
theoretical properties will be studied in Section 3. Finally, experiments will
be presented in Section 4 and Section 5 will conclude the paper.

2 Background

This section is intended to make the paper self-contained, by recalling re-
calling the necessary concepts related to belief functions (Section 2.1), the
EK-NN rule (Section 2.2) and credal clustering (Section 2.3).

2.1 Belief functions

The theory of belief functions (also referred to as Dempster-Shafer, or evi-
dence theory) is a framework for reasoning under uncertainty based on the
explicit representation and combination of items evidence [5, 31]. Let us
assume that we are interested in the value of some variable ω taking values
in a finite domain Ω, called the frame of discernment. Uncertain evidence
about ω may be represented by a mass function m on Ω, defined as a func-
tion from the powerset of Ω, denoted as 2Ω, to the interval [0, 1], such that
m(∅) = 0 and ∑

A⊆Ω

m(A) = 1. (1)

Each number m(A) is interpreted as the probability that the evidence sup-
ports exactly the assertion ω ∈ A (and no more specific assertion), i.e., the
probability of knowing that ω ∈ A, and nothing more. In particular, m(Ω)
is the probability that the evidence tells us nothing about ω, i.e., it is the
probability of knowing nothing. A subset A of Ω such that m(A) 6= 0 is
called a focal set of m. The mass function for which Ω is the only focal set
is said to be vacuous; it represent total ignorance.

To each normalized mass function m, we may associate belief and plau-

2



sibility functions from 2Ω to [0, 1] defined as follows,

Bel(A) =
∑
B⊆A

m(B) (2a)

Pl(A) =
∑

B∩A 6=∅

m(B), (2b)

for all A ⊆ Ω. These two functions are linked by the relation Pl(A) =
1−Bel(A), for all A ⊆ Ω. Each quantity Bel(A) may be interpreted as the
probability that the assertion ω ∈ A is implied by the evidence, while Pl(A)
is the probability that this assertion is not contradicted by the evidence. The
function pl : Ω → [0, 1] that maps each element Ω of Ω to its plausibility
pl(Ω) = Pl({Ω}) is called the contour function associated to m.

A key idea in Dempster-Shafer theory is that beliefs are elaborated by
aggregating independent items of evidence. Assume that we have two pieces
of evidence represented by mass functions m1 and m2 on the same frame
of discernment Ω. If one piece of evidence tells us that ω ∈ A and the
other source tells us that ω ∈ B for some non-disjoint subsets A and B of
Ω, and if both sources are reliable, then we know that ω ∈ A ∩ B. Under
the independence assumption, the probabilities m1(A) and m2(B) should
be multiplied. If, however, A and B are disjoint, we can conclude that
the interpretations “ω ∈ A” and ‘ω ∈ B” cannot hold jointly, and the
probabilities must be conditioned to eliminate such pairs of interpretations.
This line of reasoning leads to the following combination rule, referred to as
Dempster’s rule [31],

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C) (3a)

for all A ⊆ Ω, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (3b)

is the degree of conflict between m1 and m2. If κ = 1, there is a logical con-
tradiction between the two pieces of evidence and they cannot be combined.
Dempster’s rule is commutative, associative, and it admits the vacuous mass
function as neutral element.

Whereas the computation of the full combined mass function m1 ⊕m2

may be prohibitive in very large frames of discernment, the corresponding

3



contour function can be computed in time proportional to the size of the
frame, using the following property,

pl1 ⊕ pl2 =
pl1pl2
1− κ

, (4)

where pl1 and pl2 are the contour functions of two mass functions m1 and
m2, and the same symbol ⊕ is used for mass functions and contour functions.

2.2 EK-NN rule

Consider a classification problem in which an object o has to be classified
in one of c groups, based on its distances to n objects in a dataset. Let
Ω = {ω1, . . . , ωc} be the set of groups, and dj the distance between the
object to be classified and object oj in the dataset. If object oj belongs to
group ωk(j), then the knowledge that object o is at a distance dj from oj is
a piece of evidence that can be represented by the following mass function
on Ω,

mj({ωk(j)}) = αj , (5a)

mj(Ω) = 1− αj , (5b)

with
αj = ϕ(dj), (5c)

where ϕ is a non-increasing mapping from [0,+∞) to [0, 1], such that

lim
d→+∞

ϕ(d) = 0. (6)

According to (5), the mass function mj has two focal sets: the class ωk(j)

of oj , and Ω. It becomes vacuous when dj becomes infinitely large. In [6],
it was proposed to choose ϕ as ϕ(dj) = α0 exp(−γkdj) for some constants
α0 and γk. Considering the distances to the n objects in the database
as independent pieces of evidence, the n mass function mj can then be
combined by Dempster’s rule to yield the combined mass function

m = m1 ⊕m2 ⊕ . . .⊕mn. (7)

For computational reasons, the mass functions mj for objects oj that are
very dissimilar to object o are nearly vacuous and can be neglected. A
useful heuristic is to consider only the K nearest neighbors of object o in

4



the database. Denoting by NK the set of indices of these nearest neighbors,
the combined mass function thus becomes

m =
⊕
j∈NK

mj . (8)

If a decision has to be made, one can then assign object o to the class ωk
with the highest plausibility. We can remark that, to make a decision, we
need not compute the combined mass function m explicitly. The contour
function plj corresponding to mj in (5) is

plj(ω`) =

{
1 if ` = k(j),

1− αj otherwise,
(9a)

= (1− αj)1−sj` (9b)

for ` = 1, . . . , c, where si` = 1 if object oi belongs to class `, and si` = 0
otherwise. From (4), the combined contour function is thus

pl(ω`) ∝
∏
j∈NK

(1− αj)1−sj` , (10)

for ` = 1, . . . , c. Its logarithm can be written as

ln pl(ω`) =
∑
j∈NK

(1− sj`) ln(1− αj) + C (11a)

= −
∑
j∈NK

sj` ln(1− αj) + C ′ (11b)

=
n∑
j=1

vjsj` + C ′, (11c)

where C and C ′ are constants, and vj = − ln(1− αj) if j ∈ NK , and vj = 0
otherwise.

Equations (5)-(11) define the EKNN rule [6]. In [8], it was shown that
the coefficient αj in (5) can be interpreted as a mass of belief on the hy-
pothesis that objects o and oj belong to the same class. The EK-NN rule
can then be derived as Dempster’s rule applied to suitable mass functions.

Some modifications of the EKNN rule have been proposed recently. For
instance, in [23], Liu et al. propose to replace Dempster’s rule in (8) by a
two-step combination process: with each class, mass functions are first av-
eraged; then, the average class-conditional mass functions are combined by

5



the Dubois-Prade (DP) rule, a variant of Dempster’s rule that assigns the
conflicting mass to unions of focal sets [9]. In [24], the same authors propose
a more complex scheme, in which the mass functions mi corresponding to
each neighbor are constructed by aggregating two mass functions focused,
respectively, on a class and on its complement. Within each class, the re-
sulting mass functions are then combined by Dempster’s rule. Finally, mass
functions across classes are combined using a variant of the DP rule, in which
masses are assigned only to some preselected subsets of classes. In [25], the
authors propose to use the K nearest neighbors in each class; the mass
functions are averaged within each class, while a modified DP rule is used
to combine the class-conditional mass functions. Generally, these alterna-
tive algorithms are designed to assign masses to sets of classes (also called
“meta-classes”). While this objective may be appealing, and the resulting
methods may have good performances for some datasets, these modifications
to the basic algorithm also make it more complex. In particular, it is no
longer possible, using these modified algorithms, to compute the combined
contour function using such a simple formula as (10). For this reason, we
will stick to the original version of the EKNN rule in this paper.

