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Informations pratiques

Support de cours: transparents (en anglais) mis sur la page Moodle du
cours au plus tard la veille de chaque séance. (Premier cours:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/sy19).
Poser les questions d’intérêt général (pratiques ou relatives au contenu
du cours) sur le forum de discussion de Moodle.
Equipe enseignante :

Thierry Denoeux (responsable) : cours
Cyprien Gilet, Sylvain Rousseau : TD

Evaluation :
Deux projets en binôme : 25% + 25%
Examens median (20%) et final (30%) : questions de cours, note
éliminatoire au final ≤ 6
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Introduction

What is Machine Learning?

“A field of study that gives computers the ability to learn
without being explicitly programmed” (Arthur Samuel, 1959).

AI

Statistics

Data Science

Machine/
statistical 
Learning

Computational Statistics

Deep Learning
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Introduction

What is Machine Learning?

Machine Learning (ML) exists since the appearance of the first
computers in the 1950’s, but it has recently gained considerable
interest because of new applications such as

Trend analysis in social networks
E-commerce (recommendation systems)
Robotics, autonomous vehicles
Natural language recognition and generation
Finance (stock market forecasting, credit scoring, fraud detection,...)
Bioinformatics
Nondestructive testing, fault diagnosis
Mechanical engineering: design and optimization using surrogate
models, etc.

ML skills are in high demand by companies accross a wide range of
areas.
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Introduction

Objectives of this course

Understand the basic principles of ML
Get working knowledge of the main ML techniques

Linear regression and classification (LDA, logistic regression)
Model selection: regularization (ridge regression, lasso), variable
selection, linear feature extraction
Splines and additive models
Decision trees, random forests, bagging
Gaussian Mixture Models, EM algorithm
Kernel-based methods for classification (SVM), regression, novelty
detection, clustering
Neural networks and deep learning

Master the R software environment for data analysis and ML
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
Analyze the contents of an image.

Thierry Denœux SY19 – Introduction A23 8 / 62



Introduction Examples

Movie Box Office data

Questions: Which factors influence the commercial success of a
movie? Can we predict the box-office success before the movie has
been released?
Dataset about 62 movies released in 2009 (from Econometric Analysis,
Greene, 2012)
Response variable (to be predicted): Box Office receipts
11 predictors:

MPAA (Motion Picture Association of America) rating (G, PG, PG13)
Budget
Star power
Sequel (yes or no)
Genre (action, comedy, animated, horror)
Internet buzz
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Introduction Examples

Box Office data
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How to use these data to:
Predict the BO receipt of a new movie?
Quantify the uncertainty of the prediction?
Understand what makes a movie commercially successful?
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
Analyze the contents of an image.
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Introduction Examples

Spam detection

Goal: build a customized spam filter.
Data: 4601 emails sent to an individual (named George, at HP labs,
before 2000). Each is labeled as spam or email.
Predictors: relative frequencies of 57 of the most commonly occurring
words and punctuation marks in these email messages.

george you hp free ! edu remove
spam 0.00 2.26 0.02 0.52 0.51 0.01 0.28
email 1.27 1.27 0.90 0.07 0.11 0.29 0.01

Average percentage of words or characters in an email message equal to the
indicated word or character. We have chosen the words and characters showing
the largest difference between spam and email.
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
Analyze the contents of an image.
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Introduction Examples

Factors influencing wages

Which factors influence wages? Are observations consistent with
economic theories?
Data: Income survey data for men from the central Atlantic region of
the USA
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
Analyze the contents of an image.
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Introduction Examples

Expression recognition

joy     surprise sadness 

disgust anger   fear    
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Introduction Examples

Learning

Projec'on	in	a	5D	
subspace	(LDA)	

Logis'c	
Regression	 decision	

216 images 70× 60 (36 per expression)
144 for learning, 72 for testing
5 features extracted by linear
discriminant analysis
Test error rate: 23.6% (random: 83.3%)
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Introduction Examples

Results
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Introduction Examples

