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Outline

. Pattern classification
* Definitions, applications
* classical approaches, limitations

2. Learning evidential classifiers from data
* Model-based approach
* Case-based approach
* Belief decision trees

3. Combination of unreliable sensors/experts
4. Conclusions
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Pattern classification

» Classification = assignment of objects to
predefined categories (classes)
* Applications:
* character, speech recognition

* diagnosis, fault identification, condition
monitoring

* target identification
* face recognition, person identification

* text categorization, context-based image
retrieval, web mining, etc.
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Formalization

* Population P of objects, each object described by
two variables:

* x: vector of 4 aftributes (features), quantitative,
gualitative, mixed

* ¢. class variable, qualitative, values In finite set
() = {wl, - ,wK}.

» Classifier: mapping f : R¢ — Q allowing to predict
the class of any new object described by feature
vector x

* Building a classifier from data = supervised
learning.
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Supervised Learning

* Learning set:

,C:{(Xi,ci),i: 1,...,n}

* Usual assumptions:
1. £ is arealization of an iid sample drawn from
F(x,c),
2. Future examples will be drawn from the same
distribution.

3. There exists a loss function L : Q? — R,
L(wi,wy) = loss incurred if one assigns to class
wy. an object belonging to class wy.
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The Bayes classifier

* The optimal (Bayes) classifier f*: R% — Q is
defined by

f*:x+— wi such that R(wg|x) < R(we|x) VI #k
with

R(wg|x) = ZL wi;, we) P(wy|x)

* f* minimizes the overall risk:
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Approximating the Bayes classifier

* Usual approach for approximating f*:. estimate the
posterior probabilities P(wg|x).

 Different strategies

* parametric (ML) or non parametric (k-NN,
Parzen) estimation of the class-conditional
densities p(x|wy), combination with priors P(wy)
((=1,...,K)

¢ direct estimation of P(w|x) :

* logistic regression,
* neural networks,
* decision trees, etc.
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Applicability

The above framework Is relevant in applications where
the learning set is:

1. representative of the data expected in the
operating environment (proportions ~ prior
probabilities)

2. large enough to provide reliable estimates of the
class-conditional densities

3. composed of precise and certain observations.

This Is not always the case in real-world applications !
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Analysis of sleep EEG

* Classification task: discriminate K-complexes from
background activity in sleep EEG

* K-complexes = transient EEG patterns, play a
major role in sleep stage assessment and
diagnosis.

* Particular problems:

* no “ground truth”. data has to be subjectively
labeled by a panel of experts

* the prior probability of a K-complex occurring in
a given time window is unknown (depends on
the patient)
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Data set

00 EEG signals encoded as 64-D patterns, 50 %
negative (delta waves), 5 experts.
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Sensor fusion

* Features are obtained from s sensors
X = (X1,...,Xs)

* Some sensors may be unreliable in certain
operating conditions (not all represented in the

training set)
* Incomplete information, different granularity levels:

* sensor Si: np training patterns labeled as
{wl, wg} or ws

° Sensor Ss: no training patterns labeled as w; or

w3, etc...
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The TBM framework

* A rich and flexible framework for representing
various levels of uncertainties (from total
ignorance to full knowledge),

* Requires fewer assumptions and less information
than Probability theory

* Application to classification problems: evidential
classifier.

Imprecise/uncertain
heterogeneous data

l

X —» Svidentid - bel[X]
classifier

T. Denceux — p.12/51



Three approaches

. Model-based (GBT):

* Smets (1978)
* Appriou (1991)
2. Cased-Based:

* Denceux (1995)
3. Belief decision tree:

* Elouedi and Smets (2000),
* Denceux and Skarstein-Bjanger (2000)

T. Denceux — p.13/51



The model-based approach

* Based on the Generalized Bayesian Theorem
(x discrete):

plI°x)(4) =1— J] 1 —pF[wi](x) YACQ

Wk cA

* Problems:
> How to determine pl** [wg] ?
* Extension to continuous x
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Determination of pl- [w]

* Let £, be alearning set of n;, patterns of class wy.

* Assuming £;, to an iid sample from p(x|w;), this
conditional distribution can be estimated: p(x|w;).

