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Complements on belief functions Belief functions on product spaces

Belief functions on product spaces
Motivation
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In many applications, we need to
express uncertain information about
several variables taking values in
different domains
Example: fault tree (logical relations
between Boolean variables and
probabilistic or evidential information
about elementary events)
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Complements on belief functions Belief functions on product spaces

Fault tree example
(Dempster & Kong, 1988)
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Complements on belief functions Belief functions on product spaces

Multidimensional belief functions
Marginalization, vacuous extension

Let X and Y be two variables defined on frames ΩX and ΩY

Let ΩXY = ΩX × ΩY be the product frame
A mass function mXY on ΩXY can be seen as an generalized relation
between variables X and Y
Two basic operations on product frames

1 Express a joint mass function mXY in the coarser frame ΩX or ΩY

(marginalization)
2 Express a marginal mass function mX on ΩX in the finer frame ΩXY (vacuous

extension)
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Complements on belief functions Belief functions on product spaces

Marginalization

Problem: express mXY in ΩX

Solution: transfer each mass mXY (A) to
the projection of A on ΩX

Marginal mass function

mXY↓X (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mXY (A) ∀B ⊆ ΩX

Generalizes both set projection and probabilistic marginalization
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Complements on belief functions Belief functions on product spaces

Vacuous extension

Problem: express mX in ΩXY

Solution: transfer each mass mX (B) to
the cylindrical extension of B: B × ΩY

Vacuous extension:

mX↑XY (A) =

{
mX (B) if A = B × ΩY

0 otherwise
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Complements on belief functions Belief functions on product spaces

Operations in product frames
Application to approximate reasoning

Assume that we have:
Partial knowledge of X formalized as a mass function mX

A joint mass function mXY representing an uncertain relation between X and
Y

What can we say about Y ?
Solution:

mY =
(
mX↑XY ⊕mXY )↓Y

Infeasible with many variables and large frames of discernment, but
efficient algorithms exist to carry out the operations in frames of minimal
dimensions
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Fault tree example
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Cause m({1}) m({0}) m({0,1})
X1 0.05 0.90 0.05
X2 0.05 0.90 0.05
X3 0.005 0.99 0.005
X4 0.01 0.985 0.005
X5 0.002 0.995 0.003
G 0.001 0.99 0.009
M 0.02 0.951 0.029
F 0.019 0.961 0.02
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Complements on belief functions Belief functions on product spaces

Fault tree example (continued)
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Cause m({1}) m({0}) m({0,1})
M 1 0 0
G 0.197 0.796 0.007
F 0.800 0.196 0.004
...

...
...

...
X1 0.236 0.724 0.040
X2 0.236 0.724 0.040
X3 0.200 0.796 0.004
X4 0.302 0.694 0.004
X5 0.099 0.898 0.003
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Complements on belief functions Belief functions on infinite spaces

Belief function: general definition

Let Ω be a set (finite or not) and B be an algebra of subsets of Ω

A belief function (BF) on B is a mapping Bel : B → [0,1] verifying
Bel(∅) = 0, Bel(Ω) = 1 and the complete monotonicity property: for any
k ≥ 2 and any collection B1, . . . ,Bk of elements of B,

Bel

(
k⋃

i=1

Bi

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1Bel

(⋂
i∈I

Bi

)

A function Pl : B → [0,1] is a plausibility function iff B → 1− Pl(B) is a
belief function
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Complements on belief functions Belief functions on infinite spaces

Source

s Γ(s)

Γ
(S,A,P) (Ω,B)

Let S be a state space, A an algebra of subsets of S, P a finitely additive
probability on (S,A)

Let Ω be a set and B an algebra of subsets of Ω

Γ a multivalued mapping from S to 2Ω \ {∅}
The four-tuple (S,A,P, Γ) is called a source
Under some conditions, it induces a belief function on (Ω,B)
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Complements on belief functions Belief functions on infinite spaces

Strong measurability

Γ"
(S,A,P)" (Ω,B)"

B B*#
B*#

Lower and upper inverses: for all B ∈ B,

Γ∗(B) = B∗ = {s ∈ S|Γ(s) 6= ∅, Γ(s) ⊆ B}

Γ∗(B) = B∗ = {s ∈ S|Γ(s) ∩ B 6= ∅}

Γ is strongly measurable wrt A and B if, for all B ∈ B, B∗ ∈ A
(∀B ∈ B,B∗ ∈ A)⇔ (∀B ∈ B,B∗ ∈ A)
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Complements on belief functions Belief functions on infinite spaces

