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Theory of belief functions

Also referred to as Dempster-Shafer (DS) theory, evidence theory,
Transferable Belief Model.
Originates from Dempster’s seminal work on statistical inference in the
late 1960’s. Formalized by Shafer in his seminal 1976 book. Further
developed and popularized by Smets in the 1990’s and early 2000’s.
DS theory has a level of generality that makes it applicable to a wide
range problems involving uncertainty. It has been applied in may areas,
including statistical inference, knowledge representation, information
fusion, etc.

How can the theory of belief functions contribute to Machine Learning?
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Key features of DS theory

I will not attempt to give an exhaustive account of the already large number of
applications of DS theory to ML. Instead, I will give a few examples to
illustrate the following key features of DS theory:

Generality: DS theory is based on the idea of combining sets and
probabilities. It extends both

Propositional logic, computing with sets (interval analysis)
Probabilistic reasoning

Everything than can be done with sets or with probabilities
alone can be done with belief functions, but DS theory can do
much more!

Operationality: DS theory is easily put in practice by breaking down the
available evidence into elementary pieces of evidence, and
combining them by a suitable operator called Dempster’s rule of
combination.

Scalability: Contrary to a widespread misconception, evidential reasoning
can be applied to very large problems.
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Dempster-Shafer theory: a refresher Mass, belief and plausibility functions

Road scene analysis

Realfworldfdrivingfscene

Camera LIDAR SensorfN...

Over-segmentation

Ground Vegetation

Fusionfonfafunified
decisionfspace

Independentfclassificationfmodules

... ClassfK

Classifiedfsegments
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Dempster-Shafer theory: a refresher Mass, belief and plausibility functions

Uncertain sensor information

S	 Θ
Γ	not	reliable	(0.1)	

reliable	(0.9)	

T	
O	

G	
R	

S	

Let Θ = {G,R,T ,O,S}, corresponding to the possibilities Grass, Road,
Tree/Bush, Obstacle, Sky. Let Y be the true answer.
A Lidar sensor tells us that Y ∈ {T ,O} and nothing more. There is
probability 0.1 that the sensor is not reliable.
With probability 0.9, the sensor evidence tells us that Y ∈ {T ,O}, and
nothing more. With probability 0.1, it tells us nothing.
This can be formalized by the mapping m : 2Θ → [0,1], called a mass
function:

m({T ,O}) = 0.9, m(Θ) = 0.1, m(B) = 0 for all other B ⊂ Θ
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Dempster-Shafer theory: a refresher Mass, belief and plausibility functions

General definition

Definition (Mass function)

A mass function on a finite set Θ is a mapping m : 2Θ → [0,1] such that∑
A⊆Θ

m(A) = 1.

If m(∅) = 0, m is normalized (usually assumed).
Every subset A of Θ such that m(A) > 0 is a focal set.

Interpretation: if Θ is the domain of a variable Y , m(A) is the probability
that the meaning of the evidence is exactly “Y ∈ A”; it is thus the measure
of the belief one is willing to commit exactly to A.
Total ignorance is represented by the vacuous mass function m? verifying
m?(Θ) = 1.
Special cases:

Logical: only one focal set
Bayesian: all focal sets are singletons
Consonant: the focal sets are nested
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Dempster-Shafer theory: a refresher Mass, belief and plausibility functions

Fundamental assumption

Assumption (Representability of evidence by a mass function)

Any piece of evidence about a variable Y ∈ Θ induces the same state of
knowledge as a randomly coded message that may have different meanings
of the form “Y ∈ Ai ” for i = 1, . . . ,n, with probabilities p1, . . . ,pn such that∑n

i=1 pi = 1.
It can thus be represented by a mass function m with focal sets A1, . . . ,An and
masses m(Ai ) = pi , i = 1, . . . ,n.
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Dempster-Shafer theory: a refresher Mass, belief and plausibility functions

Belief and plausibility functions

Definition
Given a normalized mass function m on Θ, the belief and plausibility functions
are defined, respectively, as

Bel(A) :=
∑
B⊆A

m(B)

Pl(A) :=
∑

B∩A6=∅

m(B) = 1− Bel(A),

for all A ⊆ Θ.