» pl* [wz] can then be defined by discounting the
estimated probability function p(x|wy):
pI* [w] (%) = 1 — ay, + agp(x|wy)
* We then have

pl*x](A) =1~ J] ar(l - plx|wy)) YACQ

Wk cA
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The GBT In the continuous case

*» Generalization to continuous x:

pI°x)(A) =1— [] ax(1—p-Blx|wy) VYACQ

o.)kEA

p = (maxsup p(x|w))
X

* The reliability coefficients «;, can be fixed a priori
or learnt from the data by minimizing an error
function.
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Properties

. Consistency with the Bayesian approach in the
case where the class-conditional distributions
p(x|w) and the prior probabllities P(w;) are known.

. Separability of hypothesis evaluation: m*[x] can be
decomposed as the conjunctive combination of K
bba’s m{}[x] defined by

mi[x]({we}) = ag(l—p-p(x|wg))
mil[x)(Q) = 1—ag(l—p-p(x|wg))

3. Equivalence of aleatory and epistemic combination
of observations: m*x, y] = m*[x] @®m"[y]

T. Denceux — p.17/51



Experiment 1 (1)

Target classification problem with two classes
Q) = {wi,we} (e.g., aircraft and missile) and two
sensors S; and S, (e.g. radar and infrared).

» Each sensor S; allows to compute one feature z ;.

* Distributions of z; and z» in each class learnt in
controlled experimental conditions:

p(z1|wr) = N(0,1) p(z1|wz) = N(6,1)

p(:liz wl) — N(07 1) p(x2 WZ) — N(27 1)
* Equiprobability assumption: P(wq) = P(wo).
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Experiment 1 (2)

If the distributions of z; and x5 were the same In
the operational context, the best performances
would be achieved by the Bayes classifier, BUT

* It Is known that the distribution of x; for class ws
objects is altered due to environmental conditions.

* This Is can be taken into account by discounting
p(z1|lwz) With rate 1 — ag 2 > 0.

o pl¥[z1] ©pl*[z2] are then computed using the GBT
and combined:

plP [z, z2] = pl (1)@l 2]
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Experiment 1: result
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Experiment 2

* Two sensors S; and S, three classes
Q= {wi, w2, ws}.
* We know
* Sensor Si: p(xy|wi), p(ar|ws)
* Sensor Sy: p(xalwy) = p(x2|ws), p(ra|ws)
* We do not know:
e distribution of z; In class 3: p(x1|ws)
* prior probabilities P(w1), P(w2), P(w3)
* Two solutions:

* TBM solution
* Bayesian solution
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The TBM solution

* Frame for sensor S;: Q19 = {w1, w2}
* Frame for sensor So: 9{12}3 — {wlg,wg} with

W12 = {w1,w2}-

p(x1|w), p(x1|ws) CEL (] vac g¢ m 1]
!

mzy, za] | — ©

3

p(w2lwiz), plazws) =5 mPofry] IR im0y
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The Bayesian solution

* A prior distribution on €2 and a conditional
probability density p(z1|ws) must be defined.

e Natural choice: “non-informative” priors
P(wi) = P(wg) = P(w3) =1/3

p(z1|ws) = Uj_1 5
* Computation of posterior probabillities:

z1|wi)p(we|wy) P(wy)
p($1,$2)

P(wi|z1,22) = o

T. Denceux — p.23/51
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Case 1:

P=(1/3,1/3,1/3)

p(z1|ws) = U_1 5
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Example 2 - Results
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The case-based approach

* Does not use any probabillistic model of the
distribution of attributes in each class;

* Treats each example (x;,¢;) In the learning set as a
piece of evidence, whose relevance depends on
the dissimilarity beween the current vector x and
X

* The n items of evidence are combined using the
Dempster’s rule of combination.

 Allows to use training data with imprecise and/or
uncertain class labels (semi-supervised learning).
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The learning set

* A more general form of the learning set:
L = {67; — (Xz',mi),i — 1,...,n}

* m;. a bba representing Your partial knowledge
regarding the class of object .
* Special cases:
* mir}) =1 : precise (standard) labelling
* m;(A) =1for A C Q: imprecise labelling

* m; IS a probability function: probabilistic labeling
(opinions of N experts)

* m; has nested focal elements: possiblilistic
r labeling (“object i Is big”), etc...
| g

. T. Denceux — p.26/51




Impact of 1 example

* The relevance of ¢; as an item of evidence
regarding the class of x Is related to the
dissimilarity between the 2 vectors:

* If x = x;, ¢; IS totally relevant, m[x, e;] =~ m;.