Belief function induced by a source
Lower and upper probabilities

Γ"
(S,A,P)" (Ω,B)"

B B*#
B*#

Lower and upper probabilities:

∀B ∈ B, P∗(B) =
P(B∗)
P(Ω∗)

, P∗(B) =
P(B∗)
P(Ω∗)

= 1− Bel(B)

P∗ is a BF, and P∗ is the dual plausibility function
Conversely, for any belief function, there is a source that induces it
(Shafer’s thesis, 1973)
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Complements on belief functions Belief functions on infinite spaces

Interpretation

s Γ(s)

Γ
(S,A,P) (Ω,B)

Typically, Ω is the domain of an unknown quantity ω, and S is a set of
interpretations of a given piece of evidence about ω
If s ∈ S holds, then the evidence tells us that ω ∈ Γ(s), and nothing more
Then

Bel(B) is the probability that the evidence supports B
Pl(B) is the probability that the evidence is consistent with B
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Complements on belief functions Belief functions on infinite spaces

Consonant belief function

ω"

π(ω)#

Γ(s)#

s#
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0#

Let π be a mapping from Ω to S = [0,1] s.t. supπ = 1
Let Γ be the multi-valued mapping from S to 2Ω defined by

∀s ∈ [0,1], Γ(s) = {ω ∈ Ω|π(ω) ≥ s}

The source (S,B(S), λ, Γ) defines a consonant BF on Ω, such that
pl(ω) = π(ω) (contour function)
The corresponding plausibility function is a possibility measure

∀B ⊆ Ω, Pl(B) = sup
ω∈B

pl(ω)
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Complements on belief functions Belief functions on infinite spaces

Random closed interval

(S,A,P)'

U(s)'

V(s)'

s'

(U,V)'

Let (U,V ) be a bi-dimensional random vector from a probability space
(S,A,P) to R2 such that U ≤ V a.s.
Multi-valued mapping:

Γ : s → Γ(s) = [U(s),V (s)]

The source (S,A,P, Γ) is a random closed interval. It defines a BF on
(R,B(R))
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Complements on belief functions Belief functions on infinite spaces

Dempster’s rule

s1!

Γ1(s1)!

Γ1!

(S1,A1,P1)!

(Ω,B)!

s2!

Γ2!

(S2,A2,P2)! Γ2(s2)!

Let (Si ,Ai ,Pi , Γi ), i = 1,2 be two sources representing independent items
of evidence, inducing BF Bel1 and Bel2
The combined BF Bel = Bel1 ⊕ Bel2 is induced by the source
(S1 × S2,A1 ⊗A2,P1 ⊗ P2, Γ∩) with

Γ∩(s1, s2) = Γ1(s1) ∩ Γ2(s2)
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Complements on belief functions Belief functions on infinite spaces

Approximate computation
Monte Carlo simulation

Require: Desired number of focal sets N
i ← 0
while i < N do

Draw s1 in S1 from P1
Draw s2 in S2 from P2
Γ∩(s1, s2)← Γ1(s1) ∩ Γ2(s2)
if Γ∩(s1, s2) 6= ∅ then

i ← i + 1
Bi ← Γ∩(s1, s2)

end if
end while
B̂el(B)← 1

N #{i ∈ {1, . . . ,N}|Bi ⊆ B}
P̂l(B)← 1

N #{i ∈ {1, . . . ,N}|Bi ∩ B 6= ∅}
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Statistical estimation and prediction

Estimation vs. prediction

Consider an urn with an unknown proportion θ of black balls
Assume that we have drawn n balls with replacement from the urn, y of
which were black
Problems

1 What can we say about θ? (estimation)
2 What can we say about the color Z of the next ball to be drawn from the urn?

(prediction)

Classical approaches
Frequentist: gives an answer that is correct most the time (over infinitely
many replications of the random experiment)
Bayesian: assumes prior knowledge on θ and computes a posterior
predictive probabilities f (θ|y) and P(black |y)
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Statistical estimation and prediction

Criticism of the frequentist approach

The frequentist approach makes a statement that is correct, say, for 95%
of the samples
However, 95% is not a correct measure of the confidence in the
statement for a particular sample
Example:

Let the prediction be {black ,white} with probability 0.95 and ∅ with
probability 0.05 (irrespective of the data). This is a 95% prediction set.
This prediction is either know for sure to be true, or known for sure to be
false.