Results
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Introduction Examples

Results
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
Analyze the contents of an image.
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Introduction Examples

Semantic segmentation

The semantic segmentation tasks consists in classifying each pixel to
segment the image into regions corresponding to different kinds of objects.
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Introduction Examples

Road scene analysis

Thierry Denœux SY19 – Introduction A23 23 / 62



Introduction Supervised vs. unsupervised learning

Overview

1 Introduction
Examples
Supervised vs. unsupervised learning
Recommended readings

2 Regression: some basic concepts
The regression function
Nonparametric vs. parametric estimation
Bias-Variance trade-off

Thierry Denœux SY19 – Introduction A23 24 / 62



Introduction Supervised vs. unsupervised learning

Supervised learning

We have a training/learning set L = {(xi , yi )}ni=1 of n observations
(examples, instances) of

A response variable Y (also called output, target, outcome)
A vector of p predictors X (also called inputs, features, attributes,
explanatory variables).

The task is to predict Y given X for new data.
Different cases:
Regression: Y is quantitative (e.g., price, blood pressure).
Classification: Y is nominal/categorical, i.e., it takes values in a finite,

unordered set C (survived/died, digit 0-9, facial
expression, etc.).

Ordinal regression/classification: Y is ordinal, i.e., it takes values in a
finite, ordered set C (example: “small”, “medium”,
“large”)
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Introduction Supervised vs. unsupervised learning

Objectives of supervised learning

On the basis of the training data we would like to:
1 Accurately predict unseen test cases
2 Understand which predictors affect the response, and how
3 Quantify the uncertainty of the predictions
4 Assess the quality of our predictions and inferences
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Introduction Supervised vs. unsupervised learning

Unsupervised learning

No response variable, just a collection {xi}ni=1 of feature/attribute
vectors observed for a set of instances.
Unsupervised learning tasks:
Clustering: Find groups of observations that behave similarly

Feature extraction: Find a small number of new features that contain
as much relevant information as possible

Novelty detection: Learn a rule to detect data from a previously
unseen distribution (outliers, new states, etc.)

Unsupervised learning is sometimes useful as a pre-processing step
prior to supervised learning.
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Introduction Supervised vs. unsupervised learning

Semi-supervised learning

Same task as supervised learning, but the response variable is only
observed for a subset of the learning data.
The learning set has the following form:

L = {(xi , yi )}nsi=1︸ ︷︷ ︸
labeled data

∪ {xi}ni=ns+1︸ ︷︷ ︸
unlabeled data

.

A common situation, as data labeling is usually very costly.
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Introduction Recommended readings

Course texts

“An Introduction to Statistical Learning” (ISLR):
emphasis on basic principles and application, no
mathematical details. Second edition available at
https://www.statlearning.com

“The Elements of Statistical Learning” (ESL): more
mathematically advanced and theoretical. Available at
http://statweb.stanford.edu/~tibs/ElemStatLearn
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Introduction Recommended readings

Course texts (continued)

“Pattern Recognition and Machine Learning” (PRML):
same level as ESL, covers some other topics. Available
at BUTC.

“Deep Learning”: recent textbook on neural networks.
Available at http://www.deeplearningbook.org
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Regression: some basic concepts

A regression problem

2 3 4 5

13
14

15
16

17
18

log Budget

lo
g 

bo
x 

of
fic

e

−3 −2 −1 0 1 2 3 4

13
14

15
16

17
18

Buzz

lo
g 

bo
x 

of
fic

e 
($

)

G PG PG13 R

13
14

15
16

17
18

MPAA Rating code

lo
g 

bo
x 

of
fic

e

Shown are the log of box office receipt vs log of budget, rating and
buzz index for 62 movies released in 2009, with red linear-regression
line fits.
Can we predict box office receipt using any single predictor?
Perhaps we can do better using a model

Box office ≈ g(Budget,Buzz,Rating)
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Regression: some basic concepts

Formalization

We can write
Y = g(X ) + ε

where
X is the vector of predictors
g is a linear or nonlinear prediction function
ε is a random error term

With a good g we can
Make predictions of Y at new points X = x .
Understand which components of X = (X1,X2, . . . ,Xp) are important
in explaining Y and, sometimes, how each component Xj of X affects
Y .