Interpretation:
Bel(A) is the probability that “Y ∈ A” can be deduced from the evidence; it is
a measure of total support in A
Pl(A) is a measure of the lack of support in A (or consistency with A)

Total ignorance: Bel?(A) = 0 for all A 6= Θ and Pl?(A) = 1 for all A 6= ∅.
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Dempster-Shafer theory: a refresher Mass, belief and plausibility functions

The contour function

Definition
Given a mass function m on Θ, the contour function is the mapping pl from Θ
to [0,1] defined by

pl(θ) = Pl({θ}), ∀θ ∈ Θ.

The contour function plays an important role in many applications of belief
functions:

It is a simple summary of belief function, useful for decision making
It can be computed very efficiently when combining several mass
functions (see below).
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Dempster-Shafer theory: a refresher Dempster’s rule

Combining Mass Functions
Two independent sensors:

S1	

ΘΓ1	
not	reliable	(0.1)	

reliable	(0.9)	

S2	

Γ2	

reliable	(0.8)	

not	reliable	(0.2)	

T	
O	

G	

R	
S	

What do we know?

S2
reliable [0.8] not reliable [0.2]

S1
reliable [0.9] {T} [0.72] {T ,O} [0.18]

not reliable [0.1] {T ,G} [0.08] Θ [0.02]
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Dempster-Shafer theory: a refresher Dempster’s rule

Case of conflicting pieces of evidence

(S1,	P1)	

ΘΓ1	
working	(0.9)	

broken	(0.1)	

(S2,	P2)	

Γ2	

working	(0.8)	

broken	
(0.2)	

T	
G	

R	
S	

O	

S2
reliable [0.8] not reliable [0.2]

S1
reliable [0.9] ∅ [0.72→ 0] {T ,O} [0.18/0.28]

not reliable [0.1] {R,G} [0.08/0.28] Θ [0.02/0.28]
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Dempster-Shafer theory: a refresher Dempster’s rule

Dempster’s rule

Definition (Dempster’s rule)

Let m1 and m2 be two mass functions. Their orthogonal sum is the mass
function defined by

(m1 ⊕m2)(A) :=
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅

and (m1 ⊕m2)(∅) = 0, where κ is the degree of conflict defined as

κ :=
∑

B∩C=∅

m1(B)m2(C).

Remark: m1 ⊕m2 exists iff κ < 1.
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Dempster-Shafer theory: a refresher Dempster’s rule

Properties

Proposition
1 If several pieces of evidence are combined, the order does not matter:

m1 ⊕m2 = m2 ⊕m1

m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3

2 A mass function m is not changed if combined with m?:

m ⊕m? = m.

3 Let m1 and m2 be two mass functions with contour functions pl1 and pl2.
The contour function of m1 ⊕m2 is

pl1 ⊕ pl2 =
1

1− κ
pl1 · pl2 ∝ pl1pl2.
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Dempster-Shafer theory: a refresher Dempster’s rule

Weights of evidence

Dempster’s rule can often be easily computed by adding weights of evidence.

Definition (Weight of evidence)

Given a simple mass function of the form

m(A) = s
m(Θ) = 1− s,

the quantity w = − log(1− s) is called the weight of evidence for A.

Mass function m is denoted by Aw .

Proposition

The orthogonal sum of two simple mass functions Aw1 and Aw2 is

Aw1 ⊕ Aw2 = Aw1+w2
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Clustering

Two approaches to clustering

Two main approaches for applying belief functions to clustering:
1 Assume that there exists one true partition and apply evidential reasoning

to the frame of all partitions of a dataset. The goal is to find the most
plausible partition. This is the approach followed by the EK-NNclus
algorithm1.

2 Generalize the notion of partition to account for the uncertainty in the
assignment of objects to clusters. This idea leads to the notion of credal
partition2, a generalization of hard, fuzzy and rough partitions.

1T. Denoeux et al. EK-NNclus: a clustering procedure based on the evidential K-nearest
neighbor rule. KBS, 88:57–69, 2015.