Also, the frequentist approach does not allow us to easily
Use additional information on θ, if it is available
Combine predictions from several sources/agents
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Statistical estimation and prediction

Criticism of the Bayesian approach

In the Bayesian approach, y , z and θ are seen as random variables
Estimation: compute the posterior pdf of θ given y

f (θ|y) ∝ p(y |θ)f (θ)

where f (θ) is the prior pdf on θ
Prediction: compute the predictive posterior distribution

p(z|y) =

∫
p(z|θ)f (θ|y)dθ

We need the prior f (θ)!
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Statistical estimation and prediction

Main ideas

None of the classical approaches to statistical inference (frequentist and
Bayesian) is fully satisfactory, from a conceptual point of view
Proposal of a new approach based on belief functions
The new approach boils down to Bayesian inference when a probabilistic
prior is available, but it does not require the user to provide such a prior
Application: linear Regression
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Statistical estimation and prediction

Outline of the new approach (1/2)

Let us come back to the urn example
Let Z ∼ B(θ) be defined as

Z =

{
1 if next ball is black
0 otherwise

We can write Z as a function of θ and a pivotal variable W ∼ U([0,1]),

Z =

{
1 if W ≤ θ
0 otherwise

= ϕ(θ,W )

0" 1"θW"
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Statistical estimation and prediction

Outline of the new approach (2/2)

The equality
Z = ϕ(θ,W )

allows us to separate the two sources of uncertainty on Z
1 uncertainty on W (random/aleatory uncertainty)
2 uncertainty on θ (estimation/epistemic uncertainty)

Two-step method:
1 Represent uncertainty on θ using a likelihood-based belief function BelΘ

y

constructed from the observed data y (estimation problem)
2 Combine BelΘ

y with the probability distribution of W to obtain a predictive
belief function BelZy
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Statistical estimation and prediction Likelihood-based belief function

Parameter estimation

Let y ∈ Y denote the observed data and fθ(y) the probability mass or
density function describing the data-generating mechanism, where θ ∈ Θ
is an unknown parameter
Having observed y , how to quantify the uncertainty about Θ, without
specifying a prior probability distribution?
Likelihood-based solution (Shafer, 1976; Wasserman, 1990; Denœux,
2014)
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Statistical estimation and prediction Likelihood-based belief function

Likelihood-based belief function
Requirements

Let BelΘ
y be a belief function representing our knowledge about θ after

observing y . We impose the following requirements:
1 Likelihood principle: BelΘ

y should be based only on the likelihood function

θ → Ly (θ) = fθ(y)

2 Compatibility with Bayesian inference: when a Bayesian prior P0 is
available, combining it with BelΘ

y using Dempster’s rule should yield the
Bayesian posterior:

BelΘ
y ⊕ P0 = P(·|y)

3 Principle of minimal commitment: among all the belief functions satisfying
the previous two requirements, BelΘ

y should be the least committed (least
informative)
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Statistical estimation and prediction Likelihood-based belief function

Likelihood-based belief function
Solution (Denœux, 2014)

BelΘ
y is the consonant belief function induced by the relative likelihood

function
ply (θ) =

Ly (θ)

Ly (θ̂)

where θ̂ is a MLE of θ, and it is assumed that Ly (θ̂) < +∞
Corresponding plausibility function

PlΘ
y (H) = sup

θ∈H
ply (θ), ∀H ⊆ Θ

θ

pl_y(θ)&

H&

Pl_y(H)&

1&

0&

θ̂&
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Statistical estimation and prediction Likelihood-based belief function

Source

Corresponding random set:

Γy (s) =

{
θ ∈ Θ|

Ly (θ)

Ly (θ̂)
≥ s

}

with s uniformly distributed in [0,1]

θ

pl_y(θ)&

Γy(s)&

s

1&

0&

If Θ ⊆ R and if Ly (θ) is unimodal and upper-semicontinuous, then BelΘ
y

corresponds to a random closed interval
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Statistical estimation and prediction Likelihood-based belief function

Binomial example

In the urn model, Y ∼ B(n, θ) and

ply (θ) =
θy (1− θ)n−y

θ̂y (1− θ̂)n−y
=

(
θ

θ̂

)nθ̂ (1− θ
1− θ̂

)n(1−θ̂)

for all θ ∈ Θ = [0,1], where θ̂ = y/n is the MLE of θ
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Statistical estimation and prediction Likelihood-based belief function

