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Outline
! Pattern recognition for process control and 

monitoring: two generic applications
! software sensors
! system diagnosis

! The development cycle of a PR system
! analysis (choice of sensors, data collection, …)
! design (training, model selection and performance 

assessment)
! implementation (robustness, refinement, adaptation, …)

! Case study: prediction of optimal coagulant dosage in 
water treatment plant.

! Conclusions
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Software Sensor: Example

software
sensor

Ca, Malk, Cl-SO4, HSP, 

PSO, PO4, Temp, Zn, pH, 

TCP Saturation, CaCO3 Sat

corrosion rate

software sensor: procedure for estimating a quantity 
of interest (output, response variable) from observable 
quantities (input variables, features)
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Buiding a software sensor

The methodology for building a software sensor 
depends on the available information:
! domain knowledge (equations, physical laws, 

expert rules, …) → deterministic or conceptual 
modeling approach (domain-specific)

! statistical knowledge (past observations of the 
input and output variables) → supervised-
learning, pattern recognition approach (generic)
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System Diagnosis
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Design of a diagnosis system
The methodology depends on the nature of the 

available knowledge:
! A (logical or numerical) model for some or all of 

the states 
→ model-based approach (AI, control 
engineering)

! No model, but historical data of past 
measurements and observations of the system 
state 
→ feature-based, pattern recognition-based 
diagnosis
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Common framework: Supervised learning

! Two groups of variables:
! inputs, features, attributes (x1,…,xd)=x 

(measurements, or functions of measurements)
! output y 

! quantitative (regression), 
! qualitative y ∈ G={1,…,K} (classification)

! Learning set: 
L={(xi,yi), i=1,…,n}

! Goal : predict y for a new case, based on 
observed input vector x.
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The development cycle

Analysis
• choosing sensors
• defining the feature space

and the output space
• collecting the data

Design
• fitting learning model(s)
• selecting or combining the 

best models
• assessing the performances

Implementation
• robustness, novelty  detection
• missing data
• model refinement and adaptation

need more 
information

(examples, features, 
sensors)

need to retrain 
model, or

build new modeldomain 
knowledge

statistical knowledge
+ operational constraints

statistical
knowledge
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Analysis

Design
• fitting learning model(s)
• selecting or combining the 

best models
• assessing the performances

Implementation
• robustness, novelty  detection
• missing data
• model refinement and adaptation

need more 
information

(examples, features, 
sensors)

need to retrain 
model, or

build new model

Analysis
• choosing sensors
• defining the feature space

and the output space
• collecting the data
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Analysis Phase: some guidelines

! Application specific, the choice of relevant 
sensor information can only be guided by 
domain knowledge.

! Typical questions:
! How many features ?
! How many data examples ?
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How many features ?

Selected features should be limited to possibly relevant
ones: Too many features may be harmul !

number of
features

error

lowest 
achievable 

error

infinite sample

finite sample

best number of features
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How many examples ?

number of
cases in 

learning set

error

lowest 
achievable 

error

highest
acceptable 

error

required 
number of data
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Exploratory data analysis
! A preliminary step to validate the data, and 

help selecting relevant features, using
! Elementary techniques: visualize one or two 

variables at a time (histograms, boxplots, scatter 
plots, …)

! Multidimensional techniques: analyze the 
correlations between multiple features

! Examples of multidimensional techniques:
! principal component analysis (PCA)
! self-organizing feature maps 
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Example: classification of waste 
water for reuse

! Five classes of water quality, each class 
corresponding to a different possible usage 

! 11 input features describing the chemical and 
bacteriological characteristics of water: 
suspended solids, TOC, conductivity, nitrate, 
etc.

! Problem: which features are relevant for 
classifying a water sample into one of the 5 
categories ?
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Analysis of a single input variable
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Principal component analysis

• Objective: summarize multi-
dimensional data by defining a small 
number of “informative” features  

• Approach: Find the directions in 
input space that maximize the 
variance (scatter) of projected data

• Each direction = linear combination
of original features → new feature.



Nalco Seminar, October 2, 2002 17

PCA: example (1)

1st axis: 76 % of the total variance 
(initial information)

2nd axis: 13 % of 
the total variance 
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PCA: example (2)

group of 
correlated 
variables 
→ 1st axis

the 2nd axis
is mostly explained

by this variable
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Self-organizing feature maps

• A connectionist (artificial 
neural network) model.

• Goal : map high-dimensional 
data to a 2-D grid of neurons, in 
such a way that similar input 
vectors are mapped to 
neighboring nodes.

