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Introduction

Moving beyond linearity

Linear models are widely used in econometrics.
In particular, linear regression, linear discriminant analysis, logistic
regression all rely on a linear model.
It is extremely unlikely that the true function f (X ) is actually linear
in X . In regression problems, f (X ) = E(Y |X ) will typically be
nonlinear and nonadditive in X , and representing f (X ) by a linear
model is usually a convenient, and sometimes a necessary,
approximation.

Convenient because a linear model is easy to interpret, and is the
first-order Taylor approximation to f (X ).
Sometimes necessary, because with N small and/or p large, a linear
model might be all we are able to fit to the data without overfitting.

Likewise in classification, it is usually assumed that some monotone
transformation of P(Y = 1|X ) is linear in X . This is inevitably an
approximation.
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Linear basis expansion

The core idea in this chapter is to augment/replace the vector of
inputs X with additional variables, which are transformations of X ,
and then use linear models in this new space of derived input
features.
Denote by hm(X ) : Rp → R the m-th transformation of X ,
m = 1, ...,M. We then model

f (X ) =
M∑

m=1

βmhm(X )

a linear basis expansion in X .
The beauty of this approach is that once the basis functions hm have
been determined, the models are linear in these new variables, and
the fitting proceeds as for linear models.
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Popular choices for basis functions hm

Some simple and widely used examples of the hm are the following:
hm(X ) = Xm, m = 1, . . . , p recovers the original linear model.
hm(X ) = X 2

j or hm(X ) = XjXk allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. Note,
however, that the number of variables grows exponentially in the
degree of the polynomial. A full quadratic model in p variables
requires O(p2) square and cross-product terms, or more generally
O(pd) for a degree-d polynomial.
hm(X ) = log(Xj),

√
Xj , ... permits other nonlinear transformations

of single inputs. More generally one can use similar functions
involving several inputs, such as hm(X ) = ‖X‖.
hm(X ) = I (Lm ≤ Xk < Um), an indicator for a region of Xk . By
breaking the range of Xk up into Mk such nonoverlapping regions
results in a model with a piecewise constant contribution for Xk .
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Discussion

Sometimes the problem at hand will call for particular basis functions
hm, such as logarithms or power functions.
More often, however, we use the basis expansions as a device to
achieve more flexible representations for f (X ).
Polynomials are an example of the latter, although they are limited
by their global nature – tweaking the coefficients to achieve a
functional form in one region can cause the function to flap about
madly in remote regions.
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Fitting polynomials

In most of this lecture, we assume p = 1.
Create new variables h1(X ) = X , h2(X ) = X 2, h3(X ) = X 3, etc.
and then do multiple linear regression on the transformed variables.
We either fix the degree d at some reasonably low value, else use
cross-validation to choose d .
Polynomials have unpredictable tail behavior – very bad for
extrapolation.
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Example in R

x=seq(0,10,0.5)
n<-length(x)
y1=x[1:10]+2*cos(x[1:10])+2*rnorm(10)
xtest<- seq(-2,12,0.01)
ftest<- xtest+2*cos(xtest)
d<-3

plot(x1,y1,xlim=c(-2,12),ylim=c(-5,15),
main=paste(’degree = ’,as.character(d)))

for(i in 1:10){
y2=x[11:21]+2*cos(x[11:21])+2*rnorm(11)
points(x[11:21],y2,pch=i+1)
y<-c(y1,y2)
reg<-lm(y ˜ poly(x,degree=d))
ypred<-predict(reg,newdata=data.frame(x=xtest),interval="c")
lines(xtest,ypred[,"fit"],lty=1)

}
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Result, d = 2
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Result, d = 3
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Result, d = 4
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Step Functions

Another way of creating transformations of a variable is to cut the
variable into distinct regions.

h1(X ) = I (X < ξ1), h2(X ) = I (ξ1 ≤ X < ξ2), . . . ,

hM(X ) = I (X ≥ ξM−1)

Since the basis functions are positive over disjoint regions, the least
squares estimate of the model f (X ) =

