# Lecture 2 Case-based classification

Thierry Denœux

tdenoeux@utc.fr

University of Compiègne, France

#### Objective

- Apply to TBM to pattern classication
- Classification (discrimination) = assignment of objects to predefined categories (classes)
- Applications:
  - character, speech recognition
  - diagnosis, condition monitoring
  - target discrimination, face recognition, person identification
  - text categorization, context-based image retrieval, web mining, etc.

#### The approach

- distance/case/instance/memory-based learning
- Basic principle: assess the similarity between the current pattern to be classified and each of *n* patterns in a data base (learning set)
- A very general paradigm:
  - k-nearest neighbor, kernel classifiers
  - radial basis function, Learning vector quantization neural networks
  - fuzzy system classifiers

#### Why use the TBM? (1/2)

#### 1. Classifier ouput = belief function

- more faithfull description of uncertainty, distinct representation of
  - ignorance (pattern dissimilar from all training examples)
  - conflicting information (pattern similar to examples of different classes)
- greater robustness and improved performance when combining several classifiers (e.g. sensor fusion)

#### Why use the TBM? (2/2)

- 2. Possibility to handle weak learning information:
  - Partial knowledge of the class of learning examples (e.g.,  $o \in \{\omega_1, \omega_2\}$ ,  $o \notin \omega_3$ ,  $P(o \in \omega_1) = 0.7$ , etc.)
  - heterogeneous, non exhaustive learning sets:
    - $DB_1$  with objects from  $\{\omega_1, \omega_2\}$  and attributes  $x_j, j \in J$
    - $DB_2$  with objects from  $\{\omega_2, \omega_3\}$  and attributes  $x_j, j \in J' \neq J$

#### Notations/Formalization

- Population  $\mathcal{P}$  of objects, each object o described by:
  - $\mathbf{x}$ : vector of d attributes (features), quantitative, qualitative, mixed
  - c: class/category/group, qualitative, values in finite set  $\Omega = \{\omega_k\}_{k=1}^K$ .
- For an object o, x is observed, c is not
- based on available learning information  $\mathcal{L}$ , we want to assess our beliefs regarding the value of c in the form of belief function  $bel_c^{\Omega}[\mathbf{x}, \mathcal{L}]$

#### Learning information

Learning/training set

$$\mathcal{L} = \{e_i\}_{i=1}^n$$

of learning examples (training patterns)  $e_i$  with completly or partially known classification.

- Simplest form ("classical learning set"):  $e_i = (\mathbf{x}_i, c_i)$
- More general form:  $e_i = (\mathbf{x}_i, A_i)$  where  $A_i \subseteq \Omega$  is a set possible values for  $c_i$  (Remark: generalizes both unsupervised and supervised learning).

#### Case-based inference

The problem: Given a learning set

$$\mathcal{L} = \{e_i = (\mathbf{x}_i, A_i)\}_{i=1}^n \quad (A_i \subseteq \Omega)$$

compute  $bel_c^{\Omega}[\mathbf{x}, \mathcal{L}]$  (Your belief concerning the class c of a new object described by feature vector  $\mathbf{x}$ ).

Fundamental principle (FP): Two objects are all the more likely to belong to the same class that their feature vectors are more similar.

#### Formalization

- Let o and o' be 2 objects, with feature vectors  $\mathbf{x}$  and  $\mathbf{x}'$ , and classes c and c', resp.
- The proposition 'o and o' belong to the same class' corresponds to  $S = \{(\omega_k, \omega_k)\}_{k=1}^K \subseteq \Omega^2$ .
- The fundamental principle can be expressed as:

$$m_{(c,c')}^{\Omega^2}[\mathbf{x},\mathbf{x}'](S) = \alpha(\mathbf{x},\mathbf{x}')$$

$$m_{(c,c')}^{\Omega^2}[\mathbf{x},\mathbf{x}'](\Omega^2) = 1 - \alpha(\mathbf{x},\mathbf{x}')$$

where  $\alpha(\cdot, \cdot)$  is a similarity measure taking values in [0, 1] ( $\alpha(\mathbf{x}, \mathbf{x}) \leq \alpha(\mathbf{x}, \mathbf{x}')$  for all  $\mathbf{x} \neq \mathbf{x}'$ ).