• This « topology preservation » 
property is obtained by a simple 
learning algorithm.
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Learning algorithm
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Correlation Analysis Using SOM’s
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Design

Analysis
• choosing sensors
• defining the feature space

and the output space
• collecting the data

Design
• fitting learning model(s)
• selecting or combining the 

best models
• assessing the performances

Implementation
• robustness, novelty  detection
• missing data
• model refinement and adaptation

need more 
information

(examples, features, 
sensors)

need to retrain 
model, or

build new model
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Design - Statistical decision theory

! Let X be a random vector, Y real-valued random 
variable, joint distr. Pr(X,Y).

! We seek a function f(X) for predicting Y given X.
! We need to quantify errors using a loss function

L(Y,f(X)).
! Regression: L(Y,f(X))=(Y-f(X))2

! Classification: L(Y,f(X))=1 if f(X)≠ Y, 0 otherwise. 

! The optimal f should maximize the expected 
prediction error:

EPE(f) = E(L(Y,f(X)))



Nalco Seminar, October 2, 2002 24

Stat. decision theory (cont.)
! The optimal solution:

! regression: the regression function 
f(x)=E(Y | X=x)

! classification: the Bayes rule

f(X)=class gk with highest posterior probability P(gk|x)
(the Bayes rule has minimal EPE= error probability)

! Most learning methods aim at approximating the 
regression function or the Bayes rule.
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Learning models
! Hundreds of methods for classification and 

regression.  
! Some of the most popular models:

! linear methods (linear/logistic regression, LDA, …)
! non parametric methods (k-NN, Kernel methods)
! neural network techniques (multilayer 

perceptrons, LVQ,…)
! Support vector machines, 
! decision trees, 
! fuzzy systems, …
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Linear discriminant analysis
• Gaussian distribution (parametric method)
• equal covariance matrices

linear decision boundary
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Nearest neighbor method

?

• The k-NN method for 
classification: approximate the
Bayes classifier by classifying to 
the majority class among the k 
nearest neighbors of x.

• Similar method for regression

• Non-parametric method: works 
for any distribution (but high 
storage and computational 
requirements)
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k-NN rule - Example

Bayes decision
boundary

7-NN decision
boundary
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Multiplayer perceptrons
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PMC (cont.)
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Training of MLP’s
! Principle: maximize a measure of fit

! R(w) is a non linear function of w → minimized 
using an iterative gradient-based non linear 
optimization algorithm.

desired output

weight vector input vector

network output regularization term
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Example



Nalco Seminar, October 2, 2002 33

Is there a "best" learning system ?
No free lunch theorem: 

No classifier is better than others for all problems
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Pros and cons of learning algorithms

- restrictive assumptions- simple to implement
- fast learning and operation

LDA

- slow learning- arbitrary decision boundariesMLP

- high storage and time 
requirements in operation

- no learning
- arbitrary decision boundaries

k-NN rule

ConsProsClassifier
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Tuning learning algorithms
! Each classification/regression method has one or 

more tuning parameters:

! Each tuning parameter controls the complexity of the 
model: greater complexity results in smaller bias, but 
greater variance
→ bias/variance dilemma

number of hidden units nH, λMLP
d, kk-NN rule

number of input features dLDA
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The bias-variance dilemma

How to determine 
the optimal

model complexity ?

→ model selection
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Model selection 
! Model selection: given M models, find the one with 

the smallest expected prediction error

! Problem: we know only the training error 

which is a strongly biased (optimistic) estimate of EPE.
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The hold-out estimation method

The simplest 
approach, when 
enough data is 

available.

Train Validation Test

≈ 50 %
fit the models

≈ 25 %
model selection

≈ 25 %
estimate 

generalization error
of selected model
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Cross-validation

! For k=1,…,K
! fit the model using the data with part k removed
! test the resulting model on part k

! Combine the K estimates of prediction error

Train TestTrain Train Train

1 2 3 4 5

Random partition of the data set (typically 5 · K · 10):

model fit 
without κ(i)tuning parameter

subset of 
example i
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What to do is the estimated prediction 
error is too high ?

1) Add new features

validation

training number of 
features

error

α*

Additional features may or may not reduce the error 
(too many features may be harmful !)
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What do do is the estimated prediction 
error is too high ? (cont.)

2. Add new examples: this can only reduce the error, 
but may be costly. How many ? → the number of 
examples allowing to achieve a given error can be 
predicted by extrapolating the learning curves.
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3. Reject ambiguous patterns (classification)

What do do is the estimated prediction 
error is too high ? (cont.)

ambiguity
region



Nalco Seminar, October 2, 2002 43

Rejection/error tradeoff

0 100%

rejection 
rate

error rate

perr

maximum
admissible
error rate

corresponding
rejection rate
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Implementation

Analysis
• choosing sensors
• defining the feature space

and the output space
• collecting the data

Design
• fitting learning model(s)
• selecting or combining the 

best models
• assessing the performances

Implementation
• robustness, novelty  detection
• missing data
• model refinement and adaptation

need more 
information

(examples, features, 
sensors)

need to retrain 
model, or

build new model
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Outlier/novelty detection
! Learning framework: (X,Y) have joint probability distribution 

Pr(X,Y).
! The training set composed of validated, quality-controlled data 
→ realization of a random sample from Pr(X,Y).