∑M
m=1 βmhm(X ) is β̂m = Ym,

the mean of Y in the m-th region.
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Example in R

library("ISLR")

reg<-lm(wage ˜ cut(age, c(18, 25, 50, 65, 90)),data=Wage)
ypred<-predict(reg,newdata=data.frame(age=18:80),interval="c")

plot(Wage$age,Wage$wage,cex=0.5,xlab="age",ylab="wage")
lines(18:80,ypred[,"fit"],lty=1,col="blue",lwd=2)
lines(18:80,ypred[,"lwr"],lty=2,col="blue",lwd=2)
lines(18:80,ypred[,"upr"],lty=2,col="blue",lwd=2)
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Result
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Step functions – continued

Easy to work with. Creates a series of dummy variables representing
each group.
Useful way of creating interactions that are easy to interpret. For
example, interaction effect of Year and Age:

I (Year < 2005) · Age, I (Year ≥ 2005) · Age

would allow for different linear functions in each age category.
Choice of cutpoints or knots can be problematic. For creating
nonlinearities, smoother alternatives such as splines are available.
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Piecewise Polynomials

Instead of a single polynomial in X over its whole domain, we can
rather use different polynomials in regions defined by knots. E.g.
(see figure)

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + εi if xi < ξ,

β02 + β12xi + β22x
2
i + β32x

3
i + εi if xi ≥ ξ,

Better to add constraints to the polynomials, e.g. continuity.
Splines have the “maximum” amount of continuity.



Lecture 7: Splines and Generalized Additive Models
Splines
Regression splines



Lecture 7: Splines and Generalized Additive Models
Splines
Regression splines

Linear Splines

A linear spline with knots at ξk , k = 1, . . . ,K is a piecewise linear
polynomial continuous at each knot.
The set of linear splines with fixed knots is a vector space.
The number of degrees of freedom is 2(K + 1)−K = K + 2. We can
thus decompose linear splines on a basis of K + 2 basis functions,

y =
K+2∑
m=1

βmhm(x) + ε.

The basis functions can be chosen as

h1(x) = 1
h2(x) = x

hk+2(x) = (x − ξk)+, k = 1, . . . ,K ,

where (·)+ denotes the positive part, i.e., (x − ξk)+ = x − ξk if
x > ξk and (x − ξk)+ = 0 otherwise.
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Cubic Splines

A cubic spline with knots at ξk , k = 1, . . . ,K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each knot.
Enforcing one more order of continuity would lead to a global cubic
polynomial.
Again, the set of cubic splines with fixed knots is a vector space, and
the number of degrees of freedom is 4(K + 1)− 3K = K + 4. We
can thus decompose cubic splines on a basis of K + 4 basis functions,

y =
K+4∑
m=1

βmhm(x) + ε.

We can choose truncated power basis functions,

hk(x) = xk−1, k = 1, . . . , 4,

hk+4(x) = (x − ξk)3
+, k = 1, . . . ,K .
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order-M splines

More generally, an order-M spline with knots ξk , k = 1, . . . ,K is a
piecewise-polynomial of order M − 1, which has continuous
derivatives up to order M − 2.
A cubic spline has M = 4. A piecewise-constant function is an
order-1 spline, while a continuous piecewise linear function is an
order-2 spline.
The general form for the truncated-power basis set is

hk(x) = xk−1, k = 1, . . . ,M,

hk+M(x) = (x − ξk)M−1
+ , k = 1, . . . ,K .

It is claimed that cubic splines are the lowest-order spline for which
the knot-discontinuity is not visible to the human eye. There is
seldom any good reason to go beyond cubic-splines.
In practice the most widely used orders are M = 1, 2 and 4.
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Splines in R

library(’splines’)
fit<-lm(wage˜bs(age,5),data=Wage)

ypred<-predict(fit,newdata=data.frame(age=18:80),interval="c")

plot(Wage$age,Wage$wage,cex=0.5,xlab="age",ylab="wage")
lines(18:80,ypred[,"fit"],lty=1,col="blue",lwd=2)
lines(18:80,ypred[,"lwr"],lty=2,col="blue",lwd=2)
lines(18:80,ypred[,"upr"],lty=2,col="blue",lwd=2)

By default, degree=3, and the intersect is not included in the basis
functions.
The number of knots is df-degree. If not specified, the knots are
placed at quantiles.
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B-spline basis