Is there an optimal function g?
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Regression: some basic concepts The regression function
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Regression: some basic concepts The regression function

Regression function

What is a good value for g(X ) at any selected value of X , say X = 4?
There can be many Y values at X = 4. A typical value is the
conditional expectation

g(4) = E(Y | X = 4)

Definition (Regression function)

Function f : x 7→ E(Y | X = x) is called the regression function.
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Regression: some basic concepts The regression function

Loss function

Assume we predict Y given X = x by g(x). A “good” function g
should be such that g(x) is often “close” to Y .
A common error measure (or loss function) is the squared error
(y − g(x))2.
A good prediction function should have the lowest possible squared
error (y − g(x))2, on average.

Definition (Mean squared error)

The mean squared error (MSE) of g is

MSE(g) = EX ,Y

[
(Y − g(X ))2

]
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Regression: some basic concepts The regression function

Optimality of the regression function

Theorem
The regression function minimizes the MSE, i.e.,

f = argmin
g

MSE(g)

Proof:
1 MSE(g) = EX ,Y

[
(Y − g(X ))2

]
= EX

{
EY

[
(Y − g(X ))2 | X

]}
2 We can write

EY [(Y − g(X ))2 | X = x ] = (f (x)− g(x))2 + Var(Y | X = x)︸ ︷︷ ︸
Var(ε|X=x)

(1)

Proof.

3 The regression function f minimizes E[(Y − g(X ))2|X = x ] for all x :
consequently, it minimizes MSE(g).
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Regression: some basic concepts The regression function

Reducible vs. irreducible error

In practice, we never know the true f , but we can estimate it by some
function f̂ .
The MSE at X = x is then

EY [(Y − f̂ (X ))2 | X = x ] = (f (x)− f̂ (x))2︸ ︷︷ ︸
reducible

+Var(ε | X = x)︸ ︷︷ ︸
irreducible

Even if we knew f (x), we would still make prediction errors, because
of the second term Var(ε|X = x), which cannot be reduced.
A learning method will try to minimize the reducible component
(f (x)− f̂ (x))2 of the error.
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Regression: some basic concepts Nonparametric vs. parametric estimation

How to estimate f ?

Learning set: L = {(x1, y1), . . . , (xn, yn)}
Typically we have few if any data points with xi = 4 exactly. So, how
can we estimate E(Y | X = x)?
Solution: we can compute the mean value of Y in a neighborhood
N (x) of x :

f̂ (x) = Ave{yi : xi ∈ N (x)}
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Regression: some basic concepts Nonparametric vs. parametric estimation

Nearest neighbor regression

The neighborhood N (x) can be defined as the region containing the
K nearest neighbors (NN) of x in the training data.
To define the neighbors, we often use the Euclidean distance

d(x , xi ) = ‖x − xi‖ =

 p∑
j=1

(xj − xij)
2

1/2

We then have

f̂ (x) =
1
K

K∑
i=1

y(i),

where y(1), . . . , y(K) are the values of Y for the K NN of x .
This method is called nearest neighbor regression. It is a
nonparametric method. (We do not assume any functional form for f
a priori). This method can be pretty good for small p – i.e., p ≤ 4 and
n not too small.
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Regression: some basic concepts Nonparametric vs. parametric estimation

Curse of dimensionality

Nearest neighbor methods can perform badly when p is large.
Reason: nearest neighbors tend to be far away in high dimensions.
This is called the curse of dimensionality.
We need to use a reasonable fraction of the n values of Y in the
average to bring the variance down – e.g. 10%.
A 10% neighborhood in high dimensions may no longer be local, so we
lose the spirit of estimating E(Y | X = x) by local averaging.
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Regression: some basic concepts Nonparametric vs. parametric estimation

