SY19 — Machine Learning

Chapter 7: Gaussian mixture models and the EM algorithm

Thierry Denceux

Université de technologie de Compiégne

https://www.hds.utc.fr/ tdenoeux
email: tdenoeux@utc.fr

Automne 2021

SY10 — GMMs and EM TS


https://www.hds.utc.fr/~tdenoeux
tdenoeux@utc.fr

Introduction

Overview

© Introduction

SY10 — GMMs and EM YT



(DI Gaussian Mixture Model

Overview

© Introduction
@ Gaussian Mixture Model

SY10 — GMMs and EM YT



Gaussian Mixture Model
Back to LDA and QDA

@ In LDA and QDA, we assume that the conditional density of input
vector X given Y = k is multivariate Gaussian

1

. Y. ) = _
ot E1) = Gy 2

exp <—;(X — ) TE (x Nk))

(with X4 = X in the case of LDA)
@ The marginal density of X is then a mixture of ¢ Gaussian densities:

() =S p(x | Y = )P(Y = k) = 3w (x: ke, i)
k=1 k=1

@ This is called a Gaussian Mixture Model (GMM).
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(DI Gaussian Mixture Model

Gaussian Mixture Models

@ GMMs are widely used in Machine Learning for

Density estimation

Clustering (finding groups in data)

Classification (modeling complex-shaped class distributions)

Regression (accounting for different linear relations within subgroups of
a population)

e etc.
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sl Eltics
Example with p =1
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(DI Gaussian Mixture Model

Example with p = 2

0.5
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(DI Gaussian Mixture Model

How to generate data from a mixture?

o Assume X ~ >~ N (pk, k)

@ It is the marginal distribution of X in the pair (X, Y), where Y takes
values in {1,..., c} with probabilities 71, ..., 7, and the conditional
distribution of X given Y = k is the normal distribution N (p, )

@ How to generate X7

© Generate Y € {1,..., c} with probabilities 71, ..., 7.
@ If Y =k, generate X from p(x | Y = k) = ¢(x; i, k).

@ Remark: we can define mixtures of other distributions. In this chapter,
we will focus (without loss of generality) on mixtures of normal
distributions, called Gaussian mixtures.

- ‘l‘JtC‘
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Introduction Supervised vs. unsupervised learning
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(DALt Supervised vs. unsupervised learning

Supervised learning

@ In discriminant analysis, we observe both the input vector X and the
response (class label) Y for n individuals taken randomly from the
population.

@ The learning set has the form £; = {(x;, yi)}"_;. We say that the
data are labeled.

@ Learning a classifier from such data is called supervised learning.
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(DALt Supervised vs. unsupervised learning

Unsupervised learning

@ In some situations, we observe X, but Y is not observed. We say that
Y is a latent variable.

@ The learning set is composed of unlabeled data of the form
Lns = {xi}]_1.

e Estimating the model parameters from such data is called
unsupervised learning.

@ Applications: density estimation, clustering, feature extraction.

@ Unsupervised learning is usually more difficult than supervised learning,
because we have less information to estimate the parameters.
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Supervised vs. unsupervised learning
Labeled vs. unlabeled data
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(DALt Supervised vs. unsupervised learning

Semi-supervised learning

@ Sometimes, we collect of lot of data, but we can label only a part of
them.

Examples: image data from the web, or from sensors on a robot.
@ The data then have the form

Lss = {(Xi,}/i)}7;1 U {Xi}?:ns-s—l

labeled part unlabeled part

This is called a semi-supervised learning problem.

Semi-supervised learning is intermediate between supervised and
unsupervised learning.

- ‘l‘JtC‘
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Introduction Maximum likelihood estimation

Overview

© Introduction

@ Maximum likelihood estimation
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Introduction Maximum likelihood estimation

Maximum likelihood: supervised case |

@ In the case of supervised learning of GMMs, the MLEs of uy, X and
m, have simple closed-form expressions.

@ Assuming the sample (X1, Y1) ..., (X, Y;) to be i.i.d., the likelihood
function is

n
Ls) = Hp(x;,y, H p(xi | Yi=y) p(Yi=y)
= Hk 1¢(X: HioZi)ik 6y

- H H ¢(X,'; Mk, zk)}/ik,n.i’ik

i=1 k=1

with vy = I(yi = k).
/utc

Eompieane
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Introduction Maximum likelihood estimation

Maximum likelihood: supervised case Il

@ The log-likelihood function is

C

5(9;55)22 Z)/ik|0g¢(xi:uk7zk) + ZZY;k'Ong

k=1 \i=1 i=1 k=1

term ¢, depending on uy and X, term depending on 71, ..., 7c

@ The parameters u, X can be estimated separately using the data
from class k.
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Introduction Maximum likelihood estimation

MLE in the supervised case |

o We have

n ngp
= _*Z%k =) TE (6 — ) — 5 log | Zu| — = log(2n)

with ng = 27:1 Yik-
@ The derivative wrt to iy is

Zy,ki M — ) Zy,k

Hence,

1
bk = — YikXi
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Pz I o] iy
MLE in the supervised case Il

o It can be shown that

Z yie(xi — i) (xi — i) "

@ To find the MLE of the 7, we maximize the last term
n C
Z ZYIk log
i=1 k=1

wrt to 7k, subject to the constraint > 7 _; mx = 1.