Since the space of spline functions of a particular order and knot
sequence is a vector space, there are many equivalent bases for
representing them (just as there are for ordinary polynomials.)
While the truncated power basis is conceptually simple, it is not too
attractive numerically: powers of large numbers can lead to severe
rounding problems.
In practice, we often use another basis: the B-spline basis, which
allows for efficient computations even when the number of knots K
is large (each basis function has a local support).
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B-spline basis
Construction

Before we can get started, we need to augment the knot sequence.
Let ξ0 < ξ1 and ξK < ξK+1 be two boundary knots, which typically
define the domain over which we wish to evaluate our spline. We
now define the augmented knot sequence τ such that

τ1 ≤ τ2 ≤ . . . ≤ τM ≤ ξ0
τj+M = ξj , j = 1, . . . ,K
ξK+1 ≤ τK+M+1 ≤ τK+M+2 ≤ . . . ≤ τK+2M .

The actual values of these additional knots beyond the boundary are
arbitrary, and it is customary to make them all the same and equal to
ξ0 and ξK+1, respectively.
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B-spline basis
Construction – Continued

Denote by Bi ,m(x) the ith B-spline basis function of order m for the
knot-sequence τ , m ≤ M. They are defined recursively in terms of
divided differences as follows:

Bi ,1(x) =

{
1 if τi ≤ x < τi+1

0 otherwise

for i = 1, . . . ,K + 2M − 1. (By convention, Bi ,1 = 0 if τi = τi+1).

Bi ,m =
x − τi

τi+m−1 − τi
Bi ,m−1(x) +

τi+m − x

τi+m − τi+1
Bi+1,m−1(x)

for i = 1, ...,K + 2M −m.
Thus with M = 4, Bi ,4, i = 1, . . . ,K + 4 are the K + 4 cubic
B-spline basis functions for the knot sequence ξ.
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B-spline basis
Properties

The B-splines span the space of cubic splines for the knot sequence ξ.
They have local support and they are nonzero on an interval spanned
by M + 1 knots (see next slide).
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Sequence of B-splines up to order 4 with 10 knots evenly spaced from 0 to 1
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Variance of splines beyond the boundary knots

We know that the behavior of polynomials fit to data tends to be
erratic near the boundaries, and extrapolation can be dangerous.
These problems are exacerbated with splines. The polynomials fit
beyond the boundary knots behave even more wildly than the
corresponding global polynomials in that region.
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Example



Lecture 7: Splines and Generalized Additive Models
Splines
Natural splines

Explanation of the previous figure

Pointwise variance curves for four different models, with X consisting
of 50 points drawn at random from U[0, 1], and an assumed error
model with constant variance.
The linear and cubic polynomial fits have 2 and 4 df, respectively,
while the cubic spline and natural cubic spline each have 6 df.
The cubic spline has two knots at 0.33 and 0.66, while the natural
spline has boundary knots at 0.1 and 0.9, and four interior knots
uniformly spaced between them.
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Natural cubic spline

A natural cubic spline adds additional constraints, namely that the
function is linear beyond the boundary knots.
This frees up four degrees of freedom (two constraints each in both
boundary regions), which can be spent more profitably by putting
more knots in the interior region.
There will be a price paid in bias near the boundaries, but assuming
the function is linear near the boundaries (where we have less
information anyway) is often considered reasonable.
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Natural cubic spline basis

A natural cubic spline with K knots has K degrees of freedom: it
can ve represented by K basis functions.
One can start from a basis for cubic splines, and derive the reduced
basis by imposing the boundary constraints. For example, starting
from the truncated power series basis,

f (X ) =
3∑

j=0

βjX
j +

K∑
k=1

θk(X − ξk)3
+,

the contraints f ′′(X ) = 0 and f (3)(X ) = 0 for X < ξ1 and X > ξK
lead to the conditions

β2 = β3 = 0,
K∑

k=1

θk = 0,
K∑

k=1

ξkθk = 0
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Natural cubic spline basis – continued