Curse of dimensionality: example
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Regression: some basic concepts Nonparametric vs. parametric estimation

Parametric models

A parametric model assumes that f belongs to a parametrized family
of functions with a simple form.
The simplest parametric model is the linear model, which assumes the
following form for f :

f (x) = β0 + β1x1 + β2x2 + . . .+ βpxp

It is specified in terms of a vector of p + 1 parameters
β = (β0, β1, β2, . . . , βp)

T .
We estimate the parameters by fitting the model to training data.
Although it is almost never correct, a linear model often serves as a
good and interpretable approximation to the unknown true function
f (x).
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Regression: some basic concepts Nonparametric vs. parametric estimation

Linear vs. quadratic

A linear model f̂ (x) = β̂0 + β̂1x gives a reasonable fit here:

A quadratic model f̂ (x) = β̂0 + β̂1x + β̂2x
2 fits slightly better:
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Regression: some basic concepts Nonparametric vs. parametric estimation

Simulated example
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Red points are simulated values for income from the model

income = f (education, seniority) + ε

f is the blue surface.
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Regression: some basic concepts Nonparametric vs. parametric estimation

Linear regression model fit
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A linear model does not fit the data very well, but it provides a simple
description of the effect of the two predictors on the response.
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Regression: some basic concepts Nonparametric vs. parametric estimation

More flexible regression model
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More flexible regression model fit to the simulated data. Here we used a
model called a thin-plate spline to fit a flexible surface.
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Regression: some basic concepts Nonparametric vs. parametric estimation

Even more flexible spline regression model
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Here an even more flexible spline regression model interpolates the data
points (it makes no errors on the training data)! Also known as overfitting.
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Regression: some basic concepts Nonparametric vs. parametric estimation

Interpretability/flexibility trade-off

Flexibility
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Neural networks
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Regression: some basic concepts Bias-Variance trade-off

Assessing model accuracy

Suppose we have a regression problem. We fit a model f (x) to some
learning data L = {(xi , yi )}ni=1 and we wish to see how well it
performs.
We could compute the average squared prediction error over L:

MSE(L) = 1
n

n∑
i=1

[
yi − f̂ (xi )

]2
This is called the learning error. It can be severely biased toward more
overfit models.
Instead we should, if possible, estimate the error using fresh test data
T = {(x ′i , y ′i )}mi=1:

MSE(T ) = 1
m

m∑
i=1

[
y ′i − f̂ (x ′i )

]2
This is the test error.
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Regression: some basic concepts Bias-Variance trade-off

Learning and test errors for 3 models

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

MSE(T )

<latexit sha1_base64="cdTcxP8/5nmy8pqZLqz975uS+Tg="></latexit>

MSE(L)

<latexit sha1_base64="GbitN06FslzecN1ZxAEEyxrmDRk=">AAAC23icjVHLSsNAFD2Nr1pfVcGNm2AR6qakUlB3RRFcKFS0D2hLSaZTDU2TkEzEUrtyJ279Abf6P+If6F94Z0xBLaITkpw5954zc++1fMcOhWG8JrSJyanpmeRsam5+YXEpvbxSCb0oYLzMPMcLapYZcsd2eVnYwuE1P+Bmz3J41eoeyHj1igeh7bnnou/zZs+8cO2OzUxBVCu91hD8WoSdwcnZ4TA7aDDT0Y+HW610xsgZaunjIB+DDOJV8tIvaKANDwwReuBwIQg7MBHSU0ceBnzimhgQFxCyVZxjiBRpI8rilGES26XvBe3qMevSXnqGSs3oFIfegJQ6NknjUV5AWJ6mq3iknCX7m/dAecq79elvxV49YgUuif1LN8r8r07WItDBrqrBppp8xcjqWOwSqa7Im+tfqhLk4BMncZviAWGmlKM+60oTqtplb00Vf1OZkpV7FudGeJe3pAHnf45zHFS2c/lCbu+0kCnux6NOYh0byNI8d1DEEUook/cNHvGEZ62p3Wp32v1nqpaINav4trSHD5TFmCw=</latexit>

