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Exercise 1

As the density of ε is symmetric, the MH ratio is the ratio of the densities at x∗ and x(t−1), i.e., we have

R(x(t−1), x∗) = f(x∗)
f(x(t−1))

= exp(|x(t−1)| − |x∗|).

The following function MH_Laplace implements the random walk MH algorithm for this problem:
MH_Laplace <- function(N,sig){

x<-vector(N,mode="numeric")
x[1]<-rnorm(1,mean=0,sd=sig)
for(t in (2:N)){

epsilon<-rnorm(1,mean=0,sd=sig)
xstar<-x[t-1]+ epsilon
U<-runif(1)
R<-exp(abs(x[t-1]) - abs(xstar))
if(U <= R) x[t]<-xstar else x[t]<-x[t-1]

}
return(x)

}

Let us generate a sample of size 105 with σ = 10:
x<-MH_Laplace(100000,10)

The sample path and correlation plots show good mixing (the chain quickly moves away from its starting
value, and the autocorrelation decreases quickly as the lag between iterations inreases):
par(mfrow=c(2,1))
plot(x,type="l",xlab='t',ylab=expression(x[(t)]))
acf(x,lag.max=100)
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Plot of the histogram with the Laplace density:
u<-seq(-10,10,0.01)
fu<-0.5*exp(-abs(u))
hist(x,freq=FALSE,ylim=range(fu))
lines(u,0.5*exp(-abs(u)))
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Let us now generate another sample of the same size, this time with σ = 0.1:
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x<-MH_Laplace(100000,0.1)

This time, the sample path and correlation plots show poor mixing (the chain remains at or near the same
value for many iterations, and the autocorrelation decays very slowly):
plot(x,type="l",xlab='t',ylab=expression(x[(t)]))
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par(mfrow=c(1,1))
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