@ The solution is
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Introduction Maximum likelihood estimation

Maximum likelihood: unsupervised case

@ In the case of unsupervised learning, assuming the sample Xi,..., X,
to be i.i.d., the likelihood is

L(e; »Cns) - H P(Xi)
i=1
and the log-likelihood function is

n c
9 Ens Zlogp X, = <IogZ7rk¢(x;;uk,Zk))

i=1 k=1

@ We can no longer separate the terms corresponding to each class.

@ Maximizing the log-likelihood becomes a difficult nonlinear
optimization problem, for which no closed-form solution exists.

@ A powerful method: the Expectation-Maximization (EM) algorifﬁn-gtcw
SY19 — GMMs and EM A21 19 / 103




EM algorithm

Overview

© EM algorithm
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EM Algorithm

@ An iterative optimization strategy useful when the maximizing the
likelihood is difficult, but:

o There are missing (non-observed) data

o If the missing data were observed, maximizing the likelihood would be
easy.

@ Many applications in statistics and ML

@ Can be very simple to implement. Can reliably find an optimum
through stable, uphill steps.

- ‘l‘JtC‘
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(SRR A T General formulation

Overview

© EM algorithm
@ General formulation
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EM algorithm General formulation

Notation

: Observed variables

: Complete data Z = (X,Y)

X
Y : Missing or latent variables
z
0 : Unknown parameter

) : observed-data likelihood, short for L(6;x) = p(x; 6)
Lc(6) : complete-data likelihood, short for L(0;z) = p(z; 0)
)

: observed and complete-data log-likelihoods

= utc__
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General formulation
Q function

@ Suppose we seek to maximize L(6) with respect to 6.

o Define Q(6;6(*)) to be the expectation of the complete-data
log-likelihood (assuming 6 = (1)), conditional on the observed data
X = x. Namely

Q0,01) =Eye {c(6) | x}
—Ee {log p(Z:0) | x}
:/[log p(z;0)] p(z | x; 0(*)) dy
—_———
p(ylx;0(t))
(p(z | x;0) = p(y | x; () because Y is the only random part of Z
once we are given X = x)

<= utc
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el
The EM Algorithm

Start with 0(®) and set t = 0. Then
© E step: Compute Q(6,6(1).

@ M step: Maximize Q(6, () with respect to 8. Set #(t+1) equal to
the maximizer of Q.

© Return to the E step and increment t unless a stopping criterion has

been met, e.g.,
£(00D)) — £(0M)] < e

= utc__
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el
Convergence of the EM Algorithm

@ It can be proved that L() increases after each EM iteration, i.e.,
L(OEDY > L(0(®) for t = 0,1, ... (see below)

e Consequently, the algorithm converges to a local maximum of L(#) if
the likelihood function is bounded above.

o Typically, we run the algorithm several times with random initial
conditions, and we keep the results of the best run.

- ‘l‘JtC‘
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EM algorithm Simple example

Overview

© EM algorithm

@ Simple example
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[V AT I Simple example

Mixture of two univariate normal distributions

o Let X =(Xq,...,X,) be an i.i.d. sample from a mixture of two
univariate normal distributions A'(u1,0%) and N(u2,03), with pdf

p(xi; 0) = wd(xi; p1, 01) + (1 — 7)d(x;; p2, 02),

where ¢(-; u, o) is the univariate normal pdf and

T
0= (Mlv 01, 42,02, 7T)
is the vector of parameters.

e We introduce latent variables Y = (Y1,
° Vi~ B(m),
o p(xi| Yi =1) = ¢(xi; p1,01) and
o p(xi| Yi=0) = ¢(xi; p2, 02).