These conditions are automatically satisfied by choosing the
following basis,

N1(X ) = 1, N2(X ) = X ,

Nk+2(X ) = dk(X )− dK−1(X ), k = 1, . . . ,K − 2

with

dk =
(X − ξk)3

+ − (X − ξK )3
+

ξK − ξk
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Example in R

fit1<-lm(y ˜ ns(x,df=5))
fit2<-lm(y ˜ bs(x,df=5))

ypred1<-predict(fit1,newdata=data.frame(x=xtest),interval="c")
ypred2<-predict(fit2,newdata=data.frame(x=xtest),interval="c")

plot(x,y,xlim=range(xtest))
lines(xtest,ftest)
lines(xtest,ypred1[,"fit"],lty=1,col="red",lwd=2)
lines(xtest,ypred2[,"fit"],lty=1,col="blue",lwd=2)
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Using splines with logistic regression

Until now, we have discussed regression problems. However, splines
can also be used when the response variable is qualitative.
Consider, for instance, natural splines with K knots. For binary
classification, we can fit the logistic regression model,

log
P(Y = 1 X = x)

P(Y = 0 X = x)
= f (x)

with f (x) =
∑K

k=1 βkNk(x).
Once the basis functions have been defined, we just need to estimate
coefficients βk using a standard logistic regression procedure.
A smooth estimate of the conditional probability P(Y = 1|x) can
then be used for classification or risk scoring.
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Example in R

class<-glm(I(wage>250) ˜ ns(age,3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80),type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="l")
ii<-which(Wage$wage>250)
points(Wage$age[ii],rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii],rep(0,nrow(Wage)-length(ii)),cex=0.5)
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Smoothing splines
Problem formulation

Here we discuss a spline basis method that avoids the knot selection
problem completely by using a maximal set of knots. The complexity
of the fit is controlled by regularization.
Problem: among all functions f (x) with two continuous derivatives,
find one that minimizes the penalized residual sum of squares

RSS(f , λ) =
N∑
i=1

(yi − f (xi ))2 + λ

∫
[f ′′(t)]2dt,

where λ is a fixed smoothing parameter.
The first term measures closeness to the data, while the second term
penalizes curvature in the function, and λ establishes a tradeoff
between the two. Special cases: λ = 0 (no constraint on f ) and
λ =∞ (f has to be linear).
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Smoothing splines
Solution

It can be shown that this problem has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the
unique values of the xi , i = 1, . . . ,N.
At face value it seems that the family is still over-parametrized, since
there are as many as N knots, which implies N degrees of freedom.
However, the penalty term translates to a penalty on the spline
coefficients, which are shrunk some of the way toward the linear fit.
The solution is thus of the form

f (x) =
N∑
j=1

Nj(x)θj ,

where the Nj(x) are an N-dimensional set of basis functions for
representing this family of natural splines.
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Computation

The criterion can be written as

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩNθ,

where {N}ij = Nj(xi ) and {ΩN}jk =
∫
N ′′j (t)N ′′k (t)dt.

The solution is
θ̂ = (NTN + λΩN)−1NTy ,

a generalized ridge regression.
The fitted smoothing spline is given by

f̂ (x) =
N∑
j=1

Nj(x)θ̂j .

In practice, when N is large, we can use only a subset of the N
interior knots (rule of thumb: number of knots proportional to
logN).
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Degrees of freedom

Denote by f̂ the N-vector of fitted values f (xi ) at the training
predictors xi . Then,

f̂ = N θ̂ = (NTN + λΩN)−1NTy = Sλy

As matrix Sλ does not depend on y , the smoothing spline is a linear
smoother.
In the case of cubic spline with knot sequence ξ and, we have

f̂ = Bξ θ̂ = (BT
ξ Bξ)

−1BT
ξ y = Hξy ,

where Bξ is the N ×M matrix of basis functions. The degrees of
freedom is M = trace(Hξ).
By analogy, the effective degrees of freedom of a smoothing spline is
defined as

dfλ = trace(Sλ)
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Selection of smoothing parameters

As λ→ 0, dfλ → N and Sλ → I . As λ→∞, dfλ → 2 and
Sλ → H , the hat matrix for linear regression on x .
Since dfλ is monotone in λ, we can invert the relationship and
specify λ by fixing dfλ ( this can be achieved by simple numerical
methods). Using df in this way provides a uniform approach to
compare many different smoothing methods.
The leave-one-out (LOO) cross-validated error is given by