2.3 Credal clustering

Assume that we have n objects, each one belonging to one of c groups
or clusters. Let Ω = {ω1, . . . , ωc} be the set of clusters. If we know for
sure which cluster each object belongs to, we can give a partition of the
n objects. Such a partition may be represented by binary variables uik
such that uik = 1 if object i belongs to cluster k, and uik = 1 otherwise.
If objects cannot be assigned to clusters with certainty, then it is natural
to quantify cluster-membership uncertainty by mass function m1, . . . ,mn,
where each mass function mi is defined on Ω and describes the uncertainty
about the cluster of object i. Such a n-tuple of mass functions is called a
credal partition [7].

It is clear that the concept of credal partitions subsumes the most com-
mon clustering structures. If each mass function has only focal set, and this
focal set is a singleton, then we are back to the full certainty case and we
have a hard partition. If all focal sets are singletons, then we have

c∑
k=1

mi({ωk}), i = 1, . . . , n, (12)

and the credal partition becomes a fuzzy partition [2]. If each mass function
mi has only one focal set Ai, then we can define the inner approximation of

6



cluster k as the set of objects i such thatAi = {ωk}, and outer approximation
of cluster k as the set of objects i such that ωk ∈ Ai. We thus recover
concepts of rough clustering [22].

The first algorithm that was proposed for computing a credal partition
is the EVCLUS algorithm [7]. This algorithm works with dissimilarity data
and does not require the dissimilarities to be Euclidean. The Evidential
c-Means (ECM) algorithm was then introduced in [27]. It is an alternat-
ing optimization algorithm akin to the fuzzy c-means (FCM) algorithm [2],
which alternatively searches for the best credal partition given a set of pro-
totypes, and then for best prototypes given the credal partition. The main
difference with FCM is that prototypes are defined not only for clusters, but
also for sets of clusters (or “meta-clusters”). The ECM algorithm works with
attribute data, but a relational data version was proposed in [28]. In [26],
a variant of the ECM algorithm (called CCM) is proposed, based on an al-
ternative definition of the distance between a vector and the prototype of a
meta-cluster. This modification produces more sensible results in situations
where the prototype of a meta-cluster is close to that of singleton cluster.
In [40], Zhou et al. introduce another variant of ECM, called Median Evi-
dential c-means (MECM), which is an evidential counterpart to the median
c-means and median fuzzy c-means algorithms. An advantage of this ap-
proach is that it does not require the dissimilarities between objects to verify
the axioms of distances.

Whereas a credal partition provides a rich description of the data struc-
ture, it implies, in the general case, the storage of O(2c) numbers, which can
become prohibitive for large n. To make this notion operational for datasets
with a large number of clusters, we need to restrict the form of the mass
functions mi. For moderate values of c, we can restrict the focal sets to have
size at most two, or to be equal to Ω. For large values of c, we can be even
more drastic and restrict the focal sets to singletons, and Ω. This is the kind
of credal partition generated by the algorithm described in the next section.

3 EK-NNclus algorithm

In this section, we will show how the EK-NN rule recalled in Section 2.2
can be used for clustering. The algorithm will first be described in Section
3.1. A neural implementation and a proof of convergence will be presented
in Section 3.2. Finally, an interpretation of the criterion optimized by the
algorithm will be discussed in Section 3.3.

7



3.1 Description of the algorithm

As mentioned in the introduction, the decision-directed approach to clus-
tering is to use a classifier to label the objects, and then to use the labeled
objects to train the classifier. These two steps are iterated until the object
labels are no longer modified. The EK-NNclus algorithm introduced in this
section is based on this principle, using the EK-NN rule as a classifier. As
this classification rule is non parametric, there is no training step, and the
clustering procedure becomes very simple. It can be described as follows.

Preparation Let D = (dij) be a symmetric n × n matrix of distances
or dissimilarities between the n objects. They can be computed from at-
tributes, or directly available. The numbers dij need not be Euclidean dis-
tances, nor do they need not be distances at all. Given K, we compute
the set NK(i) of indices of the K nearest neighbors of object i. We then
compute

αij =

{
ϕ(dij) if j ∈ NK(i)

0 otherwise,
(13a)

vij = − ln(1− αij), (13b)

for all (i, j) ∈ {1, . . . , n}2. We assume αij < 1 for all i and j. If computing
time is not an issue, K can be chosen very large, even equal to n− 1.

Initialization To initialize the algorithm, the objects are labeled ran-
domly (or using some prior knowledge if available). As the number of clus-
ters is usually unknown, it can be set to c = n, i.e., we initially assume
that there are as many clusters as objects and each cluster contains exactly
one object. If n is very large, we can give c a large value, but smaller than
n, and initialize the object labels randomly. As before, we define cluster-
membership binary variables sik as sik = 1 is object oi belongs to cluster k,
and sik = 0 otherwise.

Iteration An iteration of the algorithm consists in updating the object
labels in some random order, using the EKNN rule. For each object oi, we
compute the logarithms of the plausibilities of belonging to each cluster (up
to an additive constant) using (11) as

uik =
∑

j∈NK(i)

vijsjk, k = 1, . . . , c. (14)

8



We then assign object oi to the cluster with the highest plausibility, i.e., we
update the variables sik as

sik =

{
1 if uik = maxk′ uik′ ,

0 otherwise.
(15)

If the label of at least one object has been changed during the last iteration,
then the objects are randomly re-ordered and a new iteration is started.
Otherwise, we move to the last step described below, and the algorithm is
stopped.

We can remark that, after each iteration, some clusters may have dis-
appeared (it will be the case, in particular, if the initial number of clusters
is very large). To save computation time and storage space, we can update
the number c of clusters, renumber the clusters from 1 to c, and change the
membership variables sik accordingly, after each iteration.

Computation of the credal partition After the algorithm has con-
verged, we can compute the final mass functions

mi =
⊕

j∈NK(i)

mij , (16)

for i = 1, . . . , n, where each mij is the following mass function,

mij({ωk(j)}) = αij , (17a)

mij(Ω) = 1− αij . (17b)

The procedure is summarized in Algorithm 1.
The procedure described above iterative changes the object labels, start-

ing from an initial configuration. In Section 3.2 below, we will show that this
procedure can be implemented in a special kind of Hopfield neural network,
and we present a proof of convergence of the procedure. But before that,
let us present two simple examples to illustrate qualitatively the behavior of
the algorithm.

Example 1 Consider, as a first example, the toy “Butterfly” dataset dis-
played in Figure 1(a). It is composed of 12 objects described by two at-
tributes. Point 12 is an outlier, while point 6 is situated half-way between
the two clusters. We applied the EK-NNclus algorithm to this dataset, with
the following settings. Initially, each point was assigned to a different clus-
ter, so that the initial number of clusters was c = 12. We computed the

9



Algorithm 1 EK-NNclus algorithm.