..., Yn), such that

- ‘l‘JtC‘
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EM algorithm Simple example

Observed and complete-data likelihoods

@ Observed-data likelihood:
L(0) = [[ p(xi: 0) = [ ] Iré(xi: pa, 01) + (1 = m)(i; paz, 02)]
i=1 i=1
@ Complete-data likelihood:

n

Le(8) = ] pOxi, vii0) = T ] pCxi | i )plyii )
i=1

i=1

= [ [ {00 p1,01) 6(xi; 2, 02) i (L — m)' 7}

i=1
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[V AT I Simple example

Derivation of function @

o Complete-data log-likelihood:

0e(0) = {yilog ¢(xi p1, 1) + (1 — yi) log ¢(xi; 12, 02)}

i=1
n
+3 {yilogm+ (1 - yi)log(1 - m)}
i=1
@ It is linear in the y;. Consequently, the @ function is simply

n

Q0 0) = > {yVog (i p1, 1) + (1 = y?) log ¢(xi; 2, 72) |

i=1

n
3 g 15 )
i=1
with v = Eyo Y7 | x] B

]
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EM algorithm Simple example

EM algorithm: E-step

Compute

v =Byl Vi | x]
=Py»[Yi = 1] xi]

¢(

(1) ()) (1)

Xji g0

(s 11,

Thierry Denceux

AN + o0 1, o)1
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EERCET
EM algorithm: M-step

Maximize Q(6,60(*)). We get

1) M
n
() _ Sran ey _ | iy — Yy
ILL]_ - (t) 9 Ul = (t)
ny \ ol
; 1
(t+1) _ 2z (1= y,-(t))Xi (tr1) | 21— yl N(x — Mgt-i— )2
" ny R o
? n

with

Zy, and nz)—n—ngt)
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EM algorithm Simple example

Example
-039 0.12 094 1.67 1.76 244 3.72 428 492 5.53
0.06 048 1.01 168 180 325 4.12 4.60 528 6.22
o o
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© ©o
o 2 c
g
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o o
g - .. .. -. ..III..'. g S T R S P "'7'1 "
0 2 4 6 0 2 4 6
y y:

(green curve: P5[Y = 1] x] as a function of x, assuming Y =1 _—c
corresponds to the left component)
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EM algorithm Simple example

Example (continued)

(o]
(‘?- -—
hel
P e
e
5 7]
N
8 91
o
£ 4
|
Q. £¥ 7
T T T T
b 10 15 20
lteration

Solution: j11 = 4.66, o1 = 0.91, 11 = 1.08, 02 = 0.90, 7 = 0.45.
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EM algorithm EAGEIWEH

Overview

© EM algorithm

@ Analysis
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GRaPRis
Why does it work?

@ Ascent: Each M-step increases the log-likelihood.

@ Optimization transfer:

00) > Q(8,0) + £(6W) — Qo) 61).

G(6,0())

@ The last two terms in G(6,0(*)) do not depend on 6, so Q and G are
maximized at the same 0.

o Further, G is tangent to £ at 8(1), and lies everywhere below ¢. We say
that G is a minorizing function for ¢ (see next slide).

@ EM transfers optimization from / to the surrogate function G, which
is more convenient to maximize.
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EM algorithm Analysis

The nature of EM (continued)

1(6x)

21a] g(t+1) g(t+2)
[

One-dimensional illustration of EM algorithm as a minorization or
optimization transfer strategy. Each E step forms a minorizing function G

and each M step maximizes it to provide an uphill step.

SY10 — GMMs and EM
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Analysis
Proof

@ We have

ply | x;0) = plx, . 6) = p(z0) = p(x;0) = P(z:9)

p(x;0)  p(x;0) ~ plylx; 0)

o Consequently,
0(0) = log p(x; 0) = log p(z; 0) — log p(y | x; 6)
(0)
2

@ Taking expectations on both sides wrt the conditional distribution of
Z given X = x and using 0t for :

00) = Q(8,0)) — Ey[log p(Y | x;6) | x] (1)
H(0,00)) St
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EM algorithm Analysis

Proof - the minorizing function

@ Now, for all § € ©,

Y | x;0)
H(0.00Y — HOW 9O — E . 10g P 1X10)
(0,6) — H(0, 60\ = Eye 0gp(y|x;0(t))|x

p(Y[x0) 1.,
a0y 17|

py|x:0) ()
fp(y\x;O(t))p(y|X'0 )dy

< Iog/p(y | x;0)dy =0

| —
1

< logEy() [

(*): from the concavity of the log and Jensen's inequality.

o Hence, 0(t) is a maximizer of H(#,6(!)