* If x and x; are very dissimilar, ¢; Is irrelevant and
m|x, e;](£2) = 1.

* If x and x; are somewhat disimilar, e; is partially
relevant. m; must be discounted:

a(x,x;)

m|x,e;| =m,

where a(x,x;) € [0, 1] IS a dissimilarity measure.
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Example

() = {K-complex, §-wave}

A |0 {K} {0} @
mi(A) |0 08 0.2 0

T a(x,x;) =0.5 } discounting

A |0 {K} {0} @
m[x,e](A) |0 0.4 01 0.5

50 4
O I R
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Impact of n examples

* Each learning example induces a bba m[x, ¢;].

* Assuming the n learning examples to be n distinct
items of evidence, the evidence of the n examples
IS pooled using Dempster’s rule of combination:

m|x, L] = m|x,e1]@ ... Om|x, ep]
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Example

o
,
— — —
o 7 j
o
o o
o
o
-

a(x,%) =05 alx,x) =03

A o {K} {§} QO
mi(A) 0 08 02 0
m;(A) 0 06 04 O

m|x, e;](A) 0 04 0.1 0.5
m|x, e;|(A) 0 042 0.28 0.3
mlx, e;, ¢;](A) [ 0.196 0.282 0.372 0.15
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Implementation

* Dissimilarity measure defined as a function of a
distance measure (e.g. Euclidean if x € R%). For
Instance:

a(x,x;) = 1 — ag exp(—|[x — x;[|*)

* parameters ay and v can be learnt by minimization
of an error function

* For faster computation:
* use only the k& nearest neighbors of x (evidential
k-NN rule)

* summarize £ using p prototypes (learnt in
|r i unsupervised or supervised mode)
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Vowel data
K =11,
d = 10
n = 568

(different
speakers)
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Results on 'classical data’

test : 462 ex.

Classifier test error rate
Multi-layer perceptron (88 hidden units) 0.49
Radial Basis Function (528 hidden units) 0.47
Gaussian node network (528 hidden units) 0.45
Nearest neighbor 0.44
Linear Discriminant Analysis 0.56
Quadratic Discriminant Analysis 0.53
CART 0.56
BRUTO 0.44
MARS (degree=2) 0.42
Case-based classifier (33 prototypes) 0.38
Case-based classifier (44 prototypes) 0.37
Case-based classifier (55 prototypes) 0.37
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Data fusion example

X classifier
C1

fusion globd

/ decision

y classifier
C2

K =2 classes

* x € R°,y € R?, Gaussian distribution, conditionally
Independent

* Learning set: n = 60, cross-validation: n., = 100
* test: 5000 vectors
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Data fusion: results (1)

Test error rates: uncorrupted data

Method x alone yalone xandy
TBM 0.106 0.148 0.061
MLP 0.113 0.142 0.063
RBF 0.133 0.159 0.083
QUAD 0.101 0.141  0.049
BAYES 0.071 0.121 0.028
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Data fusion: results (2)

Test error rates: x + ¢, € ~ N (0, %)
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Data fusion: results (3)

Test error rates: x + ¢, e ~ N (0, 0%), with rejection

0.22

0.2

0.18
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©
[EE
D

error rate
o
=
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o
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0.08
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0.04
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Results on EEG data

* K =2 classes, d = 64
* data labeled by 5 experts
* n =200 learning patterns, 300 test patterns

k k-NN w K-NN TBM TBM
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27

11 0.29 0.30 0.29 0.26

13 0.31 0.30 0.31 0.26
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Belief decision trees

* Recently introduced by Elouedi and Smets (2000),
Denceux and Skarstein-Bjanger (2000);

* Goals:

* extend the DT induction methodology to
learning data with imprecise or uncertain class
labels

* allow for imprecise or uncertain attribute values
In the testing phase

* Several algorithms, e.g. averaging approach.
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A decision tree

ecision tree = representation of a sequential decision
procedure

level 0
level 1
thin  medium mall
Watermelon Apple Grape Banana Apple K level 2
big small weet sour
Grapefruit Lemon Cherry  Grape  [evel 3
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DT induction

Basic principle: recursively partition the training
set using one attribute at a time.

* At each step, try to split a node (=subset of
patterns) in such a way that the child nodes are,
on average, ‘purer’ in one class than their parents.

» Classical impurity criterion: I(£) = — > y_1 Dk 1ogs Pk
where p;. = ny/n IS the proportion of class wy, In L.