Require: Number of states c, distance matrix D = (dij), number of neigh-
bors K
Randomly initialize variables sik for i = 1, . . . , n; k = 1, . . . , c.
Compute αij and vij for i = 1, . . . , n; j = 1, . . . , n
change← true
while change do

Select a random permutation σ of {1, . . . , n}
change← false
for i = 1 to n do

for k = 1 to c do
uσ(i)k ←

∑
j∈NK(σ(i)) vσ(i)jsjk

end for
k∗ ← arg maxk uσ(i)k

if sσ(i)k∗ = 0 then
Set sσ(i)k∗ ← 1 and sσ(i)k ← 0 for all k 6= k∗

change← true
end if

end for
Update c, renumber the clusters and change variables sik accordingly

end while
for i = 1 to n do

Initialize mi as the vacuous mass function on Ω = {ω1, . . . , ωc}.
for j = 1 to K do
mi ← mi ⊕mij

end for
end for

Euclidean distances dij between data points, and function ϕ was defined as
ϕ(dij) = exp(−γd2

ij). The number of neighbors was set, successively, to
K = 11, K = 8 and K = 4. Coefficient γ was fixed as the inverse of median
of the square distances between each point and its K nearest neighbors,

γ = 1/median({d2
ij , i ∈ {1, . . . , n}, j ∈ NK(i)}) (18)

The algorithm always converged to two clusters, in two to four iterations.
The masses m({ω1}), m({ω2}) and m(Ω) for the 12 objects are shown in
Figures 1(b), 1(c) and 1(d) for, respectively, K = 11, K = 8 and K = 4.
We can see that the results remain similar for different values of K. The
outlier (point 12) is characterized by a large mass assigned to Ω. For the

10



“borderline” object 6, the unit mass is shared equally between singletons ω1

and ω2.

Example 2 As a second example, consider the dataset in Figure 2(a), con-
sisting of three Gaussian clusters (with 20 points in each) and 10 points gen-
erated from the uniform distribution in [−1, 2]2. The number K of neighbors
was set to 30. Function ϕ and parameter γ were defined as in Example 1.
As before, each data point was initially assigned to a separate cluster. The
obtained partition in three clusters is shown in Figure 2(a). In Figure 2(b),
the size of each point is proportional to the mass mi(Ω) assigned to the set
of clusters. We can see that outliers are easily identified as objects with large
values of mi(Ω).

3.2 Neural network implementation

The algorithm described in the previous section can be implemented exactly
in a competitive Hopfield model such as described in [15,35]. This model is
a variant of the discrete neural network model initially proposed by Hopfield
[16]. Its architecture is composed of n groups of c neurons. Here, we have
one group for each object to be classified, and, within each group, one neuron
for each cluster. Let us denote by sik ∈ {0, 1} the state of neuron k in group
i and by vij the weight of the connection between groups i and j. The
assignment of object i to cluster k corresponds to the activation of neuron
k in group i, i.e., sik = 1. Using the terminology of neural networks, the
term uik in (14) corresponds to the input of neuron k in group i. Within
each group, only the neuron with the highest input fires, i.e., its state sik
becomes equal to 1, according to (15). Neuron groups are updated one at a
time, in serial mode.

In Hopfield networks, the weights are usually assumed to be positive
and symmetric, i.e., it is assumed that vij ≥ 0 and vij = vji, for all i and
j. Here, the positivity condition is always met. To guarantee the symmetry
condition, we have to assume that K = n − 1, or to change Eq. (13) to
αij = αji = ϕ(dij) if j ∈ NK(i) and i ∈ NK(j), and αij = 0, otherwise.
When the weights are symmetric, it is easy to show that the neural network
converges a stable state corresponding to a local minimum of the following
energy function,

E(S) = −1

2

c∑
k=1

n∑
i=1

∑
j 6=i

vijsiksjk, (19)

where S = (sik) denotes the n× c matrix of 0s and 1s encoding the neuron
states. To see this, assume that the cluster label of object oi is changed from

11



−5 0 5 10

−
2

0
2

4
6

8
10

Butterfly data

x1

x 2

1

2

3

4

5 6 7

8

9

10

11

12

(a)

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

objects

m
as

se
s

m(ω1)
m(ω2)
m(Ω)

(b)

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

objects

m
as

se
s

m(ω1)
m(ω2)
m(Ω)

(c)

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

objects

m
as

se
s

m(ω1)
m(ω2)
m(Ω)

(d)

Figure 1: Butterfly dataset (a) and results of the EK-NNclus algorithm with
K = 11 (b), K = 8 (c) and K = 4 (d).

12



●

●●
●

●
●

●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

x[, 1]

x[
, 2

]

(a)

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

x[, 1]

x[
, 2

]

(b)

Figure 2: Dataset of example 2: partition obtained by the E-K–NNclus
algorithm (a) and masses mi(Ω) (b).

k to k∗. The corresponding change of E(S) is

∆E = +
∑
j 6=i

vijsjk −
∑
j 6=i

vijsjk∗ = uik − uik∗ , (20)

which is strictly negative, since, by definition, uik∗ > uik. As there is a
finite number of states, the sequence of states produced by the algorithm is
stationary, and the algorithm converges to a local minimum of the energy
function E.

When the weights are not symmetric, some additional conditions should
be met to insure convergence. In [36], Xu et al. present an analysis for the
standard Hopfield model with asymmetric weights, but we are not aware
of any similar results for the competitive model. In [16], Hopfield states,
without proof, that the standard Hopfield network still converges when the
following condition is met: if vij > 0 then vji = 0. Here, if the weights vij
are fixed according to (13), we have a weaker form of asymmetry: if vij > 0
and vji > 0 then vij = vji. In simulations, the algorithm was always found
to converge to a stable state, and it can be conjectured that the convergence
property still holds in that case.

Example 3 Figure 3 shows the decrease of the energy criterion, plotted as
function of time, for five runs of the EK-NNclus algorithm, applied to the

13



0 50 100 150 200 250

−
80

0
−

60
0

−
40

0
−

20
0

0

time steps

en
er

gy

Figure 3: Decrease of the energy function for five runs of the EK-NNclus
algorithm, applied to the data of Example 2.

data of Example 2. The algorithm always converged after two iterations
(presentations of the whole dataset).

3.3 Interpretation of the energy function

We have just seen that the EK-NNclus algorithm converges to a local mini-
mum of energy function (19). In this section, we show that the energy E(S)
is related to its plausibility of the partition encoded by S, lower-energy par-
titions being more plausible. The EK-NNclus algorithm can thus be seen
as searching for the most plausible partition, among all the partitions of a
dataset.

To see this, let us denote by O = {o1, . . . , on} the set of objects, P the set
of partitions of O and R the set of equivalence relations on O. Because the
sets P and R are in one-to-one correspondence, we can reason equivalently
using one set or another. In the following, we will place the emphasis on
equivalence relations, for notational convenience. We will assume that there
exists an unknown true relation R0 in R, about which we collect pieces of
evidence in the form of pairwise distances dij .