2T. Denœux and M.-H. Masson. EVCLUS: Evidential Clustering of Proximity Data. IEEE
TSMC B, 34(1):95–109, 2004.
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Clustering Finding the most plausible partition
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Clustering Finding the most plausible partition

Reasoning in the space of all partitions

Let O be a set of n object. Assuming there is a true unknown partition,
the frame of discernment is the set R of all partitions (≡ equivalence
relations) of O. This set is huge!
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Can we implement evidential reasoning in such a large space?
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Clustering Finding the most plausible partition

Model

Evidence: n × n matrix D = (dij ) of dissimilarities between the n objects.
Given two objects oi and oj , let Θij = {sij ,¬sij}, where sij is the hypothesis
that oi and oj belong to the same class.
Assumptions

1 Two objects are all the more likely to belong to the same class, that they are
more similar; given any two object i and j with dissimilarity dij , we thus have
the simple mass function

mij := {sij}wij

where the weight of evidence wij = ϕ(dij) ∈ (0,+∞) is a decreasing function
of dij

2 The mass functions mij for all i > j represent independent items of evidence.

How to combine these n(n − 1)/2 mass functions to find the most
plausible partition of the n objects?
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Clustering Finding the most plausible partition

Evidence combination

Let Rij denote the set of partitions of the n objects such that objects oi
and oj are in the same group (rij = 1).
Each mass function mij can be vacuously extended to the space R of
equivalence relations:

mij ({sij}) −→ Rij
mij (Θij ) −→ R

Combining the extended mass functions by Dempster’s rule, we get

m =
⊕
i<j

Rwij
ij ,

with corresponding contour function:

pl(R) ∝
∏
i<j

plij (R) =
∏
i<j

(e−wij )1−rij

for any R = (rij ) ∈ R.
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Clustering Finding the most plausible partition

Decision

The logarithm of the contour function can be written as

log pl(R) =
∑
i<j

rijwij + C

Finding the most plausible partition is thus a binary linear programming
problem. It can be solved exactly only for small n.
For large n, the problem can be solved approximately using a heuristic
greedy search procedure: the EK-NNclus algorithm3.

3Available in the R package evclust.
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Clustering Finding the most plausible partition

EK -NNclus algorithm

1 Initialization: c = n, uik := I(i = k) (each cluster contains exactly one
object)

2 For each object i : compute the set NK (i) of indices of its K nearest
neighbors

3 For each object pair (i , j): set wij := ϕ(dij )I(j ∈ NK (i))

4 For each object i (picked in random order): compute

tik :=
∑

j∈NK (i)

wijujk , k = 1, . . . , c.

Set uik := 1 if tik = maxk ′ tik ′ and uik := 0 otherwise
5 Update c and variables uik accordingly
6 Return to Step 4 while at least one label has changed
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Clustering Finding the most plausible partition

Convergence of EK-NNclus

The EK-NNclus algorithm can be implemented in a Hopfield neural network,
with n groups of c neurons (one for each cluster). The state of neuron k of
group i is uik . At each iteration, the states in each group are updated. The
network minimizes the energy function

E(R) := −1
2

c∑
k=1

n∑
i=1

∑
j 6=i

wijuik ujk = −
∑
i<j

rijwij = − log pl(R) + C.

Consequence:

Theorem
If K = n − 1 the EK -NNclus algorithm converges in a finite number of
iterations to a partition R corresponding to a local maximum of pl(R).

Conjecture

The above results holds also if K < n − 1.
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Clustering Finding the most plausible partition

Example

Dataset
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Clustering Finding the most plausible partition

Final partition
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Clustering Evidential clustering
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Clustering Evidential clustering

Clustering and belief functions

Several “soft” generalizations of the notion of hard partition have been
proposed over the years:

Fuzzy partition: uik ∈ [0, 1],
∑c

k=1 uik = 1
Possibilistic partition: uik ∈ [0, 1]
Rough partition: (u ik , u ik ) ∈ {0, 1}2, with u ik ≤ u ik ,

∑c
k=1 u ik ≤ 1 and∑c

k=1 u ik ≥ 1

These notions can be further generalized in the DS framework, with the
following main objectives:

Unify the various approaches to clustering, and derive new tools to compare
and/or combine different soft partitions 4

Achieve a richer and more accurate representation of the uncertainty of a
clustering structure.