Uniform example

Let y = (y1, . . . , yn) be a realization from an iid random sample from
U([0, θ])
The likelihood function is

Ly (θ) = θ−n
1[y(n),+∞)(θ)

The predictive BF is induced by the random closed interval
[y(n), y(n)S−1/n], with S ∼ U([0,1])
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Statistical estimation and prediction Likelihood-based belief function

Profile likelihood

Assume that θ = (ξ,ν), where ξ is a parameter of interest and ν is a
nuisance parameter
Then, the marginal contour function for ξ is

ply (ξ) = sup
ν

ply (ξ,ν),

which is the profile relative likelihood function
The profiling method for eliminating nuisance parameter thus has a
natural justification in our approach
When the quantities ply (ξ) cannot be derived analytically, they have to be
computed numerically using an iterative optimization algorithm
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Statistical estimation and prediction Likelihood-based belief function

Relation with likelihood-based inference

The approach to statistical inference outlined in the previous section is
very close to the “likelihoodist” approach advocated by Birnbaum (1962),
Barnard (1962), and Edwards (1992), among others
The main difference resides in the interpretation of the likelihood function
as defining a belief function
This interpretation allows us to quantify the uncertainty in statements of
the form θ ∈ H, where H may contain multiple values. This is in contrast
with the classical likelihood approach, in which only the likelihood of
single hypotheses is defined
The belief function interpretation provides an easy and natural way to
combine statistical information with other information, such as expert
judgements
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Statistical estimation and prediction Likelihood-based belief function

Relation with the likelihood-ratio test statistics

We can also notice that PlΘ
y (H) is identical to the likelihood ratio statistic

for H
From Wilk’s theorem, we have asymptotically (under regularity
conditions), when H holds,

−2 ln Ply (H) ∼ χ2
r

where r is the number of restrictions imposed by H
Consequently, rejecting hypothesis H if its plausibility is smaller than
exp(−χ2

r ;1−α/2) is a testing procedure with significance level
approximately equal to α
However, we consider these properties are incidental, as the approach
outlined here is not based on frequentist inference
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Statistical estimation and prediction Predictive belief function

Prediction problem

Observed (past) data: y from Y ∼ fθ(y)

Future data: Z |y ∼ Fθ,y (z) (real random variable)
Problem: quantify the uncertainty of Z using a predictive belief function
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Statistical estimation and prediction Predictive belief function

ϕ-equation

W"

Z=Fθ&1(W)"

z"

Fθ(z)"

0"

1"

We can always write Z as a function of θ and W as

Z = F−1
θ,y (W ) = ϕy (θ,W )

where W ∼ U([0,1]) and F−1
θ,y is the generalized inverse of Fθ,y ,

F−1
θ,y (W ) = inf{z|Fθ,y (z) ≥W}
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Statistical estimation and prediction Predictive belief function

Main result

Z" W"

θ

Z=ϕy"(θ,W)"

Likelihood1based"BF"
BelyΘ

Uniform"dist."
λ

After combination by Dempster’s rule and marginalization on Z, we obtain the
predictive BF on Z induced by the multi-valued mapping

(s,w)→ ϕy (Γy (s),w).

with (s,w) uniformly distributed in [0,1]2
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Statistical estimation and prediction Predictive belief function

Graphical representation

θ

ply(θ)

s%

Γy(s)%

w%

ϕy%

z%1%

0%
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Thierry Denœux (UTC/HEUDIASYC) Application of belief functions to statistical inference BJUT, July, 2016 43 / 86



Statistical estimation and prediction Predictive belief function

Practical computation

Analytical expression when possible (simple cases), or
Monte Carlo simulation:

1 Draw N pairs (si ,wi ) independently from a uniform distribution
2 compute (or approximate) the focal sets ϕy (Γy (si ),wi )

The predictive belief and plausibility of any subset A ⊆ Z are then
estimated by

B̂el
Z
y (A) =

1
N

#{i ∈ {1, . . . ,N}|ϕy (Γy (si ),wi ) ⊆ A}

P̂l
Z
y (A) =

1
N

#{i ∈ {1, . . . ,N}|ϕy (Γy (si ),wi ) ∩ A 6= ∅}
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Statistical estimation and prediction Predictive belief function

Example: the urn model

Here, Y ∼ B(n, θ). The likelihood-based BF is induced by a random
interval

Γ(s) = {θ : ply (θ) ≥ s} = [θ(s), θ(s)]