As suggested in [7], we make the weak assumption that two objects have
all the more chance to belong to the same cluster, that they are more similar.

14



Formally, let us denote by Rij the set of equivalence relations R such that
(oi, oj) ∈ R, i..e., such that objects oi and oj belong to the same cluster.
The distance dij between objects oi and oj can be interpreted as a piece of
evidence, which can be represented by the following mass function,

mij(Rij) = αij , (21a)

mij(R) = 1− αij − βij , (21b)

with αij = ϕ(dij). Having collected N = n(n− 1)/2 such independent mass
functions (possibly vacuous), one for each pair of objects, we can combine by
Dempster’s rule. As the number of focal sets of the combined mass function
m grows exponentially with N , the full computation of m will generally be
intractable. However, thanks to property (4), the plausibility of any relation
R in R can easily be computed up to a multiplicative constant, by reasoning
as follows.

For any R ∈ R, let plij(R) denote the plausibility of R induced by
mass function mij . By convention, let us use the same symbol to denote an
equivalence relation R and its adjacency matrix, i.e., Rij = 1 if (oi, oj) ∈ R
and Rij = 0 otherwise. With these notations, we have

plij(R) =

{
mij(Rij) +mij(R) if R ∈ Rij ,
mij(R) otherwise,

(22a)

=

{
1 if Rij = 1,

1− αij otherwise,
(22b)

for all R ∈ R, which can be expressed more concisely as follows,

plij(R) = (1− αij)1−Rij . (23)

From (4), the plausibility of R induced by the combined mass function m
(obtained by Dempster’s rule) is proportional to the product of the N mass
functions plij :

pl(R) ∝
∏
i<j

(1− αij)1−Rij . (24)

Assuming that αij < 1 for all i and j, the logarithm of pl(R) is given by

ln pl(R) = −
∑
i<j

Rij ln(1− αij) + C, (25)

= −E(R) + C, (26)

15



where C is a constant and

E(R) = −
∑
i<j

vijRij (27)

is identical to energy function (19), with vij = − ln(1 − αij) and Rij =∑c
k=1 siksjk.
The EK-NNclus algorithm described in Section 3 thus searches for a

partition with maximum plausibility, based on the evidence of pairwise dis-
tances between objects. However, we can remark that the global maximum
of pl(R) corresponds to the trivial partition for which all objects belong
to the same class, in which case we have Rij = 1 for all i and j. We are
obviously not interested in this solution. It is thus essential that the algo-
rithm converges to a local maximum. Starting from a the finest partition
with as many clusters as objects can be seen as a way of incorporating prior
knowledge to drive the algorithm away from the trivial global maximum. In
the next section, the effectiveness of this procedure will be demonstrated by
numerical experiments.

4 Experiments

In this section, we present some experimental results with real and simulated
data, showing the effectiveness of the EK-NNclus algorithm. A sensitivity
analysis will first be presented in Section 4.1 using the Wine dataset. Com-
parative experiments will then be reported in Section 4.2.

4.1 Sensitivity analysis

To study the behavior of the EK-NNclus, we first considered the Wine
dataset from the UCI Machine Learning Repository1. The data results form
chemical analysis of 178 Italian wines. Each wine is described by 13 at-
tributes which are the compositions of chemical constituents. The ground-
truth partition consists in three groups.

We first centered and scaled the variables, and then ran EK-NNclus with
K ranging between 15 and 50 (with increments of 5). As in Example 1, we
set ϕ(dij) = exp(−γd2

ij), where dij is the Euclidean distance between objects
i and j. Parameter γ was fixed to the inverse of the q-quantile of the set

∆ = {d2
ij , i ∈ {1, . . . , n}, j ∈ NK(i)}.

1This dataset is available at https://archive.ics.uci.edu/ml/datasets.html.

16



Parameter q was varied in the set {0.1, 0.3, 0.5, 0.7, 0.9}. For each pair (K, q),
the algorithm was run 100 times, starting from the finest partition (with ex-
actly one cluster for each object). The results were evaluated using the
Adjusted Rand Index (ARI) [17]. We recall that this index equals 1 for two
equal partitions, and equals 0 on average when a partition is compared to a
randomly-generated one. We note that the ARI only compares hard parti-
tions, i.e., the additional information contained in the credal partition is not
evaluated. It is not clear, however, how the relevance of this information
could be measured, all the more so when comparing clustering algorithm
generating different representations (such as hard and fuzzy clustering algo-
rithms).

Boxplots of the ARI criterion for the different values of K and q are
shown in Figures 4 and 5. We can see that the algorithm performs well for
K ≥ 30 and q ≥ 0.3. For this dataset, the performance of the algorithm is
thus not too sensitive to these parameters. We can also see that a too small
value of K (such as K = 20 or K = 25) can be compensated by choosing a
large value of q, i.e., a small value of γ.

The algorithm found, in most cases, a partition in three classes. For
instance, for K = 40 and q = 0.5, a there-class partition was found in 99
runs out of 100, and a two-class partition was found only once. Figure 6
shows a typical partition, corresponding to an ARI of 0.897. The data are
displayed in the space of the first two principal components. Only 6 objects
out of 178 are misclassified.

The results obtained with EK-NNclus were also compared with those of
the following clustering algorithms:

• HCM: Hard c-means (function kmeans in the R package stats);

• FCM: Fuzzy c-means (function FKM in the R package fclust);

• A density-based nonparametric clustering method [1,29] (function pdfCluster

in the R package pdfCluster);

• Model-based clustering with mixtures of Gaussian and the EM algo-
rithm (function Mclust in the R package mclust) [11,12].

The HCM and FCM algorithms were run 100 times with c = 3 clusters.
In each case, the result with the best value of the objective function was kept.
The ARI values were 0.754 and 0.897 for HCM and FCM, respectively. The
FCM algorithm thus performs as well as EK-NNclus for this dataset, with
the important provision that it needs to be supplied with the correct number
of clusters.

17



●●●●●●●●●●●●●●

0.1 0.3 0.5 0.7 0.9

0.
4

0.
7

K= 15

q

A
R

I

●
●
●

●
●
●

●

●
●
●

●
●

●
●
●
●●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●
●●●

●

●●
●●●

0.1 0.3 0.5 0.7 0.9

0.
5

0.
8

K= 20

q

A
R

I

●

●●

●●●●
●
●
●

●●

●
●

●

●

●

●

●●

●
●●●

●

●●●

●●

●

●●

●●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●● ●

●

●●

0.1 0.3 0.5 0.7 0.9

0.
70

0.
85

K= 25

q

A
R

I

●

●●●

●

●●

●

●

●

●●●

●●

●●●

●

● ●●

0.1 0.3 0.5 0.7 0.9

0.
5

0.
8

K= 30

q

A
R

I

●

●

●

●

●

●●

●

●

●

●

0.1 0.3 0.5 0.7 0.9

0.
4

0.
7

K= 35

q

A
R

I ●●

● ●●●

●

● ●●

●

0.1 0.3 0.5 0.7 0.9

0.
5

0.
8

K= 40

q

A
R

I

●●

●
●●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

● ●
●
●●●●●

●●●●●●●

●
●

●●

●

●●●●

●

●●

●

●●●●

●

●●●●●

0.1 0.3 0.5 0.7 0.9

0.
5

0.
8

K= 45

q

A
R

I

●

●●
●

●●

●

●●●

●

●

●

●●●●●

●●

●

●

●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●

●●

●●●●●●● ●●●

●

●●●●

●

●●●

●●

●

●

●●●●●●●●●●

●●
●

●

●●
●
●●●
●
●●

●

●●

0.1 0.3 0.5 0.7 0.9

0.
5

0.
8

K= 50

q

A
R

I

Figure 4: Adjusted Rand Index as a function of parameter q, for different
values of the number K of neighbors.