#### Impact of 1 example (1)

- Let  $e_i = (\mathbf{x}_i, A_i)$  be a learning example. Our belief concerning  $c_i$  is represented by a bba  $m_{c_i}^{\Omega}$  such that  $m_{c_i}^{\Omega}(A_i)=1$ .
- Let  $\mathbf{x}$  be the feature vector for a new object o to be classified. From the FP, we have a bba  $m_{(c,c_i)}^{\Omega^2}[\mathbf{x},\mathbf{x}_i].$
- The bba describing our knowledge of the class of o can be obtained as:

$$m_c^{\Omega}[\mathbf{x}, e_i] = \left( (m_{c_i}^{\Omega})^{\uparrow \Omega^2} \bigcirc m_{(c, c_i)}^{\Omega^2}[\mathbf{x}, \mathbf{x}_i] \right)^{\downarrow \Omega}$$

#### Impact of 1 example (2)

Corresponding bba:

$$m_c^{\Omega}[\mathbf{x}, e_i](A) = \begin{cases} \alpha(\mathbf{x}, \mathbf{x}_i) & \text{if } A = A_i \\ 1 - \alpha(\mathbf{x}, \mathbf{x}_i) & \text{if } A = \Omega \\ 0 & \text{otherwise} \end{cases}$$

- $m_c^{\Omega}[\mathbf{x},e_i]$  is
  - maximally specific when  $\mathbf{x} = \mathbf{x}_i$
  - vacuous when  $\mathbf{x}$  and  $\mathbf{x}_i$  are maximally dissimilar ( $\alpha(\mathbf{x}, \mathbf{x}_i) = 0$ ).

#### Definition of $\alpha(\cdot, \cdot)$

- A general form:  $\alpha(\mathbf{x}, \mathbf{x}_i) = \phi(\delta(\mathbf{x}, \mathbf{x}_i))$ , with  $\delta$  a distance (or a dissimilarity) measure and  $\phi$  decreasing function such that  $0 < \phi(0) \le 1$  and  $\lim_{\delta \to \infty} = 0$ .
- A natural choice when  $\mathbf{x}, \mathbf{x}_i \in \mathbb{R}^d$ : the Euclidean distance

$$\alpha(\mathbf{x}, \mathbf{x}_i) = \alpha_0 \exp\left(-\gamma \sum_{j=1}^d (x_j - x_{ij})^2\right)$$

with 
$$0 < \alpha_0 \le 1$$
 and  $\gamma > 0$ .

#### Impact of n examples

$$\begin{array}{c}
e_1 \to m_c^{\Omega}[\mathbf{x}, e_1] \\
\vdots \\
e_i \to m_c^{\Omega}[\mathbf{x}, e_i] \\
\vdots \\
e_n \to m_c^{\Omega}[\mathbf{x}, e_n]
\end{array}$$

$$\longrightarrow \boxed{m_c^{\Omega}[\mathbf{x}, \mathcal{L}] = \bigcirc_{i=1}^n m_c^{\Omega}[\mathbf{x}, e_i]}$$

# An anthropomorphic model ...



# Example: Facial expression recognition



# Example: Facial expression recognition















# Example: calculations

|    | $m[e_1]$ | $m[e_2]$ | $m[e_3]$ | $m[e_4]$ | $m[e_5]$ | $m[e_6]$ | $m[\{e_i\}_1^6]$ |
|----|----------|----------|----------|----------|----------|----------|------------------|
| Su | 0.17     | 0        | 0        | 0        | 0        | 0        | 0.08             |
| An | 0        | 0.14     | 0        | 0        | 0        | 0        | 0.06             |
| Sa | 0        | 0        | 0.13     | 0        | 0        | 0        | 0.06             |
| Jo | 0        | 0        | 0        | 0.21     | 0        | 0        | 0.11             |
| Fe | 0        | 0        | 0        | 0        | 0.34     | 0        | 0.19             |
| Di | 0        | 0        | 0        | 0        | 0        | 0.23     | 0.12             |
| Ω  | 0.83     | 0.86     | 0.87     | 0.79     | 0.67     | 0.77     | 0.38             |

#### Evidential k-NN rule

- Let  $\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(n)}$  denote the training vectors arranged in the order of increasing distance to  $\mathbf{x}$ .
- For k large enough,

$$m^{\Omega}[\mathbf{x}, e_{(\ell)}](\Omega) \approx 1 \quad \forall \ell > k$$

so that

$$m[\mathbf{x}, \mathcal{L}] \approx \bigcirc_{i=1}^k m[\mathbf{x}, e_{(i)}]$$

Efficient algorithms allow to find the k-NN to  $\mathbf{x}$  without calculating all the n distances.