We have

Z = ϕ(θ,W ) =

{
1 if W ≤ θ
0 otherwise

Consequently,

ϕ (Γ(s),W ) = ϕ
([
θ(s), θ(s)

]
,W
)

=


{1} if W ≤ θ(s)
{0} if θ(s) < W
{0,1} otherwise
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Statistical estimation and prediction Predictive belief function

Example: the urn model
Analytical formula

We have

mZ
y ({1}) = P (ϕ (Γ(s),W ) = {1}) = θ̂ − B(θ̂; y + 1,n − y + 1)

θ̂y (1− θ̂)n−y

mZ
y ({0}) = P (ϕ (Γ(s),W ) = {0}) = 1− θ̂ − B(1− θ̂; n − y + 1, y + 1)

θ̂y
j (1− θ̂)n−y

mZ
y ({0,1}) = 1−mZ

y ({0})−mZ
y ({1})

where B(z; a,b) =
∫ z

0 ta−1(1− t)b−1dt is the incomplete beta function
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Statistical estimation and prediction Predictive belief function

Example: the urn model
Geometric representation
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Statistical estimation and prediction Predictive belief function

Example: the urn model
Belief/plausibility intervals
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Statistical estimation and prediction Predictive belief function

Consistency

Here, it is easy to show that

mZ
y ({1}) P−→ θ0 and mZ

y ({0}) P−→ 1− θ0

as n→∞, i.e., the predictive belief function converges to the true
distribution of Z
When the predictive belief function is induced by a random interval [Z ,Z ],
we can show that, under mild conditions,

Z d−→ Z and Z d−→ Z
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Statistical estimation and prediction Predictive belief function

Uniform example

Assume that Y1, . . . ,Yn,Z is iid from U([0, θ])

Then Fθ(z) = z/θ for all 0 ≤ z ≤ θ and we can write Z = θW with
W ∼ U([0,1])

We have seen that the belief function BelΘ
y after observing Y = y is

induced by the random interval [y(n), y(n)S−1/n]

Each focal set of BelZy is an interval

ϕ(Γy (s),w) = [y(n)w , y(n)s−1/nw ]

The predictive belief function BelZy is induced by the random interval

[Ẑy∗, Ẑ ∗y ] = [y(n)W , y(n)S−1/nW ]
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Statistical estimation and prediction Predictive belief function

Uniform example
Lower and upper cdfs
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Statistical estimation and prediction Predictive belief function

Uniform example
Consistency

From the consistency of the MLE, Y(n) converges in probability to θ0, so

ẐY∗ = Y(n)W
d−→ θ0W = Z

We have E(S−1/n) = n/(n − 1), and

Var(S−1/n) =
n

(n − 2)(n − 1)2

Consequently, E(S−1/n)→ 1 and Var(S−1/n)→ 0, so S−1/n P−→ 1
Hence,

Ẑ ∗Y = Y(n)S−1/nW d−→ θ0W = Z
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Statistical estimation and prediction Some theoretical results

Outline

1 Complements on belief functions
Belief functions on product spaces
Belief functions on infinite spaces

2 Statistical estimation and prediction
Likelihood-based belief function
Predictive belief function
Some theoretical results

3 Applications
Linear regression
Innovation diffusion forecasting
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Statistical estimation and prediction Some theoretical results

Consistency of the likelihood-based belief function

Assume that the observed data y = (y1, . . . , yn) is a realization of an iid
sample Y = (Y1, . . . ,Yn) from Y ∼ fθ(y)

From Fraser (1968):

Theorem

If Eθ0 [log fθ(Y )] exists, is finite for all θ, and has a unique maximum at θ0,
then, for any θ 6= θ0, pln(θ)→ 0 almost surely under the law determined by θ0
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Statistical estimation and prediction Some theoretical results

Consistency of the likelihood-based belief function
(continued)

The property pln(θ0)→ 1 a.s. does not hold in general (under regularity
assumptions, −2 log pln(θ0) converges in distribution to χ2

1)
But we have the following theorem:

Theorem
Under some assumptions (Fraser, 1968), for any neighborhood N of θ0,
BelΘ

n (N)→ 1 and PlΘ
n (N)→ 1 almost surely under the law determined by θ0
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Statistical estimation and prediction Some theoretical results

Consistency of the predictive belief function

Assume that
The observed data y = (y1, . . . , yn) is a realization of an iid sample
Y = (Y1, . . . ,Yn)
The likelihood function Ln(θ) is unimodal and upper-semicontinuous, so that
its level sets Γn(s) are closed and connected, and that function ϕ(θ,w) is
continuous