18



●

●

●

●

●●● ●

●

●

●
● ●●

●

●●
●

15 20 25 30 35 40 45 50

0.
4

0.
6

0.
8

q= 0.1

K

A
R

I

●

●●

●●●●
●
●
●

●●

●
●

●

●

●

●

●●

●
●●●

●

●●●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●●

●●

●

●●●

●

●

●

●●●●●

●●

●

●

●●●●●●●●●●

●

15 20 25 30 35 40 45 50

0.
5

0.
7

0.
9

q= 0.3

K
A

R
I

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●●

●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●

●

●●●●●●

●

●●●●●●

●●

●●●●●●●

15 20 25 30 35 40 45 50

0.
4

0.
6

0.
8

q= 0.5

K

A
R

I ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●● ●

● ●●

●

● ●●●

●

● ●

●

●●●●●

●●●

●

●●●●

●

●●●

●●

●

●

●●●●●●●●●●

●●

●

●

15 20 25 30 35 40 45 50

0.
5

0.
7

0.
9

q= 0.7

K

A
R

I

●●●●●●●●●●●●●●
●

●

●
●●●

●

●●
●●
●

●

●

●●

●●

●

● ●●

●

●●●●●●●

●

●

●●

●

●●●●

●

●●

●

●●●●

●

●●●●●

●●

●

●●●

●

●●

●

●●

15 20 25 30 35 40 45 50

0.
5

0.
7

0.
9

q= 0.9

K

A
R

I

Figure 5: Adjusted Rand Index as a function of the number K of neighbors,
for different values of parameter q.

19



●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

−4 −2 0 2 4

−
2

0
2

4

z1

z 2

Figure 6: Wine data in the space of the first two principal components, and
partition generated by the EK-NNclus algorithm.

The other two alternative methods have mechanisms for determining
the number of clusters automatically. The pdfCluster procedure computes
a kernel density estimate of the data and searches for modes of the esti-
mated density. The Mclust procedures searches through different number
of components of the Gaussian mixture, and different assumptions (such as
spherical, diagonal or ellipsoidal shapes, and equal volume of shape of clus-
ters) by maximizing the Bayesian Information Criterion (BIC). Here, we
specified a number of clusters between 1 and 9.

With the default settings, the pdfCluster procedure found 10 clusters
with an ARI of 0.471. This poor result may be due to the fact that non-
parametric density estimation works well only in low dimensional spaces.
We thus performed Principal Component Analysis (PCA) of the data to
extract informative features (components). When applied to the space of
the first 2, 3 and 4 components, we obtained, respectively values of the ARI
equal to 0.803, 0.832 and 0.689. The correct number of clusters was obtained
for 3 and 4 components. The pdfCluster procedure thus works better af-
ter performing some dimensionality reduction, but it requires to perform a
search for the best reduced space.

The model-based approach also did not perform too well on this dataset.

20



Without any restriction on the form of the clusters, we obtained 8 compo-
nents and ARI = 0.481. By restricting the search to the simplest model
(spherical cluster shape and equal volume), we get better results, with 4
components and ARI = 0.78. Fixing the number of components to 3, we
get ARI = 0.897. It thus appears that the method works well when sup-
plied with the correct number of clusters, but it fails to identify that number
automatically.

From these experiments, we can conclude that, for this dataset, the
performances of the EK-NNclus algorithm are not too sensitive to the choice
of the two parameters K and q, and that this method performs better than
the alternative clustering algorithms considered in this study. In particular,
the method seems able to correctly identify the true number of clusters. In
the following section, we will report results from experiments with a larger
number of datasets.

4.2 Comparative experiments

In this section, we present the results of comparative experiments with dif-
ferent datasets available from “Clustering datasets”2 web site:

1. The “S-sets” are two-dimensional datasets with 15 clusters and differ-
ent degrees of overlapping [14];

2. The “A-sets” are two-dimensional datasets with numbers of clusters
ranging from 20 to 50 [18];

3. The “DIM-sets” are datasets with 16 clusters, with dimensionality
ranging from 32 to 1064 [13].

We also report results with five datasets from the UCI Machine Learning
Repository3.

Experiments with the S-sets

We first compared our method to the c-means algorithm, the pdfCluster

procedure and the EM algorithm with Gaussian mixtures and the BIC cri-
terion, using the four S-sets shown in Figure 7. These are synthetic two-
dimensional data with n = 5000 vectors and 15 Gaussian clusters with
different degree of cluster overlapping.

2http://cs.joensuu.fi/sipu/datasets
3https://archive.ics.uci.edu/ml

21



−2 −1 0 1

−
2

−
1

0
1

2

x1

x 2

(a)

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x 2

(b)

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x 2

(c)

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

x1

x 2

(d)

Figure 7: The S-sets: S1 (a), S2 (b), S3 (c) and S4 (d).

22



Our algorithm was initialized with a random partition in 500 clusters.
The previous study (Section 4.1) suggested that a value of K of the order
of two or there times

√
n and q greater than 0.5 are suitable. We thus

set K = 200 and q = 0.9. The K nearest neighbors were computed using
function get.knn in the R package FNN. The algorithm was run ten times for
each dataset. As before, the implementations of the c-means, pdfCluster
and model-based clustering are from the R packages stats, pdfCluster

and mclust, respectively. For the Mclust procedure, the number of clusters
was specified to be in the range 10–20. The procedure was run without any
restriction on the form of the clusters, and with the most constrained model
(spherical cluster shape and equal volume).

The results are shown in Table 1. In this table, we report the number
of clusters, the Adjusted Rand Index (ARI) and the computing time (in
seconds) for the five methods. For E-K-NNclus, we give the median and
interquartile range (difference between the third and first quartiles) over the
10 trials, for each of the three indices. The c-means algorithm performed
well and was much faster than other methods, but it requires to fix the
number of clusters in advance. The model-based algorithm failed to identify
the correct number of clusters, except for the constrained model and the
most separated cluster case (dataset S1). In contrast, The E-K-NNclus
and pdfCluster methods found the correct number of clusters and yielded
comparable values of the ARI, the former method being five to six times
faster.

Experiments with the A-sets

The A-sets are three two-dimensional synthetic datasets with varying num-
bers of clusters. There are 150 vectors per cluster. Datasets A1, A2 and
A3 have, respectively, 20, 35 and 50 clusters. The datasets are displayed in
Figure 8.