SY10 — GMMs and EM P

= utc__

39 / 103



EM algorithm EAGEIWEH

Proof - the minorizing function (continued)

Hence, for all 0 € ©,
H(O®,61) > H(0,01))
QO 00) — £(61) > Q6,0 — £(0)
00) > Q(6,01) + £(6®) — Q(6®), 1))

G(6,00))
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Qabob
Proof - G is tangent to ¢ at 6(*)

o As (1) maximizes H(6,0(0)) = Q(6,0()) — £(6), we have
H'(0,0)|g_pir = Q8,0 g_ge0r — £/(8)]g—gt0 = 0,

so
Q'(0, G(t))](, o = £'(0)|g—g-
o Consequently, as G(6,6()) = Q(6,6")) 4 cst,

G'(0,0) p_p) = @' (0,0 g_g0r = £'(8)]g—p0

<= utc

SY10 — GMMs and EM T



EM algorithm Analysis

Proof - monotonicity

e From (1),

200Dy — g9y = QO+ o)) — Q) 6())
A

— (H(Q(H‘l),g(t)) — H(g(t)jg(f)))

B

@ A > 0 because 0(t*1) is a maximizer of Q(6, H(t)), and B < 0 because
from (2) 0() is a maximizer of H(#,6(!)).
@ Hence,

g(@(t-f-l)) > E(Q(t))

= utc__
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Parameter estimation in GMMs

Overview

© Parameter estimation in GMMs
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Overview

© Parameter estimation in GMMs
@ Unsupervised learning
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Old Faithful geyser data

80
1

j=2]
£ o o
.g o o
o g o©
o
o oooo ® o o
© f @O%

50
1
o
Fh
0" oEn®
OOOO A
o
o

15 2.0 25 3.0 3.5 4.0 4.5 5.0

eruptions

Waiting time between eruptions and duration of the eruption (in min) for
the Old Faithful geyser in Yellowstone National Park, Wyoming, Uswz&
observations).

SY10 — GMMs and EM o B )




Unsupervised leaming
Old Faithful geyser data (continued)

@ Questions:
@ How can we best partition these data into ¢ groups/clusters (for
instance, ¢ = 2)7
@ What is the most plausible number of groups?
@ Approach:

@ Fit GMMs to these data
© Select the best model according to some criterion
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Parameter estimation in GMMs Unsupervised learning
General GMM

o Let X =(Xq,...,X,) be an i.i.d. sample from a mixture of ¢
multivariate normal distributions N (1, Zx) with proportions m. The
pdf of X; is

c
p(xi;0) = > md(i; prk T,
k=1
where 0 is the vector of parameters.
e We introduce latent variables Y = (Yi,..., Y;), such that
o Vi~ M(1,7,...,7c)
o p(xi | Yi=k)=0o(xi; ik, Zx), k=1...,¢c
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Parameter estimation in GMMs Unsupervised learning

Observed and complete-data likelihoods

@ Observed-data likelihood:

L(O) =[] p(xi: 0) = [T D mad(xis s Eic)
i=1 i=1 k=1
@ Complete-data likelihood:
Le(0) = [T p(xis i 0) = T p(xi | i 0)p(yii )
i=1 i=1

n C
= [T I oCxi: pow Za) e

i=1 k=1

= utc__
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Parameter estimation in GMMs Unsupervised learning

Derivation of function @

o Complete-data log-likelihood:
n C n C
0(0) = yiclog (i puc Tue) + D > i log me
i=1 k=1 i=1 k=1
@ It is linear in the y;. Consequently, the @ function is simply

n Cc
QA6.0%) Z Zy'k)logqu"uk’zk + Zzy,-([)logm

k=1 i=1 i=1 k=1

term depending only on j and X term depending only on {m}

with Y89 = o[ Vi | xi] = Py [Yi = k | xi].

- utc

Eompieane
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Sissecniellpie
EM algorithm

@ E-step: compute
i) = Pyol Vi = k | xi]
) z“)) (1
Zé 1¢(XI'W ; (t))ﬂét)
o M-step: Maximize Q(6,6(Y)). We get

()
+1 n +1)
AR SO t)zy,kx,
kt+1) (t)zyl . t+1))(XI Hgﬂ))-’—

with ng(t) =3, yl(lf). o e
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Sissecniellpie
GMM with the package mclust

library(mclust)
data(faithful)

faithfulMclust <- Mclust(faithful,G=2,modelNames="VVV")
plot(faithfulMclust)
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RETETC TS BT RN NE VIV  Unsupervised learning

Result

Classification

o _
(2]
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o _|
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£ o o
=R °
[} °
g LN}
a
L] L]
o
o _|
©
Yg
a
o _|
n
T T T T T T T T
15 20 25 3.0 35 4.0 45 5.0
eruptions
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Parameter estimation in GMMs Unsupervised learning

Choosing the number of clusters

@ In clustering, selecting the number of clusters is often a difficult

problem.

o This is a model selection problem. We can use the BIC criterion.
(Reminder: BIC = —2{(0) + d log(n); actually, Mclust computes
—BIC).