RSScv (λ) =
N∑
i=1

(yi − f̂
(−i)
λ (xi ))2 =

N∑
i=1

[
yi − f̂λ(xi )

1− {Sλ}ii

]2
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Smoothing splines in R

ss1<-smooth.spline(x,y,df=3)
ss2<-smooth.spline(x,y,df=15)
ss<-smooth.spline(x,y)

plot(x,y)
lines(x,ss1$y,col="blue",lwd=2)
lines(x,ss2$y,col="blue",lwd=2,lty=2)
lines(x,ss$y,col="red",lwd=2)

> ss$df
7.459728
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Application to logistic regression

The smoothing spline problem has been posed in a regression
setting. It is typically straightforward to transfer this technology to
other domains.
Here we consider logistic regression with a single quantitative input
X . The model is

log
P(Y = 1|X = x)

P(Y = 0 X = x)
= f (x),

which implies

P(Y = 1|X = x) =
ef (x)

1 + ef (x)
= p(x).
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Penalized log-likelihood

We construct the penalized log-likelihood criterion

`(f ;λ) =
N∑
i=1

[yi log p(xi ) + (1− yi ) log(1− p(xi ))]− 1
2
λ

∫
{f ′′(t)}2dt

=
N∑
i=1

[yi f (xi )− log(1 + ef (x))]− 1
2
λ

∫
{f ′′(t)}2dt

As before, the optimal f is a finite-dimensional natural spline with
knots at the unique values of x. We can represent f as

f (x) =
N∑
j=1

Nj(x)θj .



Lecture 7: Splines and Generalized Additive Models
Smoothing splines
Nonparametric logistic regression

Optimization

We compute the first and second derivatives

∂`(θ)

∂θ
= NT (y − p)− λΩθ

∂2`(θ)

∂θ∂θT
= −NTWN − λΩ,

where p is the N-vector with elements p(xi), and W is a diagonal
matrix of weights p(xi )(1− p(xi )).
Parameters θj can be estimated using the Newton method,

θnew = θold −
(
∂2`(θold)

∂θ∂θT

)−1
∂`(θold)

∂θ
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Nonparametric logistic regression in R

library(gam)
class<-gam(I(wage>250) ˜ s(age,df=3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80),type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="l")
ii<-which(Wage$wage>250)
points(Wage$age[ii],rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii],rep(0,nrow(Wage)-length(ii)),cex=0.5)
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Motivation

Regression models play an important role in many data analyses,
providing prediction and classification rules, and data analytic tools
for understanding the importance of different inputs.
Although attractively simple, the traditional linear model often fails
in these situations: in real life, effects are often not linear.
Here, we describe more automatic flexible statistical methods that
may be used to identify and characterize nonlinear regression effects.
These methods are called generalized additive models (GAMs).
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GAM for regression

In the regression setting, a generalized additive model has the form

E(Y |X1,X2, . . . ,Xp) = α + f1(X1) + f2(X2) + . . .+ fp(Xp)

As usual X1,X2, . . . ,Xp represent predictors and Y is the outcome.
The fj ’s are unspecified smooth (nonparametric) functions.
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GAM for binary classification

For two-class classification, recall the logistic regression model for
binary data discussed previously. We relate the mean of the binary
response µ(X ) = P(Y = 1|X ) to the predictors via a linear
regression model and the logit link function:

log
µ(X )

1− µ(X )
= α + β1X1 + . . .+ βpXp

The additive logistic regression model replaces each linear term by a
more general functional form

log
µ(X )

1− µ(X )
= α + f1(X1) + . . .+ fp(Xp)

where again each fj is an unspecified smooth function.
While the nonparametric form for the functions fj makes the model
more flexible, the additivity is retained and allows us to interpret the
model in much the same way as before.
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GAM: general form

In general, the conditional mean µ(X ) of a response Y is related to
an additive function of the predictors via a link function g :

g [µ(X )] = α + f1(X1) + . . .+ fp(Xp)