As, in this experiment, the emphasis is on the determination of clus-
ters, we compared EK-NNclus with two competing methods to determine
the number of clusters: pdfCluster and the model-based approach with
the BIC criterion. Parameter q of the EK-NNclus algorithm was fixed to
q = 0.9. The number of neighbors was fixed to K = 150 for dataset A1, and
K = 200 for datasets A2 and A3 (i.e., consistently with the rule of thumb
that K should be of the order of two to three times

√
n). Two initialization

methods were used: c0 = n initial clusters, and c0 = 1000 random initial
clusters. As before, the EK-NNclus algorithm was run 10 times. For the
pdfCluster procedure, the default settings were not suitable (the function

23



T
ab

le
1:

R
es

u
lt

s
on

th
e

S
-s

et
s.

D
a
ta

se
t

R
es

u
lt

E
K

-N
N

cl
u

s
c-

m
ea

n
s

p
d

fC
lu

st
er

m
o
d

el
-b

as
ed

m
o
d

el
-b

as
ed

(c
on

st
ra

in
ed

)

S
1

c
15

(0
)

15
(fi

x
ed

)
15

20
15

A
R

I
0.

99
(4

.4
e-

4)
0.

99
0.

99
0.

93
0.

9
9

ti
m

e
7.

70
(0

.3
0)

0.
60

52
.1

6
52

.8
4

2
5.

5
4

S
2

c
15

(0
)

15
15

20
2
0

A
R

I
0.

94
(4

.2
e-

4)
0.

94
0.

94
0.

76
0.

9
0

ti
m

e
8
.2

6
(0

.2
9)

0.
72

51
.3

6
63

.4
6

3
1.

2

S
3

c
15

(0
)

15
15

20
2
0.

0
A

R
I

0.
73

(9
.6

e-
4)

0.
73

0.
73

0.
55

0.
7

ti
m

e
10

.7
7

(0
.5

0)
1.

06
57

.5
2

65
.5

1
3
1.

5

S
4

c
15

(0
)

15
15

19
1
9

A
R

I
0.

64
(2

.9
e-

3)
0.

63
0.

65
0.

52
0.

6
3

ti
m

e
10

.9
5

(1
.3

8)
1.

59
63

.3
6

79
.3

5
31

.5
5

24



0 10000 20000 30000 40000 50000 60000

35
00

0
40

00
0

45
00

0
50

00
0

55
00

0
60

00
0

65
00

0

x1

x 2

(a)

0 10000 20000 30000 40000 50000 60000

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

x1

x 2

(b)

0 10000 20000 30000 40000 50000 60000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

x1

x 2

(c)

Figure 8: The A-sets: A1 (a), A2 (b), and A3 (c).

25



issues a warning message). Following the advice of the authors [29], param-
eter n.grid was increased to 1500. For the model-based method Mclust,
the number of clusters was varied between 3 and c∗+ 5, where c∗ is the true
number of clusters.

The results are shown in Table 2. In this table, we report the number of
clusters and the computing time (in seconds) for the five methods. As be-
fore, for E-K-NNclus, we give the median and interquartile range (difference
between the third and first quartiles) over the 10 trials, for both the number
of clusters and the computing times. As we can see, the model-based method
(with or without restrictions on cluster shape) overestimates the number of
clusters, except for the A3 dataset. The pdfCluster method is the most
time-consuming method, and it severely underestimates the number of clus-
ters. In contrast, the EK-NNclus algorithm estimates the correct number
of clusters quite accurately for all three datasets. Initializing the algorithm
with as many clusters as data points yields slightly better results in terms of
final number of clusters (with less variability), but it is time-consuming for
large datasets. Randomly initializing the algorithm with a smaller number
of clusters considerably shortens the computing time, at the cost of a slight
underestimation of the number of clusters. This is due to the fact that two
or more real clusters can be grouped as one cluster, as shown in Figure 9.
This issue could be easily detected and fixed by inspecting within-cluster
distances.

Experiments with the DIM-sets

As a third experiment, we compared our method to the c-means, pdfCluster
and model-based methods on three of the DIM datasets. These are high-
dimensional data sets n = 1024 and 16 Gaussian clusters. We used the
files dim256, dim512 and dim1024 with, respectively, 256, 512 and 1024
dimensions.

Parameters q and K of the EK-NNclus algorithm were fixed to q = 0.9
and K = 50. The algorithm was initialized with c0 = n clusters and was
run 10 times. The c-means algorithm was run 100 times with c = 16 clus-
ters and the result with the best value of the objective function was kept.
As the pdfCluster procedure cannot be used in high dimensions, we per-
formed a PCA of the data and used the first two principal components,
with parameter n.grid set to 1000. For the model-based method Mclust,
the constrained model (spherical cluster shape and equal volume) was as-
sumed and the number of clusters was varied from 3 to 20.

The results are shown in Table 3. We can see that the EK-NNclus

26



T
ab

le
2
:

R
es

u
lt

s
o
n

th
e

A
-s

et
s.

F
o
r

th
e

E
K

-N
N

cl
u

s
al

go
ri

th
m

,
th

e
re

su
lt

s
ar

e
gi

ve
n

w
it

h
tw

o
d

iff
er

en
t

in
it

ia
li

za
ti

o
n

m
et

h
o
d

s:
c 0

=
n

in
it

ia
l

cl
u

st
er

s,
an

d
c 0

=
10

00
ra

n
d

om
in

it
ia

l
cl

u
st

er
s.

D
at

as
et

R
es

u
lt

E
K

-N
N

cl
u

s
E
K

-N
N

cl
u

s
p
d
f
C
l
u
s
t
e
r

m
o
d

el
-b

a
se

d
m

o
d

el
-b

as
ed

(c
0

=
n

)
(c

0
=

10
00

)
(c

o
n

st
ra

in
ed

)

A
1

c
20

(0
)

20
(0

)
17

24
24

n
=

3
0
00

ti
m

e
3
2.

9
(3

.1
4)

9.
8

(0
.2

)
84

.5
31

.8
7.

8
8

A
2

c
35

(0
)

34
(1

)
26

39
39

n
=

5
2
50

ti
m

e
19

3
(9

.8
1)

23
.8

(0
.6

)
29

8
13

8
3
6.

2

A
3

c
49

(1
)

49
(2

.5
)

34
50

5
1

n
=

7
5
00

ti
m

e
35

8
(8

.2
3)

35
.1

(1
.0

9)
62

9
41

2
9
9.

4

27



●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

● ●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●
●

●

●
●

●

●
●

● ●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●
●● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
● ● ●

●

●

●

●●

●● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

● ●●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

● ●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●

●
●

●

●● ●

●

●
● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●●
●

●

●

●●

● ●

●

●

●●

●

●
●

●●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●● ●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
● ● ●

●
●

●
●●

●

●

●

●

●

●
●

● ●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●●

●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

●●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●●
● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

● ●

●●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●● ●

● ●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●
●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

●
● ●

●

●
●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
● ●

●

●●

●

●

● ●

●

●●●

●●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●●

●

● ●

●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

● ●

●
●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

● ●

●

●●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●●
●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

● ●●

●

●
●●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ● ●

●
●

●

●● ●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

● ●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

● ●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●
● ●

●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●●
●●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●●

●

●

●

● ●
● ●

●
●

● ●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●
● ●●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 10000 20000 30000 40000 50000 60000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

x[, 1]

x[
, 2

]

Figure 9: Example of underestimation of the number of cluster using the
EK-NNclus algorithm with c0 < n initial clusters: two real clusters are
merged into one cluster.

