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Classification and clustering

Classical framework

@ We consider a collection £ of n objects.

@ Each object is assumed to belong to one of ¢ groups
(classes).
@ Each object is described by
e An attribute vector x € RP (attribute data), or
o lts similarity to all other objects (proximity data).
@ The class membership of objects may be:

e Completely known, described by class labels (supervised
learning);

e Completely unknown (unsupervised learning);

e Known for some objects, and unknown for others

(semi-supervised learning). @
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Classification and clustering

Problems

@ Classification: predict the class membership of objects
drawn from the same population as L.

@ Clustering: Determine the class membership of objects in

L.
supervised unsupervised semi-supervised
Classification X X
Clustering X X
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Motivations

@ In real situations, we may have only partial knowledge of
class labels: we have uncertainty in the data — partially
supervised learning.

@ The class membership of objects can usually be predicted
with some remaining uncertainty: the outputs from
classification and clustering algorithms should reflect this
uncertainty.

@ The theory of belief functions provides a suitable
framework for representing uncertain and imprecise class
information as input and as output of classificatonand ~__

Compiegne

clustering algorithms. @
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Outline

@ Theory of belief functions
@ Representing evidence
@ Combining evidence
@ Making decisions

e Classification: the evidential k-NN rule
@ Principle
@ Extension to partially supervised data
@ Examples

9 Clustering: learning a credal partition
@ Credal partition -
o EVCLUS Corce

@ Evidential c-means @
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Theory of belief functions

@ Introduced by Dempster (1968) and Shafer (1976), further
developed by Smets (Transferable Belief Model) in the
1980’s and 1990’s. Also known as Dempster-Shafer theory
or Evidence theory.

@ A formal framework for representing and reasoning from
partial (uncertain, imprecise) information.

@ Generalizes both Set Theory and Probability Theory:

o A belief function may be viewed both as a generalized set
and as a non additive measure.
e The theory includes extensions of probabilistic notions

eeeeeeeee

(intersection, union, inclusion, etc.) @
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Outline

@ Theory of belief functions
@ Representing evidence
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Mass function

@ Let X be a variable taking values in a finite set Q (frame of
discernment).

@ Mass function: m: 22 — [0, 1] such that

> m(A)=1.
ACQ
@ Every A of Q such that m(A) > 0 is a focal set of m.

@ Interpretation: m(A) represents is the probability of
knowing only that X € A, given the available evidence.

@ m(Q) is the probability of knowing nothing (ignorance). @
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Example

@ A murder has been committed. There are three suspects:
Q = {Peter, John, Mary}.

@ A witness saw the murderer going away, but he is
short-sighted and he only saw that it was a man, with 80 %
confidence.

@ This piece of evidence can be represented by
m({ Peter, John}) = 0.8,

m(Q)=0.2

@ The mass 0.2 is not committed to {Mary}, because the
testimony does not accuse Mary at all!
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Special cases

@ m may be seen as:
o A family of weighted sets {(A;, m(A))),i=1,...,r}.
e A generalized probability distribution (masses are
distributed in 2 instead of Q).
@ Special cases:
e r = 1: categorical mass function (~ set). We denote by mu
the categorical mass function with focal set A.
e |Aj|=1,i=1,..., r: Bayesian mass function (~ probability
distribution).
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Belief function

@ Definition:
bel(A)=> m(B)= Y  m(B), VACQ
BCA 0£BCA
BZA

@ Interpretation: degree of belief (support) in hypothesis
IIX E A".

@ bel is superadditive. In particular,

bel(AU B) > bel(A) + bel(B) — bel(An B). e
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Plausibility function

@ Definition:

pl(A)= > m(B), VACQ
BNA#D

@ Interpretation: upper bound on the degree of belief that
could be assigned to A after taking into account new
information.

@ plis subadditive. In particular,

pI(AU B) < pl(A) + pl(B) — pl(An B).