4T. Denœux et al.. Evaluating and Comparing Soft Partitions: an Approach Based on
Dempster-Shafer Theory. IEEE TFS, 26(3):1231–1244, 2018.
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Clustering Evidential clustering

Credal partition

Let O = {o1, . . . ,on} be a set of n objects and Ω = {ω1, . . . , ωc} be a set
of c groups (clusters).
Assumption: each object oi belongs to at most one group.

Definition

A credal partition is an n-tuple M := (m1, . . . ,mn), where each mi is a (not
necessarily normalized) mass function on Ω representing evidence about the
cluster membership of object oi .
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Clustering Evidential clustering

Example

−5 0 5 10

−2
0

2
4

6
8

10

Butterfly data

x1

x 2

1
2
3
4

5 6 7
8
9
10

11

12

Credal partition

∅ {ω1} {ω2} {ω1, ω2}
m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Clustering Evidential clustering

Relationship with other clustering structures

Hard	par''on	

Fuzzy	par''on	 Possibilis'c	par''on	 Rough	par''on	

Credal	par''on	

mi	certain	

mi	Bayesian	 mi	consonant	 mi	logical	

mi	general	
More	general	

Less	general	

Thierry Denœux Belief functions and Machine Learning SUM 2019 33 / 82



Clustering Evidential clustering

Summarization of a credal partition

Hard	par''on	

Fuzzy	par''on	 Possibilis'c	par''on	 Rough	par''on	

Credal	par''on	
More	complex	

Less	complex	

maximum	mass	
contour	
func'on	

maximum	
plausibility	maximum	

probability	

normalized	contour	
func'on	
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Clustering Evidential clustering

Evidential clustering algorithms

1 Evidential c-means (ECM)5:
Attribute data
HCM, FCM family

2 EVCLUS6:
Attribute or proximity (possibly non metric) data
Multidimensional scaling approach

3 Bootstrapping approach7

Based on a mixture models and bootstrap confidence intervals
The resulting credal partition has frequentist properties

5M.-H. Masson and T. Denœux. ECM: An evidential version of the fuzzy c-means algorithm.
Pattern Recognition, 41(4):1384–1397, 2008.

6T. Denœux et al. Evidential clustering of large dissimilarity data. KBS, 106:179–195, 2016.
7T. Denœux. Calibrated model-based evidential clustering using bootstrapping. Preprint

arXiv:1912.06137, 2019.
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Clustering Bootstrapping approach
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Clustering Bootstrapping approach

Basic idea

Objective: account for clustering uncertainty.
Model-based clustering allows us to estimate probabilities of cluster
membership. The result is a fuzzy partition that describes first-order
uncertainty.
To represent second-order uncertainty (uncertainty about the probability
estimates), we need a more general model. Here, we exploit the
expressiveness of DS theory and use a credal partition.
This credal partition will be based on bootstrapping mixture models.
As it will be built to approximate some confidence intervals, the resulting
credal partition will be frequency-calibrated8.

8T. Denœux and S. Li. Frequency-Calibrated Belief Functions: Review and New Insights.
IJAR, 92:232–254, 2018.
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Clustering Bootstrapping approach

Model

We assume that the attributes vectors x1, . . . ,xn are an iid random
sample from a mixture distribution with pdf

p(x ;θ) :=
c∑

k=1

πk pk (x ;θk )

where each component in the mixture corresponds to a cluster and θ is
the parameter vector.
The probability that object i belongs to cluster k is

πk (x i ;θ) =
pk (x i ;θk )πk∑c
`=1 p`(x i ;θ`)π`

The probability that two objects i and j belong to the same cluster is

Pij (θ) =
c∑

k=1

πk (x i ;θ)πk (x j ;θ)
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Clustering Bootstrapping approach

Estimation

Given a dataset x1, . . . ,xn, we can compute the MLE θ̂ of θ and the
corresponding MLEs πk (x i ; θ̂) and Pij (θ̂).
To describe the uncertainty of these estimates, we can use the bootstrap.
Confidence intervals on the pairwise probabilities Pij (θ) can easily be
obtained by the bootstrap percentile method.
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Clustering Bootstrapping approach

Bootstrap confidence intervals on the pairwise
probabilities

Require: Dataset x1, . . . ,xn, model p(·;θ), number of bootstrap samples B,
confidence level 1− α
for b = 1 to B do

Draw xb1, . . . ,xbn from x1, . . . ,xn with replacement
Compute the MLE θ̂b from xb1, . . . ,xbn
for all i < j do