28



Table 3: Results on the DIM-sets.

Dataset Result EK-NNclus c-means pdfCluster model-based
(constrained)

dim256 c 16 (0) 16 (fixed) 5 16
ARI 1.0 (0) 0.94 0.23 1
time 1.4 (0.058) 2.76 11.30 116

dim512 c 16 (0) 16(fixed) 9 16
ARI 1 (0) 0.94 0.5 1
time 1.4 (0.11) 13.27 10.9 467

dim1024 c 16 (0) 16 (fixed) 8 18
ARI 1 (0) 0.94 0.28 0.998
time 1.4 (0.14) 36.38 11.13 23

algorithm always recovers the true 16-cluster partition perfectly and is the
fastest of all methods. In contrast, the c-means algorithm provided with
the correct number of clusters does not recover the true partition exactly.
The model-based method also recovers the true partition, except for the
dim1024 dataset, but it takes more computing time. As with other datasets,
the pdfCluster severely underestimates the number of clusters. Overall, the
EK-NNclus algorithm outperforms the other methods on these datasets.

Experiments with real datasets

As a final comparative experiment in this section, we considered five classical
benchmark datasets from the UCI repository of databases, whose character-
istics are summarized in Table 4. As in [26], we only considered in the
dataset Ecoli the classes ‘im’, ‘pp’ and ‘imU’, which are close and hard to
separate. As before, the EK-NNclus algorithm was compared to the c-means
algorithm (with the correct number of clusters), the pdfCluster algorithm,
and the model-based method with and without contraints on the covariance
matrices. For the model-based methods, the number of clusters was searched
between 2 and 10. The pdfCluster algorithm was not applied to the Heart
dataset, because it contains discrete attributes that cannot be handled by
this procedure. Our algorithm was run 100 times with the following values
of the coefficients: K = 40, q = 0.9, except for the Iris dataset, which has
fewer instances, and for which we set K = 30.

29



Table 4: Characteristics of the real datasets.

Name Clusters Attributes Instances

Wine 3 13 178
Seeds 3 7 201
Ecoli 3 7 164
Iris 3 4 150

Statlog (Heart) 2 13 270

The results are shown in Table 5. We can see that the EK-NNclus algo-
rithm correctly identified the number of clusters in all five datasets, while
the other methods for determining the number of clusters generally per-
formed poorly. The quality of the obtained partition, as measured by the
ARI criterion, is usually close to that of the c-means partition. However,
the c-means algorithm was provided with the extra knowledge of the correct
number of partitions. We can also note that EK-NNclus was significantly
faster than pdfCluster and the model-based approach without constraints.
Overall, EK-NNclus thus seems to provide a valuable alternative to alter-
native techniques in terms of both accuracy and computing time.

5 Conclusions

A new credal clustering method based on the EK-NN rule has been pro-
posed. Starting from an initial partition with as many clusters as objects in
the dataset, the method, called EK-NNclus, iteratively applies the EK-NN
rule to change the class labels, until a stable partition has been obtained.

The algorithm can be implemented in a competitive Hopfield neural net-
work model with as many neurons as objects in the database, neuron states
corresponding to clusters. The energy function of this network, which is
minimized by the algorithm, is related to the plausibility of the partition:
the algorithm can thus be seen as searching from the most plausible parti-
tion of the dataset. The end result produced by the algorithm is a credal
partition, in which the cluster membership of each object is described by a
mass function assigning a mass to each cluster, as well as to the set of all
clusters. The mass assigned to the set of clusters can be used to identify
outliers in the dataset.

The method has been compared to standard clustering algorithms on
several datasets. The experiments have shown that the method generally

30



T
ab

le
5:

R
es

u
lt

s
on

th
e

re
al

d
at

as
et

s.

D
a
ta

se
t

R
es

u
lt

E
K

-N
N

cl
u

s
c-

m
ea

n
s

p
d

fC
lu

st
er

m
o
d

el
-b

as
ed

m
o
d

el
-b

as
ed

(c
o
n

st
ra

in
ed

)

W
in

e
c

3
(0

)
3

(fi
x
ed

)
10

3
4

A
R

I
0.

86
(0

.0
34

)
0.

90
0.

47
0.

93
0
.7

8
ti

m
e

0.
01

6
(4

.0
e-

3)
0.

01
8

0.
95

6.
97

0.
0
40

S
ee

d
s

c
3

(0
)

3
(fi

x
ed

)
2

4
1
0

A
R

I
0.

74
(0

.0
48

)
0.

77
0.

46
0.

57
0
.3

2
ti

m
e

0
.0

26
(6

e-
3)

0.
01

9
1.

06
8

5.
88

0.
0
46

E
co

li
c

3
(0

)
3

(fi
x
ed

)
2

6
7

A
R

I
0.

75
(0

.1
1)

0.
72

0.
49

0.
65

0
.6

2
ti

m
e

0.
05

0
(0

.0
11

)
0.

02
2

0.
78

2.
24

0
.1

1

Ir
is

c
3

(1
)

3
(fi

x
ed

)
2

2
10

A
R

I
0.

51
(0

.1
3)

0.
62

0.
57

0.
57

0
.3

2
ti

m
e

0.
01

5
(5

e-
3)

0.
01

6
0.

16
1.

09
3

0.
0
30

H
ea

rt
c

2
(0

.2
5)

2
(fi

x
ed

)
N

A
5

5
A

R
I

0.
41

(0
.1

2)
0.

45
N

A
0.

11
0.

2
1

ti
m

e
0.

04
3

(7
e-

3)
0.

02
3

N
A

0.
75

0
.0

8
9

31



performs better than density-based and model-based clustering procedures,
especially when it comes to determining the number of clusters. It is also
faster than the non-parameteric density-based approach, and it performs
much better with high-dimensional data.

As compared to other credal clustering algorithms such as EVCLUS or
CEM, the method generates simpler credal partitions (with only c+1 masses
for each object, c being the number of clusters). It is thus better suited for
clustering large datasets. As the EK-NNclus is based on distances, it can
be applied to any proximity data, and it can be kernelized to handle data
with complex cluster shapes. These research directions are currently being
investigated.

Acknowledgements

This research was supported by the Labex MS2T, which was funded by the
French Government, through the program “Investments for the future” by
the National Agency for Research (reference ANR-11-IDEX-0004-02). It
was also supported by the Center of Excellence in Econometrics at Chiang
Mai University.

References

[1] A. Azzalini and N. Torelli. Clustering via nonparametric density esti-
mation. Statistics and Computing, 17:71–80, 2007.

[2] J. Bezdek. Pattern Recognition with fuzzy objective function algorithm.
Plenum Press, New-York, 1981.

[3] A.-S. Capelle, O. Colot, and C. Fernandez-Maloigne. Evidential seg-
mentation scheme of multi-echo MR images for the detection of brain
tumors using neighborhood information. Information Fusion, 5(3):203–
216, 2004.

[4] G. Celeux and G. Govaert. A classification EM algorithm for clustering
and two stochastic versions. Computational Statistics & Data Analysis,
14(3):315–332, 1992.