@ bel<pl.
@ If mis Bayesian, bel = pl (probability measure). @
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Example

A [0 {Pt {4 {PJ} {M} {PM} {UM} Q
mA) |0 0 O0 08 0 0 0 02
bel(A)|0 0 0 08 O 0 0 1
pl(A) |0 1 1 1 0.2 1 1 1
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Relations between m, bel et pl

@ Relations:
bel(A) = pl(Q) — pl(A), VYACQ
Y ospca(—1)A"1Blbel(B), A#D
A = {1 — bel(Q) A0

@ m, bel et pl are thus three equivalent representations of a
same piece of information.
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Outline

@ Theory of belief functions

@ Combining evidence

Thierry Denceux ief functions in classification and clustering



Theory of belief functions Representing evidence
Combining evidence
Making decisions

Conditioning

@ Let mrepresent our state of knowledge about X.
@ We learn that X € B with B C Q.
@ Impact on m — each mass m(C) is transferred to C N B:

m(AB)= Y m(C).

{C|CnB=A}

@ m(-|B) is a new mass function representing our state of
knowledge based on m and the fact that X € B.
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Example

@ We have m({Peter, John}) = 0.8, m(Q2) = 0.2.

@ We learn that the murderer is blond. John and Mary are
blond. B = {John, Mary}.

@ m({Peter,John}) — {John}, m(Q2) — {John, Mary}.
@ New conditional mass function given B.

m({John}|B) = 0.8

m({John, Mary}|B) = 0.2.
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Properties

@ Generalization of intersection: ma(-|B) = mans-
@ Generalisation of probabilistic conditioning:
e If m(®) > 0, the normalized mass function m* is

i m(A)
mA) = Ty
e Normalized conditioning:
. pI(AN B)
[*(A|B) = —————=
pl*(A|B) oI(B)

e If mis Bayesian, p/ = P: same result as probabilistic = e

eeeeeeeee

conditioning. @
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Dempster’s rule

Definition (Dempster’s rule of combination)

Let my and my, be mass functions induced by distinct
(independent) items of evidence.

(Mm@m)(A)= Y m(B)my(C), VACQ.
BNC=A

@ Properties:
e Generalization of conditioning: m@mg = m(-|B).
e Commutativity, associativity.
e Neutral element: vacuous mgq such that mq(Q) = 1

(represents total ignorance). =ute
@ K = (m@my)(h) > 0: degree of conflict. @
@ Other rules exist (disjunctive rule, cautious rule, etc...).
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Theory of belief functions

Example

Representing evidence

Combining evidence
Making decisions

@ We have my({ Peter, John}) = 0.8, m{(2) = 0.2.

@ New piece of evidence: the murderer is blond,
confidence=0.6 — mo({John, Mary}) = 0.6, m»(Q2) = 0.4.

{Peter, John} Q
0.8 0.2
{John, Mary} {John} {John, Mary}
0.6 0.48 0.12
Q {Peter, John} Q
0.4 0.32 0.08

Thierry Denceux
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Outline

@ Theory of belief functions

@ Making decisions
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Pignistic transformation

@ Assume that our knowledge about X is represented by a
mass function m, and we have to bet on the value of X.

@ In order to avoid Dutch books (sequences of bets resulting
sure loss), we have to base our decisions on a probability
distribution on €.

@ The pignistic transformation from m to a probability
distribution Betp can be justified axiomatically:

Betp(w) = > m(4)

{ACQ|weA} Al = utc
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Theory of belief functions Representing evidence
Combining evidence
Making decisions

Example

@ Let m({John}) = 0.48, m({John, Mary}) = 0.12,
m({Peter, John}) = 0.32, m(Q2) = 0.08.
@ We have

12 032 0.
Betp({John}) = 0.48 + 02 + 02 + 038 ~ 0.73,

Betp({ Peter}) = % + 03£ ~ 0.19
Betp({Mary}) = % + 0308 ~ 0.09 Pt
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Outline

9 Classification: the evidential k-NN rule
@ Principle
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Voting k-NN rule

@ Classical non parametric classification method.
@ Let Q denote the set of classes, et L the learning set

L={(x,y),i=1,....n}

with x; € RP and y; € Q.

@ Let x € RP be the feature vector for a new object, and
®,(X) the set of the k nearest neighbors of x in £
(according to some distance measure).

@ Decision rule: x is assigned to the majority class in ®(x).==utc

e

&
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Evidential k-NN rule (1/2)

@ An alternative to the voting k-NN rule based on the theory
of belief functions.

@ Each x; € ®,(x) is considered as a piece of evidence
regarding the class of x.