#### Advanced issues

- 1. More general training data
- 2. Decision making
- 3. Learning

#### Learning information: general case

Most general situation:  $e_i = (\mathbf{x}_i, m_i^{\Omega})$ 

- $m_i^{\Omega}$ : a bba representing Your partial knowledge regarding the class of object i.
- Special cases:
  - $m_i^{\Omega}(\{\omega_k\}) = 1$ : precise (standard) labeling
  - $m_i^{\Omega}(A) = 1$  for  $A \subseteq \Omega$ : imprecise labeling
  - $m_i^{\Omega}$  is a proba. function: probabilistic labeling
  - $m_i^{\Omega}$  has nested focal elements: possibilistic labeling ("object i is big"), etc...

### Learning information: general case

- Special case  $e_i = (\mathbf{x}_i, A_i)$ :  $m_c^{\Omega}[\mathbf{x}, e_i]$  is a discounting of  $m_i$  with  $m_i(A_i) = 1$  and discounting factor  $1 \alpha(\mathbf{x}, \mathbf{x}_i)$ .
- General case  $e_i = (\mathbf{x}_i, m_i)$  with  $m_i$  arbitrary bba

$$m_c^{\Omega}[\mathbf{x}, e_i](A) = \begin{cases} \alpha(\mathbf{x}, \mathbf{x}_i) m_i(A) & \forall A \neq \Omega \\ 1 - \alpha(\mathbf{x}, \mathbf{x}_i) (1 - m_i(\Omega)) & \text{if } A = \Omega \end{cases}$$

#### Example: EEG data (1)

500 EEG signals encoded as 64-D patterns, 50 % pos. (K-complexes), 50 % neg. (delta waves), 5 experts.



#### Example: EEG data (2)

$$\Omega = \{K\text{-complex}, \delta\text{-wave}\}$$

$$\mathbf{x}_i$$

$$\updownarrow \alpha(\mathbf{x}, \mathbf{x}_i) = 0.5$$

↓ discounting

$$A = \emptyset \{K\} \{\delta\} \Omega$$
 $m[\mathbf{x}, e_i](A) = 0.4 = 0.1 = 0.5$ 

#### Example: EEG data (3)



#### Decision analysis (1)

- Pb: given  $bel_c^{\Omega}[\mathbf{x}, \mathcal{L}]$ , how to make a decision?
- General approach: compute the pignistic probability distribution  $BetP[\mathbf{x}, \mathcal{L}]$ , and apply the classical Bayesian decision analysis.
- We need to define:
  - the set of actions:  $\mathcal{A} = \{a_1, \dots, a_r\}$
  - the loss function  $\lambda(a,\omega)$ ,  $\forall a \in \mathcal{A}, \forall \omega \in \Omega$
- Choose a that minimizes the pignistic risk:

$$R(a) = \sum \lambda(a, \omega) BetP[\mathbf{x}, \mathcal{L}](\omega)$$

#### Decision analysis (2)

- A critical issue: is the learning set exhaustive or not?
- Case 1: all possible classes are represented in the training set. Let
  - $\Omega = \{\omega_1, \ldots, \omega_K\} = \text{set of classes}$
  - $\mathcal{A} = \{a_0, a_1, \dots, a_K\}$  = set of actions with  $a_k$ = assignment to class  $\omega_k$ , and  $a_0$ =rejection.

$$\lambda(a_{k}, \omega_{\ell}) = \begin{cases} 0 & k = \ell, & k, \ell \in \{1, \dots, K\} \\ 1 & k \neq \ell, & k, \ell \in \{1, \dots, K\} \end{cases}$$

$$\lambda_{0} \quad k = 0, \quad \ell \in \{1, \dots, K\}$$

#### Decision analysis (3)

Then we have

$$R(a_k) = 1 - BetP[\mathbf{x}, \mathcal{L}](\omega_k)$$
$$R(a_0) = \lambda_0$$

So the decision rule is

$$D(\mathbf{x}) = \begin{cases} a_k & \text{if } BetP(\omega_k) > BetP(\omega_\ell) & \forall \ell \neq k \\ & \text{and } BetP(\omega_k) > 1 - \lambda_0 \\ a_0 & \text{otherwise} \end{cases}$$