[5] A. P. Dempster. Upper and lower probabilities induced by a multivalued
mapping. Annals of Mathematical Statistics, 38:325–339, 1967.

32



[6] T. Denœux. A k-nearest neighbor classification rule based on
Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cyber-
netics, 25(05):804–813, 1995.

[7] T. Denœux and M.-H. Masson. EVCLUS: Evidential clustering of prox-
imity data. IEEE Trans. on Systems, Man and Cybernetics B, 34(1):95–
109, 2004.

[8] T. Denœux and P. Smets. Classification using belief functions: the
relationship between the case-based and model-based approaches. IEEE
Transactions on Systems, Man and Cybernetics B, 36(6):1395–1406,
2006.

[9] D. Dubois and H. Prade. Representation and combination of uncer-
tainty with belief functions and possibility measures. Computational
Intelligence, 4:244–264, 1988.

[10] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John
Wiley and Sons, New-York, 2001.

[11] C. Fraley and A. E. Raftery. Model-based clustering, discriminant anal-
ysis and density estimation. Journal of the American Statistical Asso-
ciation, 97:611–631, 2002.

[12] C. Fraley, A. E. Raftery, T. B. Murphy, and L. Scrucca. mclust version
4 for R: Normal mixture modeling for model-based clustering, classifi-
cation, and density estimation. Technical Report 597, Department of
Statistics, University of Washington, 2012.

[13] P. Fränti, O. Virmajoki, , and V. Hautamäki. Fast agglomerative clus-
tering using a k-nearest neighbor graph. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 28(11):1875–1881, 2006.

[14] P. Fränti and O. Virmajoki. Iterative shrinking method for clustering
problems. Pattern Recognition, 39(5):761–775, 2006.

[15] G. Galán-Maŕın and J. Muñoz Pérez. Design and analysis of maximum
Hopfield networks. IEEE Transactions on Neural Networks, 12(2):329–
339, Mar 2001.

[16] J. J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, 79:2554–2558, 1982.

33



[17] L. Hubert and P. Arabie. Comparing partitions. Journal of Classifica-
tion, 2(1):193–ñ218, 1985.

[18] I. Kärkkäinen and P. Fränti. Dynamic local search algorithm for the
clustering problem. Technical Report A-2002-6, Department of Com-
puter Science, University of Joensuu, 2002.

[19] R. Krishnapuram and J. Keller. A possibilistic approach to clustering.
IEEE Trans. on Fuzzy Systems, 1:98–111, May 1993.

[20] B. Lelandais, S. Ruan, T. Denœux, P. Vera, and I. Gardin. Fusion of
multi-tracer PET images for dose painting. Medical Image Analysis,
18(7):1247–1259, 2014.

[21] C. Lian, S. Ruan, and T. Denœux. An evidential classifier based on fea-
ture selection and two-step classification strategy. Pattern Recognition,
48:2318–2327, 2015.

[22] P. Lingras and G. Peters. Applying rough set concepts to clustering.
In G. Peters, P. Lingras, D. Ślezak, and Y. Yao, editors, Rough Sets:
Selected Methods and Applications in Management and Engineering,
pages 23–37. Springer-Verlag, London, UK, 2012.

[23] Z.-G. Liu, Q. Pan, and J. Dezert. Evidential classifier for imprecise
data based on belief functions. Knowledge-Based Systems, 52(0):246
–257, 2013.

[24] Z.-G. Liu, Q. Pan, and J. Dezert. A new belief-based k-nearest neighbor
classification method. Pattern Recognition, 46(3):834–844, 2013.

[25] Z.-G. Liu, Q. Pan, and J. Dezert. Classification of uncertain and im-
precise data based on evidence theory. Neurocomputing, 133:459 – 470,
2014.

[26] Z.-G. Liu, Q. Pan, J. Dezert, and G. Mercier. Credal c-means clustering
method based on belief functions. Knowledge-Based Systems, 74(0):119
–132, 2015.

[27] M.-H. Masson and T. Denœux. ECM: an evidential version of the fuzzy
c-means algorithm. Pattern Recognition, 41(4):1384–1397, 2008.

[28] M.-H. Masson and T. Denœux. RECM: relational evidential c-means
algorithm. Pattern Recognition Letters, 30:1015–1026, 2009.

34



[29] G. Menardi and A. Azzalini. Clustering via nonparametric density
estimation: The R package pdfcluster. Journal of Statistical Software,
57(11), 2014.

[30] N. K. Pal and S. Gosh. Some classification algorithms integrating
Dempster-Shafer theory of evidence with the rank nearest neighbor rule.
IEEE Trans. on Systems, Man and Cybernetics – Part A, 31(1):59–66,
2001.

[31] G. Shafer. A mathematical theory of evidence. Princeton University
Press, Princeton, N.J., 1976.

[32] H. Shen and K.-C. Chou. Predicting protein subnuclear location with
optimized evidence-theoretic K-nearest classifier and pseudo amino acid
composition. Biochemical and Biophysical Research Communications,
337(3):752–756, 2005.

[33] H. Shen and K.-C. Chou. Using optimized evidence-theoretic K-nearest
neighbor classifier and pseudo-amino acid composition to predict mem-
brane protein types. Biochemical and Biophysical Research Communi-
cations, 334(1):288–292, 2005.

[34] Z.-G. Su and P.-H. Wang. Improved adaptive evidential k-NN rule and
its application for monitoring level of coal powder filling in ball mill.
Journal of Process Control, 19(10):1751–1762, 2009.

[35] Y. Takefuji, K.-C. Lee, and H. Also. An artificial maximum neural
network: a winner-take-all neuron model forcing the state of the system
in a solution domain. Biological Cybernetics, 67(3):243–251, 1992.

[36] Z.-B. Xu, G.-Q. Hu, and C.-P. Kwong. Asymmetric Hopfield-type net-
works: Theory and applications. Neural Networks, 9(3):483–501, 1996.

[37] B.-S. Yang and K. J. Kim. Application of Dempster-Shafer theory in
fault diagnosis of induction motors using vibration and current signals.
Mechanical Systems and Signal Processing, 20:403–420, 2006.

[38] N. M. Zaki, S. Deris, S. N. V. Arjunan, and R. M. Illias. Assign-
ment of protein sequence to functional family using neural network and
Dempster-Shafer theory. Journal of Theoretics, 5(1), 2003.

[39] W. Zhong, G. Altun, X. Tian, R. Harrison, P. Tai, and Y. Pan. Par-
allel protein secondary structure prediction based on neural networks.

35



In Proceedings of the 26th Annual International Conference of the En-
gineering in Medicine and Biology Society, 2004 (EMBC 2004), pages
2968 – 2971. IEEE, 2004.

[40] K. Zhou, A. Martin, Q. Pan, and Z.-G. Liu. Median evidential c-means
algorithm and its application to community detection. Knowledge-
Based Systems, 74(0):69 –88, 2015.

[41] H. Zhu and O. Basir. An adaptive fuzzy evidential nearest neighbor
formulation for classifying remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, 43(8):1874–1888, 2005.

[42] L. M. Zouhal and T. Denœux. An evidence-theoretic k-NN rule with
parameter optimization. IEEE Trans. on Systems, Man and Cybernet-
ics C, 28(2):263–271, 1998.

36