Under these conditions, the random set ϕ(Γn(S),W ) is a closed random
interval [Ẑ∗n, Ẑ ∗n ]

Then:

Theorem
Assume that the conditions of the previous theorem hold, and that the
predictive belief function BelZn is induced by a random closed interval [Ẑ∗n, Ẑ ∗n ].
Then Ẑ∗n and Ẑ ∗n both converge in distribution to Z when n tends to infinity.
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Applications

Outline

1 Complements on belief functions
Belief functions on product spaces
Belief functions on infinite spaces

2 Statistical estimation and prediction
Likelihood-based belief function
Predictive belief function
Some theoretical results

3 Applications
Linear regression
Innovation diffusion forecasting
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Applications Linear regression

Outline

1 Complements on belief functions
Belief functions on product spaces
Belief functions on infinite spaces

2 Statistical estimation and prediction
Likelihood-based belief function
Predictive belief function
Some theoretical results

3 Applications
Linear regression
Innovation diffusion forecasting
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Applications Linear regression

Model

We consider the following standard regression model

y = Xβ + ε

where
y = (y1, . . . , yn)′ is the vector of n observations of the dependent variable
X is the fixed design matrix of size n × (p + 1)

ε = (ε1, . . . , εn)′ ∼ N (0, In) is the vector of errors
The vector of coefficients is θ = (β′, σ)′
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Applications Linear regression

Likelihood-based belief function

The likelihood function for this model is

Ly (θ) = (2πσ2)−n/2 exp
[
− 1

2σ2 (y − Xβ)′(y − Xβ)

]
The contour function can thus be readily calculated as

ply (θ) =
Ly (θ)

Ly (θ̂)

with θ̂ = (β̂
′
, σ̂)′, where

β̂ = (X ′X )−1X ′y is the ordinary least squares estimate of β
σ̂ is the standard deviation of residuals
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Applications Linear regression

Plausibility of linear hypotheses

Assertions (hypotheses) H of the form Aβ = q, where A is a r × (p + 1)
constant matrix and q is a constant vector of length r , for some r ≤ p + 1
Special cases: {βj = 0}, {βj = 0,∀j ∈ {1, . . . ,p}}, or {βj = βk}, etc.
The plausibility of H is

PlΘ
y (H) = sup

Aβ=q
ply (θ) =

Ly (θ̂∗)

Ly (θ̂)

where θ̂∗ = (β̂
′
∗, σ̂∗)

′ (restricted LS estimates) with

β̂∗ = β̂ − (X ′X )−1A′[A(X ′X )−1A′]−1(Aβ̂ − q)

σ̂∗ =

√
(y − X β̂∗)′(y − X β̂∗)/n
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Applications Linear regression

Linear model: prediction

Let z be a not-yet observed value of the dependent variable for a vector
x0 of covariates:

z = x ′0β + ε0,

with ε0 ∼ N (0, σ2)

We can write, equivalently,

z = x ′0β + σΦ−1(w) = ϕx0,y (θ,w),

where w has a standard uniform distribution
The predictive belief function on z can then be approximated using Monte
Carlo simulation
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Applications Linear regression

Linear model: prediction

Let z be a not-yet observed value of the dependent variable for a vector
x0 of covariates:

z = x ′0β + ε0,

with ε0 ∼ N (0, σ2)

We can write, equivalently,

z = x ′0β + σΦ−1(w) = ϕx0,y (θ,w),

where w has a standard uniform distribution
The predictive belief function on z can then be approximated using Monte
Carlo simulation
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Applications Linear regression

Example: movie Box office data

Dataset about 62 movies released in 2009 (from Greene, 2012)
Dependent variable: logarithm of Box Office receipts
11 covariates:

3 dummy variables (G, PG, PG13) to encode the MPAA (Motion Picture
Association of America) rating, logarithm of budget (LOGBUDGET), star
power (STARPOWR),
a dummy variable to indicate if the movie is a sequel (SEQUEL),
four dummy variables to describe the genre ( ACTION, COMEDY,
ANIMATED, HORROR)
one variable to represent internet buzz (BUZZ)
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Applications Linear regression

Some marginal contour functions
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Applications Linear regression

Regression coefficients

Estimate Std. Error t-value p-value Pl(βj = 0)