> faithfulMclust <- Mclust(faithful,modelNames="VVV")
> summary(faithfulMclust)

Mclust WY (ellipsoidal, varying volume, shape, and orientation) model with 2 components:

log.likelihood n df BIC ICL
-1130.264 272 11 -2322.192 -2322.695

Clustering table:
1 2
175 97
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RETETC TS BT RN NE VIV  Unsupervised learning

Choosing the number of clusters

plot(faithfulMclust)
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T T T T T T T T T
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Number of components
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Parameter estimation in GMMs Unsupervised learning

Reducing the number of parameters

@ The general model has c[p + p(p+ 1)/2 + 1] — 1 parameters.
@ When n is small and/or p is large: we need more parsimonious models
(i.e., models with fewer parameters).
@ Simple approaches:
o Assume equal covariance matrix (homoscedasticity)
e Assume the covariance matrices to be diagonal, or scalar
@ More flexible approach: reparameterize matrix X, using its
eigendecomposition.
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Parameter estimation in GMMs Unsupervised learning

Eigendecomposition of X

@ As matrix X is symmetric, we can write

¥, =D\D]
where
o N =diag(Ak1,. .., Akp) is a diagonal matrix whose components are
the decreasing eigenvalues of Xy, with |A,| = HJ 1 M\ = | k]

o D is an orthogonal matrix (D,D] = 1) whose columns are the
normalized eigenvectors of Xy; it is a rotation matrix

@ A, can be further decomposed as
A = MAx

where

1/p
o N\ = (Hf:l )\kj) — ‘zk|1/P t
o Ay = N,/ is a diagonal matrix verifying |Ax| = 1. -

SY10 — GMMs and EM R



Parameter estimation in GMMs Unsupervised learning

Interpretation

o Each term in the decomposition

T =\DAD]

has a simple interpretation:
o A, describes the shape of the cluster (defined by the ratios of the
eigenvalues of Xy)
e Dy (a rotation matrix) describes its orientation
o )\, describes its volume

@ Number of parameters:

X, Ak Ay Dy
p(p+1) 1
2

- ‘l‘JtC‘

Compiégne.
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Parameter estimation in GMMs Unsupervised learning

Example in R?

a 0 cosO sinO
A {0 l/a} b { -sin 0 cose}
@ D: rotation matrix, angle 6
e A: diagonal matrix with diagonal terms a and 1/a

@ The eigenvalues of X are A\a and \/a.

SY10 — GMMs and EM e D) M



Parameter estimation in GMMs Unsupervised learning

Parsimonious models

e With this parametrization, the parameters of the GMM are: the
centers, volumes, shapes, orientations and proportions.

e 28 different models:

Spherical, diagonal, arbitrary

Volumes equal or not

Shapes equal or not

Orientations equal or not

Proportions equal or not

- ‘l‘JtC‘

Compiégne.
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RETETC TS BT RN NE VIV  Unsupervised learning

The 14 models based on assumptions on variance matrices

Ell VI EEV

(3] B 1 D AD]

\i ; EEE ; ﬂ VEV

Y ADAD] D AD]
O EEI O ; VEE EVV

0Bl pDAD] MDhAka]

VEI O EVE

1%, B] D A D nD AR

O VVE ;
[ B,1 A DAD]
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RETETC TS BT RN NE VIV  Unsupervised learning

Parsimonious models in mclust

faithfulMclust <- Mclust(faithful)
plot (faithfulMclust)
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RETETC TS BT RN NE VIV  Unsupervised learning

Best model

Best model: EEE or ADADT (ellipsoidal, equal volume, shape and
orientation) model with 3 components

Classification
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EETETC SRS BV NG VIV Semi-supervised learning

Overview

© Parameter estimation in GMMs

@ Semi-supervised learning
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EETETC SRS BV NG VIV Semi-supervised learning

Semi-supervised learning |

@ In semi-supervised learning, the data have the form

Lss = {(Xiayi)}fi:ku {Xi}?:ns-s—l

labeled part unlabeled part

o Observed-data likelihood:

LO) = [[ ot i) T plxi0)
i=1

i=ns+1

= (ﬂH¢(Xi;Mk,Zk)yik7Tiik> ( H Zwkqﬁ(x;;uk,zk))

i=1 k=1 i=ne+1 k=1
= utc__
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EETETC SRS BV NG VIV Semi-supervised learning

Semi-supervised learning |l

o Complete-data likelihood:

Le(6) = TT TT ¢06: e Zu)eey

ns ¢ n c
= H H gb(x,-; Lk, Zk))’ikﬂ'iik H H ¢(Xi; Lk, zk)yikﬂ{ik
Zlet i=ns+1 k=1

~/

VT
observed non-observed

o Complete-data log-likelihood:

0c(0) = yie(log ¢(xi; i Zi) + log )+

i=1 k=1

> vl i Zi) + logerrzeJtc

i=ns+1 k=1
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EETETC SRS BV NG VIV Semi-supervised learning

Semi-supervised learning Ill

@ @ function:

Ns Cc
Z Yik |Og ¢(X: Kok, Zk) + |Og 7Tk)—|—
i=1 k=1
n Cc
Z Zyi(;f)(bg O(xi; p, Xic) + log )
i=ns+1 k=1
(o n n c
Y,(kt) log (xi; pues Zk) + Z Zyig) log 7k
k=1 i=1 i=1 k=1
with
(t) _ J Vi i=1,...,ns
ylk .
Eoo[Yi | x] i=ns+1,....n

<= utc
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Sssasllianhe
EM algorithm

E-step: Compute

(1) Yik i=1,...,ns (fixed)
Yik = (i) ZP)m? i=ns+1
S5 oD 200 s
M-step: Same as in the unsupervised case.
(t) n
(t+1) _ Mg (e+1) _ 1 (t)
T = Mk ) Vi Xi

™ i=1

(t+1) t+1 1)\ T

: (1) _ (t)
with ne” = Z/—l Yik
S —— T



Parameter estimation in GMMs Mixture Discriminant Analysis

Overview

© Parameter estimation in GMMs

@ Mixture Discriminant Analysis

SY10 — GMMs and EM oG M



Parameter estimation in GMMs Mixture Discriminant Analysis

Mixture Discriminant Analysis

@ GMM can also be useful in supervised classification.
@ Here, we model the distribution of X in each class by a GMM:

Ry
p(X | Y = k) = Zﬂ-krgi)(X; Kokr, Zkr)
r=1
with SR 7 = 1.
@ This method is called Mixture Discriminant Analysis (MDA). It
extends LDA.

@ By varying the number of components in each mixture, we can handle
classes of any shape, and obtain arbitrarily complex nonlinear decision
boundaries.

@ We may impose X, = X, X, = ol, or any other parsimonious

. < ut
model, to control the complexity of the model. e
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Mixture Discriminant Analysis
Observed-data likelihood

@ Observed-data likelihood:

n

— Hp(x,-,y,-; 0) = Hp(Xi | vi: 0)p(yi; 0)

i=1
n c Ry Yik
I (z — zm) s
i=1 k=1 \r=1

@ Observed-data log-likelihood:

ZZM log (Z Tr (X fkr Zkr)) + Zzy/k log 7

k=1 i=1 k=1 i=1

@ Again, the EM algorithm can be used to estimate the model
parameters (see ESL pp. 399-402 for details). o e
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Mixture Discriminant Analysis
MDA using package mclust: Iris data

odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1

X.train <- iris[odd,-5]

Class.train <- iris[odd,5]

X.test <- iris[even,-5]

Class.test <- iris[even,5]

# general covariance structure selected by BIC

irisMclustDA <- MclustDA(X.train, Class.train)
summary (irisMclustDA, newdata = X.test, newclass = Class.test)

plot(irisMclustDA)

<r—pmv

Compiégne.
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arameter estimation in GMMs Mixture Discriminant Analysis

Result

> summary(irisMclus:

MclustDA model summ

log.likelihood n
-63.55015 75

Classes n Mod
setosa FA
versicolor 25 E
virginica 25 X

Training classifica

Predict

Class setosa
setosa 5
versicolor a
virginica a

Training error = @

Test classification
Predict

Class setosa
setosa 25
versicolor -]
virginica a

Test error = 0.0133

Thierry Dencei

tDA, newdata = X.test, newclass

ary:
df BIC
53 -355.9272
el G
EI 2

EV 2
XX 1

tion summary:

ed
versicolor virginica
@ @
25 @
] 25
summary :
ed
versicolor virginica
] ]
24 1
@ 5
3333
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Parameter estimation in GMMs Mixture Discriminant Analysis

Result

20 25 30 35 40

05 10 15 20 25

20

25 30 35 40
L L

05 10 15 20 25
L1 I

Sepal.Length

»a

Sepal.Width

Petal.Length

Petal.width

Thierry Denceux
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Parameter estimation in GMMs Mixture Discriminant Analysis

MDA using package mclust: Bananas data

5
8o
°o %o
0 - 0o B0 00
WS eg
o o o ©
A @ do o
ANA %60
LYSN ,j)\//{\ﬁ* a A o o Og; &
A DBE, ,&/N{“\ o O%O%;g
* A kS
© O\A/AQ\A”A\@OO%OOOO
A Q/\Q\\A 5 PP
o PNESN oo o o® o
x oP Nl ® So ‘%g
& %o0qo /%(gooﬂ;o
S 800059 ODan’O $°
©w oog) % E%QQO Q?Oo
g
o o
o
@
o |
0 5

Thierry Denceux

X1
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Parameter estimation in GMMs Mixture Discriminant Analysis
Result

> summary(res, newdata = data.test$x, newclass = data.test$y)

