Information Fusion using Belief Functions
New combination rules

Thierry Denœux

1Université de Technologie de Compiègne
HEUDIASYC (UMR CNRS 6599)

ECSQARU 2007, Hammamet (Tunisia),
October 31, 2007
Philippe Smets (1938-2005)
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Belief functions
An uncertainty representation framework

- One of the main frameworks for reasoning with partial (imprecise, uncertain) knowledge, introduced by Dempster (1967) and Shafer (1976)
- Belief functions generalize:
 - probability measures;
 - crisp sets;
 - possibility measures (and fuzzy sets).
- Different semantics for belief functions:
 - Lower-upper probabilities (Dempster’s model, Hint model);
 - Random sets;
 - Degrees of belief (Transferable Belief Model - TBM).
- The latter model will be adopted in this talk.

Main features:

1. Semantics of belief functions as representing weighted opinions of rational agents, irrespective of any underlying probability model;

2. Distinction between the credal and pignistic levels, and use of the pignistic transformation for mapping belief functions to probability measures for decision-making.

3. Use of unnormalized mass functions and interpretation of $m(\emptyset)$ under the open-world assumption;
In recent years, there has been many successful applications of the TBM to information fusion problems (sensor fusion, classification, expert opinion pooling, etc.);

However, there is some lack of flexibility for combining information as compared to other theories such as Possibility Theory:

- Only two main operators:
 - TBM conjunctive rule \cap (unnormalized Dempster’s rule);
 - TBM disjunctive rule \cup;

- Main limitations:
 - Undesirable behavior of Dempster’s rule in case of high conflict between sources;
 - These operators assume the sources to be distinct.
Many research works devoted to this problem.

Several alternatives to Dempster’s rule based on various schemes for distributing the mass $m(\emptyset)$ to various propositions (Dubois-Prade rule, Yager’s rule, etc).

Some of these rules may be more robust than Dempster’s rule in case of highly conflicting sources, but

- They lack a clear justification in the TBM;
- They are not associative (to be addressed later).
The distinctness assumption

Definition

- Real-world meaning of this notion difficult to describe
- Main idea: no elementary item of evidence should be counted twice.
 - Example: non overlapping random samples from a population;
 - Counterexample: opinions of different people based on overlapping experiences.
- The TBM conjunctive and disjunctive rules are not appropriate for handling highly overlapping evidence (they are not idempotent).
Relaxing the distinctness assumption

Main approaches

- Possible approaches for combining overlapping items of evidence:
 - Describe the nature of the interaction between sources (Dubois and Prade 1986; Smets 1986);
 - Use a combination rule tolerating redundancy in the combined information.
- Such a rule should be idempotent: $m \ast m = m$.
- Idempotent rules exist (averaging; Cattaneo, 2003; Destercke et al, 2007), but they are not associative.
The associativity requirement

- **Definition:** \((m_1 \ast m_2) \ast m_3 = m_1 \ast (m_2 \ast m_3)\) for all \(m_1, m_2, m_3\).

- **Why is associativity a desirable property?**
 - **Practical argument:** Items evidence can be combined incrementally and regardless of the order in which they are processed (provided commutativity is also verified);
 - Quasi-associativity (existence of an \(n\)-ary operator \(op(m_1, \ldots, m_n)\)) may be sufficient in that respect.

- **Conceptual argument:** \(m_1 \ast m_2\) should capture all the relevant information contained in \(m_1\) and \(m_2\); consequently it should not be necessary to keep \(m_1\) and \(m_2\) in memory for further processing.
Main results to be presented in this talk

- Two new idempotent and associative combination rules, applicable to combine possibly overlapping items of evidence:
 - the cautious conjunctive rule \cap
 - the bold disjunctive rule \lor

- These rules are derived from the Least commitment principle (an equivalent of the maximum entropy principle for belief functions).

- Each of the four rules \cap, \cup, \land and \lor occupies a special position in a distinct infinite family of rules with identical algebraic properties.
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Let $\Omega = \{\omega_1, \ldots, \omega_K\}$ be a finite set of answers to a given question Q, called a frame of discernment.

Definition (Basic belief assignment)

A basic belief assignment (BBA) on Ω is a mapping $m : 2^\Omega \rightarrow [0, 1]$ such that

$$\sum_{A \subseteq \Omega} m(A) = 1$$

Subsets A of Ω such that $m(A) > 0$ are called focal sets of m.
A BBA m represents:

- the state of knowledge of a rational agent Ag at a given time t, regarding question Q;
- by extension, an item of evidence that induces such a state of knowledge.

$m(A)$: part of a unit mass of belief assigned to A and to no strict subset.

$m(\emptyset)$: degree of ignorance.