! In operational conditions, the distribution of (X,Y) may change
due to:
! different operating conditions
! sensor faults
! occurrence of new, previously unseen system states

! The output from the learning system may become unreliable, 
unless some outlier and novelty detection mechanism is 
implemented
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Outlier: example

outlier:
- sensor fault ?
- new class ?
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A robust pattern recognition system

feature 
vector
x ∈ Rd

prediction
classifier

outlier
detection

rejected
patterns
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Distance rejection
Simplest approach:
• summarize the learning set
using prototypes
• reject input patterns for which
the distance to the closest 
prototype exceeds a given 
threshold.

• Determination of the prototypes = clustering problem
• Algorithms: SOM, c-means

?
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Example

ambiguity
rejection

distance
rejection
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Missing data

x1

x3

x5

x2

x4

PR
 s

ys
te

m
x1

?

?

x2

x4

PR
 s

ys
te

m

?
sensor
failure



Nalco Seminar, October 2, 2002 51

Missing data reconstruction
! Let I = indices of missing features

J = indices of available features
! Approach: estimate E(XI|XJ=xJ)

features
must be correlated !
(redundancy helps)
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Adaptation of learning systems

new system
states

outliers

updated
decision boundary
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Adaptation of learning systems (cont.)

! Continuous adaptation of a learning system requires:
! outlier/novelty detection mechanisms
! unsupervised algorithms for discovering new classes
! a posteriori knowledge of class labels for predictive accuracy 

improvement
! Can be done on-line but difficult 

! stability/plasticity dilemma
! many tunable parameters

! More safely done off-line, using human supervision
! some expertise in data analysis is necessary
! increases maintenance costs
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Case study: prediction of optimal 
coagulant dosage in WTP

SEINE

Tank
Sand
Filter

GAC
FilterOzonePulsator

Drinking
Water

C

UV

pH

T

DO

T°

T

TOC

pH

Z

Cl

T°Coagulant
dosage

C : Conductivity
Cl : Residual Chlorine
DO : Dissolved Oxygen
T° : Temperature
T : Turbidity
TOC : Total Organic Carbon
UV : Ultraviolet absorption
Z : Residual Ozone

GAC Filter :
Granular
activated

carbon filterSludge

Viry-Chatillon 
treatment plant

Clarifier
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Requirements
! Determine optimum coagulant dosage using on-line 

measurements of raw water quality parameters: 
turbidity, pH, conductivity, temperature,….

! Operation without human supervision:
! robustness against erroneous data
! estimation of missing input data
! detection of and adaptation to changes in water 

characteristics
! Portability of the system to different sites:

! methodology for fitting the whole system automatically to 
new data
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The system

predicted
coagulant

dosing rate

raw
data

Self-Organizing Map
Multilayer Perceptron

validated
reconstructed

data

rejected
data

training and
model selection 

algorithm
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Learning algorithm
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Results
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Simulation of sensor fault

06/25/98 06/27/98 06/29/98 07/01/98 07/03/98 07/05/98 07/07/98
8

10

12

14

16

18

20

22

Time

D
is

so
lv

ed
 O

xy
ge

n 
(m

g/
l)

Normal sensor

Faulty sensor

Reconstructed sensor



Nalco Seminar, October 2, 2002 60

Results
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Conclusions
! Pattern recognition (supervised learning) techniques 

allow to build statistical models of the relationship 
between input and output variables, using 
observation data.

! Applications:
! software sensor design
! system diagnosis
! data mining: text/image categorization, credit scoring, 

financial decision making, …
! The three phases in the development of a PR system:

! analysis (choice of sensors, definition of features, data)
! design (model fitting and selection)
! implementation (robustness, adaptation)
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Conclusions (continued)
! The design of a pattern recognition system requires a 

close cooperation between
! domain experts (choice of input and output spaces, selection 

of a representative learning set), and
! statisticians (selection of learning techniques, interpretation 

of results).
! end-users (knowledge of operational constraints and 

objectives)
! Two pitfalls:

! expect too much from statistical techniques when too few 
data is available

! expect too much from huge data sets when domain 
knowledge is weak or the learning task has not been 
thoroughly specified