* Information gain of a categorical attribute «

utc
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Extension to uncertain labels (1)

terpretation of 7(£) in the classical case:

» C'=class of the case selected at random from L
with equiprobability.

» " P(selected case is i) P(c; = wy)
1=1

v
Q
||

~
||

1 - N
—ZP(Ci :wk) = —
nizl n

e J(L£) Is the entropy of the distribution of r.v. C.
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Extension to uncertain labels (2)

° Let £ = {(x;,m;),i=1,...,n}, where m; is the bba
about the class of case ;.

» Select a case at as random from L. For all A C Q,

m(C € A) = » P(selected case is i)m(c; € A)
1=1

~ S mi(A) = m(A)
1=1

* Hence, m generalizes the empirical class
distribution n; /n, k=1,..., K.
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Extension to uncertain labels (3)

* The impurity of £ can be defined as the entropy of
the corresponding pignistic probability distribution:

I(£) = - BetP(wy)log, BetP(w)
k=1

with BetP = 1 57 | BetP;
* Prepruning: discount m with reliability factor

L]
L] + 7

1l —a=
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Example: data

Nt m;
Wi, .8; Q, 2
wo, .4; w1 Uws, .4;€2,.2
wi,.9:4, .1
Short wa, .6;ws, .2;: Q. .2
wa, .8; €2, .2
Short w3, .6:€, 4
Dark | Brown Tall ws,.9; €, .1
Dark | Brown Tall | w3, .5;w1 Uws, .2;9,.3
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Example: tree

Hair

Blondﬁ

Eyes

Browy\Blue

|ght m13

Talyéhort

Nark

Height
Tall Short
my

3

8
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Imprecise/uncertain attribute values

* Disjunctive case: the values of some attributes are
only known to belong to subset of values.

Hair

Ex: hair ?A I’Ed, BlondANark

eyes=brown |

height e {tall, short} Eyes  ms  Height
Browy\Blue Talwhort

Height mi3

m = 1Mo @m4 @m78 @m6 Talyﬁhort

ma2

mnrs me

4

* General case: knowledge about each attribute a;
|r N described by a bba m%.
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Sensor Tuning

Pb: s sensors (experts, classifiers) express beliefs
regarding the class ¢ of an object.

* The s sensors are assumed to be distinct sources,
but they may have different degrees of reliability.

* Let a; = P(S; Is not reliable). Then a discounting
rate o; should be applied to the bba m g, before
combining the s sensor reports:

* How to learn the discounting rates «; from a set of
r data with known classification ?

Uniwarsibd de Techmologhe
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Learning the «;

* Let{oy,...,0,} denote a set of n objects, with
known class¢;,i=1,...,n.

* The discounted bba provided by sensor S;
regarding the class of object o; is mg;j{oz-}.

* The result of the combination for object o; Is

mio;} = mgi{oi}@ . .. @mg{Oz}

utc
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Learning the «;

* The error for object o; may be measured as:

C

erry(ar,...,as) = Y (BetP{o;}(wy) — tix)’
k=1

where t;;. = 1 If ¢; = wi, 0O otherwise.

* The optimal discounting rates may be determined
by minimizing the overall error

n
(a],...,a5) = argalmi% Zerri(al, e, Q)

1=1
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Q) = {Airplane, Helicopter, Rocket}

Example

A H R {A,H} {A R} {H,R} Q | ¢
mg,{o1} O 0O 05 0 0 0.3 0.2 | A
mg,{o2} 0 05 0.2 0 0 0 03 | H
mg,{o3} 0 0.4 0 0.6 0 A
mg,{oa} O 0 0 0.6 0.4 R
mg,{o1} O 0 05 0 0 0.3 0.2 | A
mg,{o2} 0 05 0.2 0 0 03 | H
ms,{o3} 0 0.4 0 0.6 0 A
mg,{osa} O 0 0 0.6 0.4 R

a] = 0.28 a5 = 0.12

II/ utc
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Conclusions

 The main approaches to pattern classification
(parametric, distance-based, tree-structured
classifiers) can be transposed in the TBM
framework, resulting in

 greater flexibility to handle various sources of
uncertainty (e.g. imprecise or bad quality data)

* reduced need for unjustified assumption in
situations of weak available information,

* more robust decision procedures (unreliable
sensor data)

* BF- based techniques also available for related
|r " problems such as regression and clustering.

Uniwarsibé de Techmolog
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