$m(\Omega)$: degree of conflict. Under the open-world assumption, degree of belief in the hypothesis that the true answer to question Q does not lie in Ω.
Associated functions
Belief and implicability functions

Definition (Belief function)

\[
\text{bel}(A) = \sum_{\emptyset \neq B \subseteq A} m(B), \quad \forall A \subseteq \Omega
\]

Interpretation of \(\text{bel}(A) \): degree of belief in \(A \).

Definition (Implicability function)

\[
b(A) = \text{bel}(A) + m(\emptyset), \quad \forall A \subseteq \Omega
\]
Asscoiated functions

Belief and implicability functions

- **Definition (Belief function)**

 \[
 \text{bel}(A) = \sum_{\emptyset \neq B \subseteq A} m(B), \quad \forall A \subseteq \Omega
 \]

 Interpretation of \(\text{bel}(A)\): degree of belief in \(A\).

- **Definition (Implicability function)**

 \[
 b(A) = \text{bel}(A) + m(\emptyset), \quad \forall A \subseteq \Omega
 \]
Associated functions
Plausibility and commonality

Definition (Plausibility function)

\[pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega \]

Definition (Commonality function)

\[q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega \]
Definition (Plausibility function)

\[pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega \]

Definition (Commonality function)

\[q(A) = \sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega \]
Equivalence of representations

- Functions bel, b, pl, q, m are in one-to-one correspondence.
- One can move from any representation to another using linear transformations.
- For instance:

 $$pl(A) = bel(\Omega) - bel(\overline{A}) = 1 - b(\overline{A}), \quad \forall A \subseteq \Omega,$$

 $$m(A) = \sum_{B \supseteq A} (-1)^{|B|-|A|} q(B), \quad \forall A \subseteq \Omega,$$

 $$m(A) = \sum_{B \subseteq A} (-1)^{|A|-|B|} b(B), \quad \forall A \subseteq \Omega,$$

- There exists at least two other equivalent representations (to be introduced later...)

T. Denœux

Information Fusion using Belief Functions: New Rules 17/82
Definition (TBM conjunctive rule)

\[
m_1 \cap_2 = m_1 \cap m_2 \text{ defined as:}
\]

\[
m_1 \cap_2(A) = \sum_{B \cap C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega,
\]

Interpretation: \(m_1 \cap m_2 \) encodes the agent’s belief after receiving \(m_1 \) and \(m_2 \) from two sources \(S_1 \) and \(S_2 \), assuming that:

- \(S_1 \) and \(S_2 \) are distinct (Klawonn and Smets, 1992);
- both \(S_1 \) and \(S_2 \) are reliable.
Definition (TBM conjunctive rule)

\[m_1 \odot_2 = m_1 \odot m_2 \text{ defined as:} \]

\[m_1 \odot_2(A) = \sum_{B \cap C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega, \]

Interpretation: \(m_1 \odot m_2 \) encodes the agent’s belief after receiving \(m_1 \) and \(m_2 \) from two sources \(S_1 \) and \(S_2 \), assuming that:

- \(S_1 \) and \(S_2 \) are distinct (Klawonn and Smets, 1992);
- both \(S_1 \) and \(S_2 \) are reliable.
Algebraic properties:
- Commutativity,
- Associativity
- Neutral element: vacuous BBA m_{Ω} ($m_{\Omega}(\Omega) = 1$)

\rightarrow (\mathcal{M}, \cap) is a commutative monoid.

Expression using the commonality functions:

$$q_1 \cap_2(A) = q_1(A) \cdot q_2(A), \quad \forall A \subseteq \Omega.$$
TBM disjunctive rule

Definition

Definition (TBM disjunctive rule)

\[m_1 \bigcup_2 m_2 \text{ defined as:} \]

\[m_1 \bigcup_2 (A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega, \]

Interpretation: \(m_1 \bigcup m_2 \) encodes the agent’s belief after receiving \(m_1 \) and \(m_2 \) from two sources \(S_1 \) and \(S_2 \), assuming that:

- \(S_1 \) and \(S_2 \) are distinct (Klawonn and Smets, 1992);
- at least one of \(S_1 \) and \(S_2 \) is reliable.
Definition (TBM disjunctive rule)

\[m_{1 \cup 2} = m_1 \cup m_2 \text{ defined as:} \]

\[m_{1 \cup 2}(A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega, \]

Interpretation: \(m_1 \cup m_2 \) encodes the agent’s belief after receiving \(m_1 \) and \(m_2 \) from two sources \(S_1 \) and \(S_2 \), assuming that:

- \(S_1 \) and \(S_2 \) are distinct (Klawonn and Smets, 1992);
- at least one of \(S_1 \) and \(S_2 \) is reliable.
TBM disjunctive rule

Properties

- **Algebraic properties:**
 - Commutativity,
 - Associativity
 - Neutral element: \(m_\emptyset \ (m_\emptyset(\emptyset) = 1) \)

\[\rightarrow (\mathcal{M}, \cup) \text{ is a commutative monoid.} \]