Compute Pij (θ̂b)
end for

end for
for all i < j do

P l
ij := Quantile

({
Pij (θ̂b)

}B

b=1
; α2

)
Pu

ij := Quantile
({

Pij (θ̂b)
}B

b=1
; 1− α

2

)
end for
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Clustering Bootstrapping approach

Constructing a credal partition

Given a credal partition M = (m1, . . . ,mn), the belief and plausibility that
any two objects i and j belong to the same cluster are given by

Belij =
c∑

k=1

mi ({ωk})mj ({ωk})

Plij =
∑

A∩B 6=∅

mi (A)mj (B)

Idea: search for a credal partition M such that the belief-plausibility
intervals [Belij ,Plij ] approximate the confidence intervals [P l

ij ,P
u
ij ].
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Clustering Bootstrapping approach

Optimization problem and frequentist property

We consider the ptimization problem

min
M

∑
i<j

(
Belij − P l

ij
)2

+
(
Plij − Pu

ij
)2
,

which can be solved using a grouped coordinate descent procedure
(solving a QP problem at each iteration).
The solution verifies

P (Belij ({sij}) ≤ Pij (θ) ≤ Plij ({sij})) ≈ 1− α.

This corresponds to the definition of a predictive belief function9 at level
1− α, a special kind of frequency-calibrated belief function10.

9T. Denœux. Constructing Belief Functions from Sample Data Using Multinomial Confidence
Regions. IJAR, 42(3):228–252, 2006.

10T. Denœux and S. Li. Frequency-Calibrated Belief Functions: Review and New Insights.
IJAR, 92:232–254, 2018.
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Clustering Bootstrapping approach

Example
Bootstrap confidence intervals

−0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

x1

x2

1

2

3

4
5 6

7

8

9

10

11

1213

14

15

16

17

18

19
2021

22 23

24

25

26

2728

29

30

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0

11 , 29

boostrap estimates of pairwise probabilities

Thierry Denœux Belief functions and Machine Learning SUM 2019 43 / 82



Clustering Bootstrapping approach

Example
Bootstrap confidence intervals
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Clustering Bootstrapping approach

Example
Bootstrap confidence intervals
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Clustering Bootstrapping approach

Example
Approximation of confidence intervals by pairwise belief functions
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Clustering Bootstrapping approach

Example
Credal partition
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Evidential classification

Outline

1 Dempster-Shafer theory: a refresher
Mass, belief and plausibility functions
Dempster’s rule

2 Clustering
Finding the most plausible partition
Evidential clustering
Bootstrapping approach

3 Evidential classification
Evidential K -NN classifier
Evidential feature-based classification
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Evidential classification

Classification

We consider a population of objects partitioned in c groups (classes).
Each object is described by a feature vector X = (X1, . . . ,Xd ) ∈ X of d
features and a class variable Y ∈ Θ = {θ1, . . . , θc} indicating group
membership.
Problem: given a learning set {(x i , yi )}n

i=1 containing observations of X
and Y for n objects, build a classifier

C : X −→ Θ

that predicts the value of Y given X .

Definition
An evidential classifier is a classifier that classifies each x ∈ X based on a
mass function m on Θ constructed by aggregating evidence about the class of
the object.
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Evidential classification

Two kinds of evidential classifiers

Distance-based:
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Feature-based:
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Evidential classification Evidential K -NN classifier

Outline

1 Dempster-Shafer theory: a refresher
Mass, belief and plausibility functions
Dempster’s rule

2 Clustering
Finding the most plausible partition
Evidential clustering
Bootstrapping approach

3 Evidential classification
Evidential K -NN classifier
Evidential feature-based classification
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Evidential classification Evidential K -NN classifier

Principle11

Xi

di

X

Let NK (x) denote the set of the K nearest
neighbors of x in the learning set, based on
some distance measure
Each x j ∈ NK (x) can be considered as a
piece of evidence regarding the class of x
The weight of this evidence decreases with
the distance dj between x and x j

11T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE
TSMC, 25(05):804-813, 1995
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Evidential classification Evidential K -NN classifier