MclustDA model summary:

log-likelihood n df BIC
-2633.035 500 26 -5427.649

Classes n % Model G
1250 50 EEV 3
2 250 50 EEV 3

Training confusion matrix:
Predicted
Class 1 2
1241 9
2 10 240
Classification error = 0.038
Brier score = 0.0306

Test confusion matrix:
Predicted
Class 1 2
1471 29
2 18 482
Classification error = 0.047
Brier score = 0.0378
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Mixture Discriminant Analysis
Result

S
g
o o
N o o
-
2
z
2
5
3
©
g
0 L
o | o | o %
. . ol
T T T T T T T T
-10 -5 0 5 -10 -5 0 5

datal, dimens][,1]

= utc

Compigne
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Regression models

Overview

@ Regression models
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Regression models Mixture of regressions

Overview

@ Regression models
@ Mixture of regressions
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Regression models Mixture of regressions

Introductory example

1996 GNP and Emissions Data

USA
9
|
NOR
AUS
0 |
- CAN
k]
a
g RUS
]
2
8 cz
I} DNK
o g | FN BELDEU
UK
POL EIRE HoL AP
KOR
ere N osT
ESP
HUN o FRA CH
v POR sw
MEX
TUR
T T T T
10 20 30 40
GNP per capita = utc

Compiegne
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Regression models Mixture of regressions

Introductory example (continued)

@ The data in the previous slide do not show any clear linear trend.

@ However, there seem to be several groups for which a linear model
would be a reasonable approximation.

@ How to identify those groups and the corresponding linear models?

SY10 — GMMs and EM oD ) M



Regression models Mixture of regressions

Formalization

@ We assume that the response variable Y depends on the input variable
X in different ways, depending on a latent variable Z. (Beware: we
have switched back to the classical notation for regression models!)

@ This model is called mixture of regressions or switching regressions. It
has been widely studied in the econometrics literature.

- ‘l‘JtC‘

Compiégne.
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Regression models Mixture of regressions

o Model:
,BlTX—i-El, 61NN(0,01) ifZ:].,

Y=«: :
BIX +ec, ec ~N(0,0.) if Z=c,
with X = (1, X1,...,X;), and
P(Z=k)=m,, k=1,...,c.
@ So, the marginal pdf of Y is
(o
ply | X =x) = mo(y: B{ x, 0%)

k=1
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Regression models Mixture of regressions

Observed and complete-data likelihoods

@ Observed-data likelihood:
= HP(YI H 7Tk¢ Yis /Bk Xis Uk)
i=1

o Complete-data likelihood:

= Hp(y,-,z,-; 0) = Hp(yi | zi;0)p(zi | )
i=1

=1
n C
T : .
= [T T ¢ti: 87 xi. o),
i=1 k=1

with zy = I(z; = k). .
> utc
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Regression models Mixture of regressions

Derivation of function @

o Complete-data log-likelihood:
n C n C
=3 zilog d(yi: BL xiyok) + DD zik log i
i=1 k=1 i=1 k=1
@ It is linear in the z;. Consequently, the @ function is simply

Q(,01) Zsz) log &(yi; B xi, ok) ZZzlk) log 7

k=1 i=1 i=1 k=1

term depending on B and oy term depending on {m}

with Zi(kt) = KBy [Zik | yil = Py [Zi = k | yil-

- utc

Eompieane
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bl el
EM algorithm

E-step: Compute

,(kt) =Py [Zi = k | yi]

o(yi; (t XMUI((t)) ()

Yo ,,ﬁ“”x,, ’) i)

M-step: Maximize Q(6,6()). As before, we get

(t+1) ﬁ
U =

with n(t) Dy /(kt)
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DTS =
M-step: update of the S8, and o |

o In Q(6,6(), the term depending on S is

n n log(2mo2 1
Zz,.(kt) log ¢(yi; B xi, ok) = Zzi(kt) [_g(k) = 5,2y = Bixi)”

2 202
i=1 i=1 Tk

1 n
=52 Z Z,'(/f)(}/i — B xi)?
Tk o1

/

SSk

B nf(t) log(27o2)

2

. t t
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DTS =
M-step: update of the 5y and oy

@ Minimizing SSx w.r.t. Bk is a weighted least-squares (WLS) problem.
In matrix form,

Sk = (y — XB) W (y — XB4),

where Wf(t) = diag(z{?, e z,(j()) is a diagonal matrix of size n.