# Decision analysis (4)



#### Decision analysis (5)

Case 2: There is (may be) an unknown class  $\omega_u$  not represented in  $\mathcal{L}$ . Then  $\Omega = \{\omega_1, \dots, \omega_K, \omega_u\}$  and

$$\mathcal{A} = \{a_0, a_1, \dots, a_K, a_u\}$$

There is no evidence in the learning set that points to  $\omega_u$ , so  $bel^{\Omega}[\mathbf{x}, \mathcal{L}](\{\omega_u\}) = 0$ . However

$$BetP(\omega_u) = \frac{m[\mathbf{x}, \mathcal{L}](\Omega)}{K+1}$$

For certain loss functions, assignment to the unknown class is possible!

# Decision analysis (6)

#### Assume

|                                   | $a_0$       | $a_1$ | $a_2$ | • • • | $a_{K-1}$ | $a_K$ | $\alpha_u$  |
|-----------------------------------|-------------|-------|-------|-------|-----------|-------|-------------|
| $\overline{\hspace{1em}\omega_1}$ | $\lambda_0$ | 0     | 1     |       | 1         | 1     | $\lambda_1$ |
| $\omega_2$                        | $\lambda_0$ | 1     | 0     |       | 1         | 1     | $\lambda_1$ |
|                                   |             |       |       |       |           |       |             |
| $\omega_{K-1}$                    | $\lambda_0$ | 1     | 1     |       | 0         | 1     | $\lambda_1$ |
| $\omega_K$                        | $\lambda_0$ | 1     | 1     |       | 1         | 0     | $\lambda_1$ |
| $\omega_u$                        | $\lambda_0$ | 1     | 1     |       | 1         | 1     | 0           |

Then,

$$R(a_u) = \lambda_1 \left( 1 - \frac{m[\mathbf{x}, \mathcal{L}](\Omega)}{K+1} \right)$$

# Decision analysis (7)



# Learning (1)

Basic model:

$$\alpha(\mathbf{x}, \mathbf{x}_i) = \alpha_0 \exp\left(-\gamma \sum_{j=1}^d (x_j - x_{ij})^2\right)$$

- Pb: determination of  $\alpha_0$  and  $\gamma$ .
- Simple approach: fix to "reasonable values"

$$\alpha_0 = 0.9$$
  $\gamma = 1/\overline{\delta}_k$ 

with  $\overline{\delta}_k$  mean squared Euclidean distance between a learning vector and one of its k NN's.

#### Learning (2)

- More powerful approach: minimize an empirical error criterion using the leave-one-out method.
- Principle:
  - classify each learning example  $x_i$  using the other training patterns,
  - compare the result bba  $m_{c_i}[\mathbf{x}_i, \mathcal{L}^{-i}]$  with the class label  $m_i$ , compute error  $E_i(\alpha_0, \gamma)$
  - Minimize  $E(\alpha_0, \gamma) = \sum_{i=1}^n E_i(\alpha_0, \gamma)$  using a gradient-based optimization procedure.

#### Learning (2)

- Pb: which error function to compare 2 belief functions?
- One solution:

$$E_i = 1 - \sum_{k=1}^{K} Bet P_i(\omega_k) Bet P_{c_i}[\mathbf{x}_i, \mathcal{L}^{-i}](\omega_k)$$

Property:  $m_i$  vacuous  $\Rightarrow E_i = 1 - 1/K$  whatever  $\alpha_0$  and  $\gamma$  (if nothing is known concerning the class of example i, that example has no influence on the result).

### Learning (3): example of results

Gaussian data, n = 300, K = 3, d = 10. Comparison with different k-NN rules: voting (-), fuzzy (- -), distance-weighted (-.).