Definition

K nearest neighbors of x : x1, . . . ,xK , class labels y1, . . . , yK .
The evidence of (xj , yj ) can be represented by a simple mass function o,
Θ = {θ1, . . . , θc}:

m̂j :=
c⊕

k=1

{θk}ϕk (dj )yjk

where ϕk is a decreasing function R+ −→ R+ and yjk := I(yj = θk ).
Combined evidence:

m̂ =
K⊕

j=1

m̂j =
c⊕

k=1

{θk}wk

where
wk :=

∑
{j:yj =θk}

ϕk (dj )

is the total weight of evidence for class θk .
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Evidential classification Evidential K -NN classifier

Learning

Each function ϕk can be parameterized by a parameter γk .
Parameter vector γ = (γ1, . . . , γc) can be learnt from the data by
minimizing a cost function12 such as:

C1(γ) :=
n∑

i=1

c∑
k=1

(p̂l i (ωk )− yik )2

where p̂l i is the contour function corresponding to m̂i computed using the
K-NNs of observation x i .
Implemented in R package evclas available at
https://CRAN.R-project.org/package=evclass.

12L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization.
IEEE TSMC C, 28(2):263-271,1998.
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Evidential classification Evidential K -NN classifier

Example
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Evidential classification Evidential K -NN classifier

Variants and extensions

Neural network formulation based on prototypes13, similar to RBF
networks.
Optimization of the dissimilarity metric14,
A recent version allows for fast learning in the case of labeling
uncertainty15, i.e., when each instance x i has a soft label (a mass
function on Θ).

13T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE TSMC A,
30(2):131-150, 2000.

14C. Lian et al. Dissimilarity metric learning in the belief function framework. IEEE TFS
24(6):1555–1564, 2016

15T. Denoeux et al.. A New Evidential K-Nearest Neighbor Rule based on Contextual
Discounting with Partially Supervised learning. IJAR, 113:287–302, 2019
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Evidential classification Evidential feature-based classification

Outline

1 Dempster-Shafer theory: a refresher
Mass, belief and plausibility functions
Dempster’s rule

2 Clustering
Finding the most plausible partition
Evidential clustering
Bootstrapping approach

3 Evidential classification
Evidential K -NN classifier
Evidential feature-based classification
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Evidential classification Evidential feature-based classification

Feature-based evidential classification

The idea of feature-based evidential classification is to consider features
as independent items of evidence and combine the corresponding mass
functions by Dempster’s rule:

m1	x1	

mj	xj	

mp	xp	
…
	

m	x	

…
	

Dempster’s	
rule	

p	features	

This seems unusual, but most ML algorithms, including neural networks
can be analyzed in that way16.

16T. Denœux. Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New
Perspective. Knowledge-Based Systems, 176:54–67, 2019.
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Evidential classification Evidential feature-based classification

Neural nets: DS view

Highest-order	features	are	
pieces	of	evidence	
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Latent	belief	
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Output	
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Evidential classification Evidential feature-based classification

Binomial Logistic regression

Consider a binary classification problem with d-dimensional feature
vector X = (X1, . . . ,Xd ) and class variable Y ∈ Θ = {θ1, θ2}.
Let p(x) denote the conditional probability that Y = θ1 given that X = x .

Binomial Logistic Regression (LR) model

log
p(x)

1− p(x)
= βT x + β0

with β ∈ Rd and β0 ∈ R.

Equivalently,

p(x) =
1

1 + exp
[
−(βT x + β0)

] = Λ(βT x + β0)

where Λ is the logistic function.
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Evidential classification Evidential feature-based classification

Binomial Logistic Regression (continued)
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Given a learning set {(xi , yi )}n
i=1, parameters β and β0 are usually estimated

by minimizing the cross-entropy error function:

C(β, β0) = −
n∑

i=1

{I(yi = θ1) ln p(xi ) + I(yi = θ2) ln [1− p(xi )]}
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Evidential classification Evidential feature-based classification

Nonlinear generalized LR classifiers

x1	
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xd	
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LR can be applied to transformed features φj (x), j = 1, . . . , J, where the
φj ’s are nonlinear mappings from Rd to R. We get nonlinear generalized
LR classifiers.
Popular models based on this principle:

Radial basis function networks
Support vector machines
Multilayer feedforward neural networks (NNs)
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Evidential classification Evidential feature-based classification

Features as evidence

Consider a binary classification problem with c = 2 classes in Θ = {θ1, θ2}.
Let φ(x) = (φ1(x), . . . , φJ(x)) be a vector of J features.