@ The strength of this evidence decreases with the distance
d(x, x;) between x and x;.

@ It can be represented by a mass function

mi({yi}) = a- ¢ (d(X, X))
mi(Q) =1-a-p(dxx)).

where « € (0, 1) is a constant, and ¢ is a decreasing
function from R to [0, 1] such that limy_ ., ¢(d) = 0.
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Evidential k-NN rule (2/2)

@ The evidence of the k nearest neighbors of x is pooled
using Dempster’s rule of combination:

m = @x,co(x)Mi-
@ m encodes the evidence of the learning set regarding the
class of the new object.
@ Practical choice for ¢: ¢(d) = exp(—vd?).
@ Parameters k, a and ~ can be fixed heuristically or
determined from the data using cross-validation.
@ Decision: St

Compiégne.

y = arg max Betp(w). @
weN
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Outline

9 Classification: the evidential k-NN rule

@ Extension to partially supervised data

< utc
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Partially supervised data

@ We now consider a learning set of the form
L= {(x,-,m,-),i: 1,...,[7}

where
@ X; is the attribute vector for object o0;, and
e m; is a mass function representing expert knowledge about
the class y; of object o;.
@ Special cases:
e m;({wk}) = 1: precise labeling (supervised learning);
e m;i(A) =1 for A C Q: imprecise (set-valued) labeling;
e m; is a Bayesian mass function: probabilistic labeling; @‘Mé“
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Extension of the evidential k-NN rule

@ Each example (x;, m;) in L is an item of evidence
regarding y, whose reliability decreases with the distance
d(x,x;) between x and x;.

@ Each mass function mj; is transformed (discounted) into a
“weaker” mass function m:

mi(A) = a - ¢ (d(x,x;)) mi(A), VYACQ.
mi(Q) =1~ mi(A).
ACQ
@ The k mass functions are combined using Dempster’s rule._

Compiégne.

m= @x,-ed>k(x)m?' @
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Outline

9 Classification: the evidential k-NN rule

@ Examples
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Example: Sonar data (UCI database)
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Compiegne

Test error rates as a function of k for the voting (-), evidential (:), fuz
(=) and distance-weighted (-.) k-NN rules.
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Example: lonosphere data (UCI database)

0.4

0.35[

0.25[

error rate

o
)
T

0.15[

Test error rates as a function of k for the voting (-), evidential (:), fuz@
(=) and distance-weighted (-.) k-NN rules.
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Example: Vehicle data (UCI database)
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Test error rates as a function of k for the voting (-), evidential (:), fuz
(=) and distance-weighted (-.) k-NN rules.
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Example: EEG data

500 EEG signals encoded as 64-D patterns, 50 % positive
(K-complexes), 50 % negative (delta waves), 5 experts.
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Principle
Classification: the evidential k-NN rule Extension to partially supervised data
Examples

Results on EEG data

(Denoeux and Zouhal, 2001)

@ c=2classes, d =64
@ data labeled by 5 experts

@ Consonant mass functions computed from empirical

distribution of expert labels using a probability-possibility
transformation.

@ n = 200 learning patterns, 300 test patterns

k  k-NN w k-NN Ev. k-NN Ev. k-NN
(crisp labels) (uncert. labels)
9 0.30 0.30 0.31 0.27
11029  0.30 0.29 0.26 -

13 0.31 0.30 0.31 0.26 @
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Outline

e Clustering: learning a credal partition
@ Credal partition

Thierry Denceux Belief functions in classification and clustering



Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Credal partition

@ n objects described by attribute vectors x4, ..., Xp.

@ Assumption: each object belongs to one of ¢ classes in
Q={w1,...,we},

@ Goal: express our beliefs regarding the class membership
of objects, in the form of mass functions my, ..., m, on Q.

@ Resulting structure = credal partition, generalizes hard and
fuzzy partitions.
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Example

A mi(A) mo(A) ms(A)  my(A)  ms(A)
0 0 0 0 0 0
{w1} 0 0 0 0.2 0
{wa} 0 1 0 0.4 0
{wq,ws} 0.7 0 0 0 0
{ws} 0 0 0.2 0.4 0
{w1, w3} 0 0 0.5 0 0
{LUQ,w;g} 0 0 0 0 0
Q 0.3 0 0.3 0 1
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Special cases

@ Each mj is a certain mass function:
mi({wx}) =1forsome k € {1,...,c}

— crisp partition of Q.