#### Learning: more complex models (1)

- The performances of the method depends on the particular distance measure used.
- One solution: optimize the distance measure

$$\alpha(\mathbf{x}, \mathbf{x}_i) = \alpha_0 \exp\left(-\gamma \sum_{j=1}^d w_j (x_j - x_{ij})^2\right)$$

• Error criterion:

$$J(\alpha_0, \gamma, \mathbf{w}) = E(\alpha_0, \gamma, \mathbf{w}) + \mu \sum_{j=1}^{a} (w_j - 1)^2$$

# Example: expression recognition

Surprise/Disgust



erreur rate = 4 %

Joy/sadness



erreur rate = 0.8 %

(35 examples in each class)

#### Classification using prototypes

- Idea: to speed up calculations, summarize the learning set as r reference patterns (prototypes):  $\mathbf{p}_1, \dots, \mathbf{p}_r$ .
- Each prototype i has degree of membership  $u_{ik}$  to each class  $\omega_k$  with  $\sum_{k=1}^K u_{ik} = 1$
- The similarity to each prototype induces a bba:

$$m[\mathbf{x}, \mathbf{p}_i](\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i ||\mathbf{x} - \mathbf{p}_i||^2) \quad \forall k$$
  
$$m[\mathbf{x}, \mathbf{p}_i](\Omega) = 1 - \alpha_i \exp(-\gamma_i ||\mathbf{x} - \mathbf{p}_i||^2)$$

$$m[\mathbf{x}, \mathcal{L}] = \bigcap_{i=1}^{r} m[\mathbf{x}, \mathbf{p}_i]$$

#### Neural network implementation



#### Results on 'classical data'

#### Vowel data

K = 11,

d = 10

n = 568

test: 462 ex. (different

speakers)

| Classifier                               | test error rate |
|------------------------------------------|-----------------|
| Multi-layer perceptron (88 hidden units) | 0.49            |
| Radial Basis Function (528 hidden units) | 0.47            |
| Gaussian node network (528 hidden units) | 0.45            |
| Nearest neighbor                         | 0.44            |
| Linear Discriminant Analysis             | 0.56            |
| Quadratic Discriminant Analysis          | 0.53            |
| CART                                     | 0.56            |
| BRUTO                                    | 0.44            |
| MARS (degree=2)                          | 0.42            |
| Case-based classifier (33 prototypes)    | 0.38            |
| Case-based classifier (44 prototypes)    | 0.37            |
| Case-based classifier (55 prototypes)    | 0.37            |

#### Data fusion example



- K=2 classes
- $\mathbf{x} \in \mathbb{R}^5, \mathbf{y} \in \mathbb{R}^3$ , Gaussian distributions, conditionally independent
- Learning set: n = 60, cross-validation:  $n_{cv} = 100$
- test: 5000 vectors

# Data fusion: results (1)

#### Test error rates: uncorrupted data

| Method | x alone | y alone | x and y |
|--------|---------|---------|---------|
| TBM    | 0.106   | 0.148   | 0.061   |
| MLP    | 0.113   | 0.142   | 0.063   |
| RBF    | 0.133   | 0.159   | 0.083   |
| QUAD   | 0.101   | 0.141   | 0.049   |
|        | 0.071   | 0.121   |         |

# Data fusion: results (2)

#### Test error rates: $\mathbf{x} + \epsilon$ , $\epsilon \sim \mathcal{N}(0, \sigma^2)$



#### Data fusion: results (3)

Test error rates:  $\mathbf{x} + \epsilon$ ,  $\epsilon \sim \mathcal{N}(0, \sigma^2)$ , with rejection



#### Results on EEG data

- K = 2 classes, d = 64
- data labeled by 5 experts
- n = 200 learning patterns, 300 test patterns

| $\overline{k}$ | k-NN | w K-NN | TBM            | TBM              |
|----------------|------|--------|----------------|------------------|
|                |      |        | (crisp labels) | (uncert. labels) |
| 9              | 0.30 | 0.30   | 0.31           | 0.27             |
| 11             | 0.29 | 0.30   | 0.29           | 0.26             |
| 13             | 0.31 | 0.30   | 0.31           | 0.26             |

#### Conclusions

- Cased-based classification: a very general paradigm for solving complex pattern recognition problems within the TBM.
- Advantages: possibility to handle imprecise/uncertain training data, robustness and efficiency in classifier fusion problems.
- Simple idea, many possible extensions (adaptive distance, prototypes, etc.).
- The same principle can be applied to regression (prediction of continuous variable), using a fuzzy extension of BF theory.