Model

The value φj (x) taken by feature j is a piece of evidence about the class
Y ∈ Θ of the instance under consideration.
This evidence points to θ1 or θ2 depending on the sign of

wj := βjφj (x) + αj

where βj and αj are two coefficients:
If wj ≥ 0, feature φj supports class θ1 with weight of evidence wj

If wj < 0, feature φj supports class θ2 with weight of evidence −wj
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Evidential classification Evidential feature-based classification

Features as evidence: illustration
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Evidential classification Evidential feature-based classification

Feature-based latent mass function

Under this model, the consideration of feature φj induces the following mass
function:

mj = {θ1}w+
j ⊕ {θ2}w−j

where
w+

j = max(0,wj ) is the positive part of wj and

w−j = max(0,−wj ) is the negative part.
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Evidential classification Evidential feature-based classification

Combined latent mass function

Assuming that the values of the J features can be considered as independent
pieces of evidence, the feature-based mass functions can be combined by
Dempster’s rule:

m =
J⊕

j=1

(
{θ1}w+

j ⊕ {θ2}w−j
)

=

 J⊕
j=1

{θ1}w+
j

⊕
 J⊕

j=1

{θ2}w−j


= {θ1}w+

⊕ {θ2}w−

where
w+ :=

∑J
j=1 w+

j is the total weight of evidence supporting θ1

w− :=
∑J

j=1 w−j is the total weight of evidence supporting θ2
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Evidential classification Evidential feature-based classification

Normalized plausibilities

The normalized plausibility of class θ1 as

Pl({θ1})
Pl({θ1}) + Pl({θ2})

=
m({θ1}) + m(Θ)

m({θ1}) + m({θ2}) + 2m(Θ)

=
1

1 + exp
[
−(βTφ(x) + β0)

]
︸ ︷︷ ︸

logistic transformation

= p(x)

with β = (β1, . . . , βJ) and β0 =
∑J

i=1 αj .

Proposition

The normalized plausibilities are equal to the conditional class probabilities of
the binomial LR model: the two models are equivalent.
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Evidential classification Evidential feature-based classification

Two Views of Binomial Logistic Regression
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Evidential classification Evidential feature-based classification

Multinomial Logistic Regression: DS view
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Evidential classification Evidential feature-based classification

Example
Dataset: 900 instances, 3 equiprobable classes with Gaussian distributions

−2 −1 0 1 2

−
2

−
1

0
1

2

Thierry Denœux Belief functions and Machine Learning SUM 2019 70 / 82



Evidential classification Evidential feature-based classification

NN model

NN with 2 layers of 20 and 10 neurons
ReLU activation functions in hidden layers, softmax output layer
Batch learning, minibatch size=100
L2 regularization in the last layer (λ = 1).
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Evidential classification Evidential feature-based classification

Mass on {θ1}

m({θ1})
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Evidential classification Evidential feature-based classification

Mass on {θ2}

m({θ2})
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Evidential classification Evidential feature-based classification

Mass on {θ3}

m({θ3})
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Evidential classification Evidential feature-based classification

Mass on {θ1, θ2}

m({θ1,θ2})
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Evidential classification Evidential feature-based classification

Mass on {θ1, θ3}

m({θ1,θ3})
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Evidential classification Evidential feature-based classification

Mass on {θ2, θ3}

m({θ2,θ3})
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Evidential classification Evidential feature-based classification

Mass on Θ

m(Θ)
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Evidential classification Evidential feature-based classification

Hidden unit 2
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Evidential classification Evidential feature-based classification

Decision regions (Interval Dominance rule)
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Conclusions

Summary

Until recently, ML has been mostly based on probability theory. As a
more general model, DS theory offers a radically new and promising
approach to uncertainty quantification in ML.
Other applications of belief functions in ML include

Classifier/clusterer ensembles
Partially labeled data
Constrained clustering
Multilabel classification
Preference learning, etc.

Many classical ML techniques can be revisited from a DS perspective,
with possible implications in terms of

Interpretation
Decision strategies
Model combination, etc.
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