- **Expression using the implicability functions:**

\[b_1 \cup_2(A) = b_1(A) \cdot b_2(A), \quad \forall A \subseteq \Omega. \]
Complement of m:

$$\overline{m}(A) = m(\overline{A}), \quad \forall A \subseteq \Omega.$$

De Morgan laws for \cap and \cup:

$$m_1 \cup m_2 = \overline{m_1 \cap m_2},$$
$$m_1 \cap m_2 = \overline{m_1 \cup m_2},$$

(∩ and ∪ can be interpreted as generalized intersection and union)
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Simple BBA
Definition and notation

Definition (Simple BBA)

A BBA is simple if it is of the form

\[
m(A) = 1 - w \\
m(\Omega) = w,
\]

with \(w \in [0, 1] \) and \(A \subseteq \Omega \). Notation: \(m = A^w \).

- Property: \(A^{w_1} \cap A^{w_2} = A^{w_1 w_2} \).
- Special cases:
 - Vacuous BBA: \(A^1 \) with any \(A \).
 - Categorical BBA: \(A^0 \).
- Can any BBA be decomposed as the \(\cap \)-combination of simple BBAs?
Simple BBA
Definition and notation

Definition (Simple BBA)

A BBA is simple if it is of the form

\[m(A) = 1 - w \]
\[m(\Omega) = w, \]

with \(w \in [0, 1] \) and \(A \subseteq \Omega \). Notation: \(m = A^w \).

- Property: \(A^{w_1} \cap A^{w_2} = A^{w_1w_2} \).
- Special cases:
 - Vacuous BBA: \(A^1 \) with any \(A \).
 - Categorical BBA: \(A^0 \).
- Can any BBA be decomposed as the \(\cap \)-combination of simple BBAs?
The concept of **separability** was introduced by Shafer (1976) in the case of normal BBAs. It can be adapted to subnormal BBAs as follows.

Definition (separability)

A BBA m is **separable** if it can be decomposed as the \bigcap combination of simple BBAs.

This decomposition is unique as long as m is **nondogmatic** ($m(\Omega) > 0$). It may be called the **canonical conjunctive decomposition** of m.
If \(m \) is separable, then there exists a unique function \(w : 2^\Omega \mapsto (0, 1] \) such that

\[
m = \bigcap_{A \subset \Omega} A^{w(A)},
\]

and \(w(\Omega) = 1 \) by convention.

Function \(w \) is called the conjunctive weight function associated to \(m \). It is thus yet another representation of \(m \).

Can this representation be extended to any nondogmatic BBA?
A generalized simple BBA is a function $\mu : 2^\Omega \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
\mu(A) &= 1 - w, \\
\mu(\Omega) &= w, \\
\mu(B) &= 0 \quad \forall B \in 2^\Omega \setminus \{A, \Omega\},
\end{align*}
$$

for some $A \neq \Omega$ and $w \in [0, +\infty)$. Notation: $\mu = A^w$.

\[\text{Definition (Smets, 1995)}\]
If $w \leq 1$, μ is a simple BBA.

If $w > 1$, μ is not a BBA \rightarrow inverse BBA.

Interpretation: models a state of knowledge in which we have some diffidence (disbelief) against hypothesis A. We need to acquire some evidence in favor of A to reach a neutral state:

$$A^w \cap A^{1/w} = A^1.$$
Canonical decomposition of a nondogmatic BBA

Main result

Theorem (Smets, 1995)

Any nondogmatic BBA can be uniquely decomposed as the \cap of generalized simple BBAs:

$$m = \bigcap_{A \subset \Omega} A^{w(A)},$$

with $w(A) \in (0, +\infty]$ for all $A \subset \Omega$.

- The canonical weight function is now from 2^{Ω} to $(0, +\infty]$.
- m is separable iff $w(A) \leq 1$ for all A.
Theorem (Smets, 1995)

Any nondogmatic BBA can be uniquely decomposed as the \(\cap \) of generalized simple BBAs:

\[
m = \bigcap_{A \subset \Omega} A^{w(A)},
\]

with \(w(A) \in (0, +\infty] \) for all \(A \subset \Omega \).

- The canonical weight function is now from \(2^\Omega \) to \((0, +\infty] \).
- \(m \) is separable iff \(w(A) \leq 1 \) for all \(A \).
Conjunctive weight function

Computation

- Computation of w from q:

$$\ln w(A) = - \sum_{B \supseteq A} (-1)^{|B|-|A|} \ln q(B), \quad \forall A \subset \Omega.$$

- Similarity with

$$m(A) = \sum_{B \supseteq A} (-1)^{|B|-|A|} q(B), \quad \forall A \subseteq \Omega.$$

- Any procedure for transforming q to m can be used to transform $-\ln q$ to $\ln w$.