@ Each mj is a Bayesian mass function (focal sets are
singletons) — fuzzy partition of Q

ux = mi({wk}), Vi k

K
k=1
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Algorithms

@ EVCLUS (Denoeux and Masson, 2004):
e proximity (possibly non metric) data,
e multidimensional scaling approach.
@ Evidential c-means (ECM): (Masson and Denoeux, 2008):

e attribute data,
e HCM, FCM family (alternate optimization of a cost function).
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Outline

e Clustering: learning a credal partition

@ EVCLUS
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Proximity Data

Let P be a collection of n objects {0;}] ;. The observations
consist in pairwise dissimilarities between objects:

Of ... 0 ... Op

01

Oj d,'j
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Learning a Credal Partition from proximity data

@ Problem: given th dissimilarity matrix D = (dj;), how to
build a “reasonable” credal partition ?

@ Notion of cluster: objects within a cluster are assumed to
be more similar among themselves than with objects from
other clusters.

@ Compatibility Principle: “The more similar two objects, the
more plausible it is that they belong to the same class”.
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Formalization

@ Let S; be the event “objects o; and o; belong to the same
class”.

@ Let m; and m; be mass functions regarding the class
membership of objects o; and o;.

@ It can be shown that

pI(S) = > mi(Am(B)=1-K;
ANB#)
where Kj; = degree of conflict between m; and m.
@ Problem: find M = (my, ..., m,) such that larger degrees == utc__

eeeeeeeee

of conflict Kj; correspond to larger dissimilarities dj. @
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Cost function

@ Approach: minimize the discrepancy between the
dissimilarities dj; and the degrees of conflict K, up to an
affine transformation (similar to Muldimensional Scaling).

@ Example of stress functions:

p — d:)2

i<j

@ Minimization of / with respect to M and a, b using a
gradient-based iterative optimization procedure. =ute
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Reducing the complexity

@ Learning a credal partition form data may be an ill-posed
problem (O(n2°¢) parameters, O(n?) dissimilarities)).
@ Solution:

e Reduce the number of focal elements (e.g. {wk}f_;, 0, and
Q)

e Add constraints to the problem: penalize “uninformative”,
“complex” credal partitions

n
F'=1+X>_ H(m)

i=1

where H=generalized entropy function.
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Credal partition

EVCLUS
Clustering: learning a credal partition Evidential c-means
Experiments: Butterfly example
DEE]
18
10+ +
8k
6k
ab
T8 r
2 4 6 7 8 10 12
o+ + + + F 4+ A
5 9
- o ‘ L+ ‘ ‘ ‘
) -4 -2 0 2 4 6 8 10

one additional object (#1) similar to all other objects
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Experiments: Butterfly example

Results

0.5
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Experiments: Cat cortex dataset
DEE]

@ Objects: 65 cortical areas

@ Dissimilarities: connection strength between the cortical
areas measured on an ordinal scale
(O=self-connection,1=dense connection, 2=intermediate
connection, 3=weak connection, 4=absence of connection)

@ “True” partition: four functional regions of the cortex
(A=auditory, V=visual, S=somatosensory, F=frontolimbic)
@ Resulis:
e only 3 misclassified regions out 64

cccccccc

o better than relational fuzzy clustering algorithms).
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Experiments: Cat cortex dataset

Results

Pignistic Probabilities

V-VLS
af 47 NV-21b V-DLS
_V' B V-PMLS V-ALLS AV
vV -2Z1a V-PLLS
Y519
, V-AMLS V208 (A-AAF
Fove s -Al
V-ALG V-SVA V-PS @—VP
A-EPp P
Sl V-7 ASSF V-20b AP
$-5bl op
V-AES X
ol <§_5§—SS§O_53| E-Ig F-36 A-Tem
($-S&ArSbm F-CGa  F-REGsty, F-RS
_éarn S-6l S-6m s Rt
-49 - F-PFCr
-1r S-SV 18 F—PFC;n?_,
- b
S F-LA Cv
S 'ég{gg F-PL
-2 $-2 F-Amyg F-IL
S-POA F-psp (TSP
3 L L -F-Hipp L L )
-3 -2 -1 0 1 2 3

Thierry Dence elief functions in classification and clusteri



Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Experiments: Cat cortex dataset
Shepard diagram
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Advantages and drawbacks

@ Advantages
e Applicable to proximity data (not necessarily Euclidean).
e Robust against atypical observations (similar or dissimilar
to all other objects).
e Usually performs better than relational fuzzy clustering
procedures.