Black curve is truth. Orange, blue and green curves/squares
correspond to fits of different flexibility.
The most flexible model (with more parameters) does not perform
best. Why?
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Regression: some basic concepts Bias-Variance trade-off

Another example (see next slide)
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Regression: some basic concepts Bias-Variance trade-off

Example (continued)

Red curve is truth. Blue and green curves correspond, respectively, to
a linear model and a polynomial of degree 10.
The linear model is stable but biased. The polynomial model is more
flexible, so it is less biased, but it is unstable.
Bias and variance both account for prediction error.
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Regression: some basic concepts Bias-Variance trade-off

Formalization

Theorem (Bias-variance decomposition)

Let f̂ be the estimated regression function learnt from data set L. If the
true model is Y = f (X ) + ε, with f (x) = E(Y |X = x), then the MSE
averaged over all learning sets L conditionally on X = x is

EL,Y
[(

Y − f̂ (X )
)2
| X = x

]
=[

EL[f̂ (x)]− f (x)
]2

︸ ︷︷ ︸
bias2

+VarL(f̂ (x))︸ ︷︷ ︸
variance

+VarY (ε | X = x)︸ ︷︷ ︸
irreducible error

(2)

Proof.
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Regression: some basic concepts Bias-Variance trade-off

Bias-variance trade-off

When the flexibility of f̂ increases, f̂ (x) becomes closer to Y : its bias
decreases, and as its variance increases.
So choosing the right degree of flexibility based on average test error
amounts to a bias-variance trade-off.
We will come back to the very important issue of model selection in a
later chapter.
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Regression: some basic concepts Bias-Variance trade-off

Graphical illustration
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Appendix: proofs

Proof of Equation (1)

EY [(Y − g(X ))2 | X = x ] = EY [(Y − f (x) + f (x)− g(x))2 | X = x ]

= EY [(Y − f (x))2 | X = x ]︸ ︷︷ ︸
Var(Y |X=x)

+(f (x)− g(x))2

+ 2(f (x)− g(x))EY [Y − f (x) | X = x ]︸ ︷︷ ︸
E[Y |X=x]−f (x)=0

Given X = x ,
Y = f (x) + ε,

so
Var(Y | X = x) = Var(ε | X = x)

Back
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Appendix: proofs

Proof of Equation (2) I

First, we insert EL[f̂ (X ) | X = x ] = EL[f̂ (x)]:

EL,Y
[(

Y − f̂ (X )
)2
| X = x

]
=

EL,Y
[(

Y − EL[f̂ (x)] + EL[f̂ (x)]− f̂ (X )
)2
| X = x

]
=

EY

[(
Y − EL[f̂ (x)]

)2
| X = x

]
︸ ︷︷ ︸

A

+

EL
[(

f̂ (x)− EL[f̂ (x)]
)2
]

︸ ︷︷ ︸
B=VarL[f̂ (x)]

+

2EL,Y
[
(Y − EL[f̂ (x)])(EL[f̂ (x)]− f̂ (X )) | X = x

]
︸ ︷︷ ︸

C
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Appendix: proofs

Proof of Equation (2) II

We have already seen from Eq. (1) that A can be written as

EY

[(
Y − EL[f̂ (x)]

)2
| X = x

]
=
[
EL[f̂ (x)]− f (x)

]2
︸ ︷︷ ︸

bias2

+VarY (ε | X = x)︸ ︷︷ ︸
irreducible error

In C , the first term in the product depends only on Y and the second term
depends only on L. As Y and L are independent, we can write

C = 2EY

[
Y − EL[f̂ (x)] | X = x

]
EL
[
EL[f̂ (x)]− f̂ (X ) | X = x

]
︸ ︷︷ ︸

=EL[f̂ (x)]−EL[f̂ (x)]=0

QED
Back
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