Examples of classical link functions are the following:
g(µ) = µ is the identity link, used for linear and additive models for
Gaussian response data.
g(µ) = logit(µ) as above, or g(µ) = probit(µ), the probit link
function, for modeling binomial probabilities. The probit function is
the inverse Gaussian cumulative distribution function:
probit(µ) = Φ−1(µ).
g(µ) = log(µ) for log-linear or log-additive models for Poisson count
data.
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Mixing linear and nonlinear effects, interactions

We can easily mix in linear and other parametric forms with the
nonlinear terms, a necessity when some of the inputs are qualitative
variables (factors).
The nonlinear terms are not restricted to main effects either; we can
have nonlinear components in two or more variables, or separate
curves in Xj for each level of the factor Xk , e.g.,

g(µ) = XTβ +
∑

k αk I (V = k) + f (Z ) – a semiparametric model,
where X is a vector of predictors to be modeled linearly, αk the effect
for the kth level of a qualitative input V , and the effect of predictor
Z is modeled nonparametrically.
g(µ) = f (X ) +

∑
k gk(Z )I (V = k) – again k indexes the levels of a

qualitative input V , and thus creates an interaction term for the
effect of V and Z ,
etc...
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GAMs with natural splines

If we model each function fj as a natural spline, then we can fit the
resulting model using simple least square (regression) or likelihood
maximization algorithm (classification).
For instance, with natural cubic splines, we have the following GAM:

g(µ) =

p∑
j=1

K(j)∑
k=1

βjkNk(Xj) + ε,

where K (j) is the number of knots for variable j .
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Example in R

library("ISLR") # For the Wage data
library("splines")

fit1<-lm(wage ˜ ns(year,df=5)+ns(age,df=5)+education,data=Wage)

library("gam")
fit2<-gam(wage ˜ ns(year,df=5)+ns(age,df=5)+education,data=Wage)
plot(fit2,se=TRUE)
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GAMs with smoothing splines

Consider an additive model of the form

Y = α + f1(X1) + f2(X2) + . . .+ fp(Xp) + ε,

where the error term ε has mean zero.
We can specify a penalized sum of squares for this problem,

SS(α, f1, . . . , fp) =
N∑
i=1

yi − α−
p∑

j=1

fj(xij)

2

+

p∑
j=1

λj

∫
f ′′j (tj)

2dtj ,

where the λj ≥ 0 are tuning parameters.
It can be shown that the minimizer of SS is an additive cubic spline
model; each of the functions fj is a cubic spline in the component Xj ,
with knots at each of the unique values of xij , i = 1, . . . ,N.
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Unicity of the solution

Without further restrictions on the model, the solution is not unique.
The constant α is not identifiable, since we can add or subtract any
constants to each of the functions fj , and adjust α accordingly.

The standard convention is to assume that
∑N

i=1 fj(xij) = 0 for all j
– the functions average zero over the data.
It is easily seen that α̂ = ave(yi ) in this case.
If in addition to this restriction, the matrix of input values (having
ijth entry xij) has full column rank, then SS is a strictly convex
criterion and the minimizer is unique.
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Backfitting algorithm

A simple iterative procedure exists for finding the solution.
We set α̂ = ave(yi ), and it never changes.
We apply a cubic smoothing spline Sj to the targets
{yi − α̂− f̂ (xik)}Ni=1, as a function of xij to obtain a new estimate f̂j .
This is done for each predictor in turn, using the current estimates of
the other functions f̂k when computing y − α̂−

∑
k 6=j f̂k(xik).

The process is continued until the estimates fj stabilize.
This procedure (known as backfitting) is grouped cyclic coordinate
descent algorithm.
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Backfitting algorithm

1 Initialize: α̂ = ave(yi ), f̂j = 0, ∀i , j .
2 Cycle: j = 1, 2, . . . , p, 1, 2, . . . , p, . . .,

f̂j ← Sj

{yi − α̂−∑
k 6=j

f̂k(xik)}Ni=1



f̂j ← f̂j −
1
N

N∑
i=1

f̂j(xij)

until the functions f̂j change less than a prespecified threshold.
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Example in R

library("gam")
fit3<-gam(wage ˜ s(year,df=5)+s(age,df=5)+education,data=Wage)
plot(fit3,se=TRUE)
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