@ Drawback: computational complexity

@ One iteration of a gradient-based optimization procedure:
O(f3n?) where f = number of focal sets (usually ¢ + 2).
o Limited to datasets of a few hundred objects and less than

20 classes.
e Not possible to use the full expressive power of belief = utc
functions (only {wx}, @ and Q as focal sets). @
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Outline

e Clustering: learning a credal partition

@ Evidential c-means

Thierry Denceux Belief functions in classification and clustering



Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Principle

@ Problem: generate a credal partiton M = (my, ..., mp)
from attribute data X = (X4, ..., Xn), X; € RP.
@ Generalization of hard and fuzzy c-means algorithms:

e Each class represented by a prototype
e Alternate optimization of a cost function with respect to the
prototypes and to the credal partition.
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Fuzzy c-means (FCM)

@ Minimize
n c

(U, V) =" updz

i=1 k=1
with dj = ||X; — V|| under the constraints >, ux =1, Vi.
@ Alternate optimization algorithm:

n B
VK:Z’%”EJ' Vk=1,...,c
> imt U
d, >/ B

Ulk = ) 1) ="
2221 die /(B—1) @
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

ECM algorithm

Principle

@ Each class wy represented by a prototype vy.

@ Each non empty set of classes A; represented by a
prototype V; defined as the center of mass of the v for all
Wk € Aj.

@ Basic ideas:

e For each non empty A; € Q, m; = m;(A;) should be high if
X; is close to v;.
e The distance to the empty set is defined as a fixed value 6.
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Optimization problem

@ Minimize
n
Jeou(M, V) = Z Yoo IAlrmidE + " 82my
i=1 {j/A#0,ACQ} i=1

subject to

S o myt+my=1, Vie{l,... n}
U/ ACQ,A£D}

@ J:ew(M, V) can be iteratively minimized with respect to M,utc “““““

and V using an alternate optimization scheme. @
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Butterfly dataset
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

Butterfly dataset

Results
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Credal partition
EVCLUS
Clustering: learning a credal partition Evidential c-means

4-class data set
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4-class data set

Hard credal partition
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4-class data set

Lower approximation
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Brain data

Problem

@ Magnetic resonance imaging of pathological brain, 2 sets
of parameters.

@ Three regions: normal tissue (Norm), ventricals +
cerebrospinal fluid (CSF/V) and pathology (Path).

@ Image 1 highlights CSF/V (dark), image 2 highlights
pathology (bright).
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Brain data

Segmentation of image 1

Initial image v, = CSF/V Y, = Path U normal
e
Image 1: 2 classes, coarsening of Q:
= {y4 = CSF/V,~, = {Path, Normal}} @
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Brain data

Segmentation of image 2

Initial image 6, =norm U CSF/V

Image 2: 2 classes, coarsening of Q:
0= {91 = Path, 0> = {CSF/ V, Normal}}
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Brain data

Combining the two credal partitions

@ Two credal partitions: for each pixel, two mass functions
my and m», on two different coarsenings of Q.

@ These two mass functions should be combined using
Dempster’s rule to recover the natural partition in three
classes.

@ my and my need first to be expressed on a common frame
Q (common refinement of I' and ©).
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Brain data

Refinement of I

= Path U Normal

< utc
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Brain data

Refinement of ©

6, = CSF/V U Normal

0, = Normal

91 = Path

< utc
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Brain data

Final result after combination

o, = CSF/V W, = Normal it
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Conclusion

@ The theory of belief functions extends both set theory and
probability theory — it allows for the representation of
imprecision and uncertainty.

@ In classification and clustering, belief functions may be
used to represent partial knowledge of class labels.

@ Many classification and clustering algorithms can be
adapted to

e handle such class labels (partially supervised learning)
e generate them from data (credal partition)

&
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