(Intercept) 15.400 0.643 23.960 < 2e-16 1.0e-34
G 0.384 0.553 0.695 0.49 0.74
PG 0.534 0.300 1.780 0.081 0.15
PG13 0.215 0.219 0.983 0.33 0.55
LOGBUDGET 0.261 0.185 1.408 0.17 0.30
STARPOWR 4.32e-3 0.0128 0.337 0.74 0.93
SEQUEL 0.275 0.273 1.007 0.32 0.54
ACTION -0.869 0.293 -2.964 4.7e-3 6.6e-3
COMEDY -0.0162 0.256 -0.063 0.95 0.99
ANIMATED -0.833 0.430 -1.937 0.058 0.11
HORROR 0.375 0.371 1.009 0.32 0.54
BUZZ 0.429 0.0784 5.473 1.4e-06 4.8e-07
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Applications Linear regression

Movie example
BO success of an action sequel film rated PG13 by MPAA, with
LOGBUDGET=5.30, STARPOWER=23.62 and BUZZ= 2.81?
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Applications Linear regression

Ex ante forecasting
Problem and classical approach

Consider the situation where some explanatory variables are unknown at
the time of the forecast and have to be estimated or predicted
Classical approach: assume that x0 has been estimated with some
variance, which has to be taken into account in the calculation of the
forecast variance
According to Green (Econometric Analysis, 7th edition, 2012)

“This vastly complicates the computation. Many authors view it as simply
intractable”
“analytical results for the correct forecast variance remain to be derived
except for simple special cases”
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Applications Linear regression

Ex ante forecasting
Belief function approach

In contrast, this problem can be handled very naturally in our approach by
modeling partial knowledge of x0 by a belief function BelX in the sample
space X of x0

We then have
BelZy =

(
BelΘ

y ⊕ BelZ×Θ
y ⊕ BelX

)↓Z
Assume that the belief function BelX is induced by a source (Ω,A,PΩ,Λ),
where Λ is a multi-valued mapping from Ω to 2X

The predictive belief function BelZy is then induced by the multi-valued
mapping

(ω, s,w)→ ϕy (Λ(ω), Γy (s),w)

BelZy can be approximated by Monte Carlo simulation
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Applications Linear regression

Monte Carlo algorithm

Require: Desired number of focal sets N
for i = 1 to N do

Draw (si ,wi ) uniformly in [0,1]2

Draw ω from PΩ

Search for z∗i = minθ ϕy (x0,θ,wi ) such that ply (θ) ≥ si and x0 ∈ Λ(ω)
Search for z∗i = maxθ ϕy (x0,θ,wi ) such that ply (θ) ≥ si and x0 ∈ Λ(ω)
Bi ← [z∗i , z∗i ]

end for
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Applications Linear regression

Movie example
Lower and upper cdfs

BO success of an action sequel film rated PG13 by MPAA, with
LOGBUDGET=5.30, STARPOWER=23.62 and BUZZ= (0,2.81,5) (triangular
possibility distribution)?
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Applications Linear regression

Movie example
Pl-plots

Certain inputs Uncertain inputs
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Applications Innovation diffusion forecasting

Outline

1 Complements on belief functions
Belief functions on product spaces
Belief functions on infinite spaces

2 Statistical estimation and prediction
Likelihood-based belief function
Predictive belief function
Some theoretical results

3 Applications
Linear regression
Innovation diffusion forecasting
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Applications Innovation diffusion forecasting

Innovation diffusion

Forecasting the diffusion of an innovation has been a topic of
considerable interest in marketing research
Typically, when a new product is launched, sale forecasts have to be
based on little data and uncertainty has to be quantified to avoid making
wrong business decisions based on unreliable forecasts
Our approach uses the Bass model (Bass, 1969) for innovation diffusion
together with past sales data to quantify the uncertainty on future sales
using the formalism of belief functions
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Applications Innovation diffusion forecasting

Bass model

Fundamental assumption (Bass, 1969): for eventual adopters, the
probability f (t) of purchase at time t , given that no purchase has yet been
made, is an affine function of the number of previous buyers

f (t)
1− F (t)

= p + qF (t)

where p is a coefficient of innovation, q is a coefficient of imitation and
F (t) =

∫ t
0 f (u)du.