@ The solution is the WLS estimate of S:

B(tJrl ( Tw(t)x) lew()

= utc__
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DTS =
M-step: update of the S, and oy Il

@ Plugging in the estimate B,((Hl) in the expression of the Q function
and differentiating with respect to o, we obtain the value of o

minimizing Q(#, 8(*)) as the average of the residuals weighted by the

S0,
Zig -

2(t+1) t+1)T A2
T = t) Zz,k Yi Xi)

i=1

k
(i( 7xﬁ(t+1))TW(t)( 7XB,((t+1))
k

= utc__
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Regression models Mixture of regressions

Mixture of regressions using mixtools

library(mixtools)
data(C02data)
attach(C02data)

CO2reg <- regmixEM(C02, GNP)
summary (C02reg)

i11<-C02reg$posterior>0.5
112<-C02reg$posterior<=0.5

text (GNP[ii1],C02[iil],country[iil],col=’red’)
text (GNP[C1i2] ,C02[ii2],country[ii2] ,col=’blue’)
abline(CO2reg$betal,1],col="red’)
abline(CO2reg$betal,2],col="blue’)
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Regression models Mixture of regressions

Best solution in 10 runs
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Regression models Mixture of regressions

Increase of log-likelihood
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o
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iterations > UtC
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Regression models Mixture of regressions

Another solution (with lower log-likelihood)
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DTS =
Increase of log-likelihood

o
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REACEOTH NN EI  Mixture of experts

Overview

@ Regression models

@ Mixture of experts
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TSR
Making the mixing proportions predictor-dependent

@ An interesting extension of the previous model is to assume the
proportions 7, to be partially explained by a vector of concomitant
variables W.

e If W = X, we can approximate the regression function by different
linear functions in different regions of the predictor space.

@ In ML, this method is referred to as the mixture of experts method.

o A useful parametric form for 7, that ensures m, > 0 and
> %—q Tk = 1 is the multinomial logit (softmax) model:

T
exp(o, w
m(w, ) =
>or-1exp(e] w)
with o = (a1, ..., ac) and g = 0.

e __
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TSR
EM algorithm

@ The Q function is the same as before, except that the 7, now depend
on the w; and parameter a:

G(t ZZzlk log &( y,,ﬂk Xi, Ok +ZZz,k log 7x(wj, &)

i=1 k=1 i=1 k=1

@ In the M-step, the update formula for 8, and o) are unchanged.

@ The last term of Q(6,0(")) can be maximized w.r.t. a using an
iterative algorithm, such as the Newton-Raphson procedure. (See
remark on next slide)

- utc

Eompieane
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TSR
Generalized EM algorithm

@ To ensure the convergence of EM, we only need, at the M step of
each iteration t, to find an estimate 6(t71) such that

QAT (1)) > Qo) 9(1))

@ Any algorithm that chooses §(tt1) at each iteration to guarantee the
above condition (without maximizing Q(6, (")) is called a
Generalized EM (GEM) algorithm.

@ Here, we can perform a single step of the Newton-Raphson algorithm

to maximize
n C ( )
t
Z Z z;’ log mk(wi, )
i=1 k=1
with respect to a.

. < utc
@ Backtracking can be used to ensure ascent. S
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REACEOTH NN EI  Mixture of experts

Example: motorcycle data

Motorcycle data

° 9%
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B o @ o
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o 8 ®
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gJOO o, %oo0 o
S © 1 ® omgd dgo ° ° oog® )
b1 0.0 o o o©
E ® o
o
o] o o
g B ?»o S0
o
° CR-
9 o [
& o ©
! 098000
oo
8
T T T T
10 20 30 40
time

Thierry Denceux
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library (’MASS’)
x<-mcycle$times
y<-mcycle$accel
plot(x,y)

A21

- ptc
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Regression models Mixture of experts

Mixture of experts using flexmix

library (flexmix)

K<-5
res<-flexmix(y ~ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula="x))

beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef

<r—pmv

BT
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Plotting the posterior probabilities

xt<-seq(0,60,0.1)

Nt<-length(xt)

plot(x,y)

pit=matrix(0,Nt,K)

for(k in 1:K) pit[,k]l<-exp(alphall,k]+alphal2,k]*xt)
pit<-pit/rowSums(pit)

plot(xt,pit[,1],type="1",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)
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REACEOTH NN EI  Mixture of experts

Posterior probabilities

Motorcycle data — posterior probabilities

1.0

0.4

0.2

0.0

T T T T ' ' I
0 10 20 30 40 50 60 - utc_
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TSR
Plotting the predictions

yhat<-rep(0,Nt)
for(k in 1:K) yhat<-yhat+pit[,k]*(beta[l,k]+betal[2,k]*xt)

plot(x,y,main="Motorcycle data",xlab="time",ylab="acceleration")
for(k in 1:K) abline(beta[1:2,k],1lty=2)
lines(xt,yhat,col=’red’,lwd=2)
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REACEOTH NN EI  Mixture of experts

Regression lines and predictions

Motorcycle data

50

acceleration
-50

-100

time
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