Solving this differential equation, the probability that an individual taken
at random from the population will buy the product before time t is

Φθ(t) = cF (t) =
c(1− exp[−(p + q)t ])

1 + (p/q) exp[−(p + q)t ]

where c is the probability of eventually adopting the product and
θ = (p,q, c)
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Applications Innovation diffusion forecasting

Parameter estimation

Data: y1, . . . , yT−1, where yi = observed number of adopters in time
interval [ti−1, ti )
The number of individuals in the sample of size M who did not adopt the
product at time tT−1 is yT = M −

∑T−1
i=1 yi

The probability of adopting the innovation between times ti−1 and ti is
pi = Φθ(ti )− Φθ(ti−1) for 1 ≤ i ≤ T − 1, and the probability of not
adopting the innovation before tT−1 is pT = 1− Φθ(tT−1)

Consequently, x = (x1, . . . , xT ) is a realization of X ∼M(M,p1, . . . ,pT )
and the likelihood function is

Ly (θ) ∝
T∏

i=1

pyi
i =

(
T−1∏
i=1

[Φθ(ti )− Φθ(ti−1)]yi

)
[1− Φθ(tT−1)]yT

The belief function on θ is defined by ply (θ) = Ly (θ)/Ly (θ̂)
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Applications Innovation diffusion forecasting

Results
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Applications Innovation diffusion forecasting

Sales forecasting

Let us assume we are at time tT−1 and we wish to forecast the number Z
of sales between times τ1 and τ2, with tT−1 ≤ τ1 < τ2

Z has a binomial distribution B(Q, πθ), where
Q is the number of potential adopters at time T − 1
πθ is the probability of purchase for an individual in [τ1, τ2], given that no
purchase has been made before tT−1

πθ =
Φθ(τ2)− Φθ(τ1)

1− Φθ(tT−1)

Z can be written as Z = ϕ(θ,W ) =
∑Q

i=1 1[0,πθ ](Wi ) where

1[0,πθ ](Wi ) =

{
1 if Wi ≤ πθ
0 otherwise

and W = (W1, . . . ,WQ) has a uniform distribution in [0,1]Q .
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Applications Innovation diffusion forecasting

Predictive belief function
Multi-valued mapping

The predictive belief function on Z is induced by the multi-valued
mapping (s,w)→ ϕ(Γy (s),w) with

Γy (s) = {θ ∈ Θ : ply (θ) ≥ s}

When θ varies in Γy (s), the range of πθ is [πθ(s), πθ(s)], with

πθ(s) = min
{θ|ply (θ)≥s}

πθ, πθ(s) = max
{θ|ply (θ)≥s}

πθ

We have
ϕ(Γy (s),w) = [Z (s,w),Z (s,w)],

where Z (s,w) and Z (s,w) are, respectively, the number of wi ’s that are
less than πθ(s) and πθ(s)

For fixed s, Z (s,W ) ∼ B(Q, πθ(s)) and Z (s,W ) ∼ B(Q, πθ(s))
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Applications Innovation diffusion forecasting

Predictive belief function
Calculation

The belief and plausibilities that Z will be less than z are

BelZy ([0, z]) =

∫ 1

0
FQ,πθ(s)(z)ds

PlZy ([0, z]) =

∫ 1

0
FQ,πθ(s)(z)ds

where FQ,p denotes the cdf of the binomial distribution B(Q,p)

The contour function of Z is

ply (z) =

∫ 1

0

(
FQ,πθ(s)(z)− FQ,πθ(s)(z − 1)

)
ds

Theses integrals can be approximated by Monte-Carlo simulation
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Applications Innovation diffusion forecasting

Ultrasound data
Data collected from 209 hospitals through the U.S.A. (Schmittlein and
Mahajan, 1982) about adoption of an ultrasound equipment
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Applications Innovation diffusion forecasting

Forecasting
Predictions made in 1970 for the number of adopters in the period 1971-1978,
with their lower and upper expectations
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Applications Innovation diffusion forecasting

Cumulative belief and plausibility functions
Lower and upper cumulative distribution functions for the number of adopters
in 1971, forecasted in 1970
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Pl-plot
Plausibilities PlYy ([z − r , z + r ]) as functions of z, from r = 0 (lower curve) to
r = 5 (upper curve), for the number of adopters in 1971, forecasted in 1970:
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Conclusions

Uncertainty quantification is an important component of any forecasting
methodology. The approach introduced in this lecture allows us to
represent forecast uncertainty in the belief function framework, based on
past data and a statistical model
The proposed method is conceptually simple and computationally
tractable
The belief function formalism makes it possible to combine information
from several sources (such as expert opinions and statistical data)
The Bayesian predictive probability distribution is recovered when a prior
on θ is available
The consistency of the method has been established under some
conditions
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