Let m be a consonant BBA, with associated possibility distribution $\pi_k = \pi(\omega_k) = q(\{\omega_k\})$, $k = 1, \ldots, K$, such that

$$1 \geq \pi_1 \geq \pi_2 \geq \ldots \geq \pi_K > 0.$$

The conjunctive weight function associated to m is:

$$w(A) = \begin{cases}
\frac{\pi_1}{\pi_k}, & A = \emptyset, \\
\frac{\pi_{k+1}}{\pi_k}, & A = \{\omega_1, \ldots, \omega_k\}, 1 \leq k < K, \\
1, & \text{otherwise.}
\end{cases}$$

m is separable.
Let m be a BBA on Ω with focal sets A_1, \ldots, A_n, and Ω, such that $A_i \cap A_j = \emptyset$ for all $i, j \in \{1, \ldots, n\}$.

We assume that $m(\Omega) + \sum_{k=1}^{n} m(A_k) \leq 1$, so that \emptyset may also be a focal set.

The conjunctive weight function associated to m is:

$$ w(A) = \begin{cases}
\frac{m(\Omega)}{m(A_k) + m(\Omega)}, & A = A_k, \\
\frac{m(\Omega) \prod_{k=1}^{n} \left(1 + \frac{m(A_k)}{m(\Omega)}\right)}{1}, & A = \emptyset, \\
1, & \text{otherwise}.
\end{cases} $$

We may have $w(\emptyset) > 1$, so that m is not always separable.
Expression of the TBM conjunctive rule using w

Property

We have

$$m_1 \cap m_2 = \bigcap_{A \subseteq \Omega} A^{w_1(A)} \cap \bigcap_{A \subseteq \Omega} A^{w_2(A)}$$

$$= \bigcap_{A \subseteq \Omega} A^{w_1(A)w_2(A)}.$$

Consequently,

$$w_1 \cap w_2 = w_1 \cdot w_2.$$

- Similar to $q_1 \cap q_2 = q_1 \cdot q_2$.
Several alternative representations of a BBA, including bel, b, pl, q and w.

The TBM conjunctive and disjunctive rules are usually expressed in the m-space, but they have simpler representations in other spaces:

- q and w spaces for \cap
- b space and another space to be introduced later for \cup.

Most attempts to generalize \cap have started from its expression in the m space.

Our approach will be based on the w space.
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Definition (Least commitment principle)

Given two belief functions compatible with a set of constraints, the most appropriate is the least committed (informative).

- Similar to the maximum entropy principle in Probability theory.
- To make this principle operational, it is necessary to define ways of comparing belief functions according to their information content: “m_1 is more committed than m_2”.
- Several such informational orderings have been proposed.
Informational Comparison of Belief Functions

Definitions

\(p_l \)-ordering: \(m_1 \sqsubseteq_{p_l} m_2 \) iff \(p_l_1(A) \leq p_l_2(A) \), for all \(A \subseteq \Omega \);

\(q \)-ordering: \(m_1 \sqsubseteq_{q} m_2 \) iff \(q_1(A) \leq q_2(A) \), for all \(A \subseteq \Omega \);

\(s \)-ordering: \(m_1 \sqsubseteq_{s} m_2 \) iff there exists a stochastic matrix \(S \) with general term \(S(A, B) \), \(A, B \in 2^\Omega \) verifying \(S(A, B) > 0 \Rightarrow A \subseteq B, A, B \subseteq \Omega \), such that

\[
m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega.
\]

\(d \)-ordering: \(m_1 \sqsubseteq_d m_2 \), iff there exists a BBA \(m \) such that \(m_1 = m \bigcap m_2 \).
Informational Comparison of Belief Functions

Properties

- \(m_1 \sqsubseteq_d m_2 \Rightarrow m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2, \\ m_1 \sqsubseteq_q m_2, \end{cases} \)

- The vacuous BBA \(m_\Omega \) is the unique greatest element for \(\sqsubseteq_x \) with \(x \in \{pl, q, s, d\} \):

 \[
 m \sqsubseteq_x m_\Omega, \quad \forall m, \forall x \in \{pl, q, s, d\}.
 \]

- Monotonicity of \(\forall \) with respect to \(\sqsubseteq_x \), \(x \in \{pl, q, s, d\} \):

 \[
 m_1 \sqsubseteq_x m_2 \Rightarrow m_1 \forall m_3 \sqsubseteq_x m_2 \forall m_3, \quad \forall m_1, m_2, m_3
 \]

 \(\rightarrow (M, \forall, \sqsubseteq_x) \) is a partially ordered commutative monoid.
Two sources provide BBAs m_1 and m_2, and the sources are both considered to be reliable.

The agent’s state of belief, after receiving these two pieces of information, should be represented by a BBA m_{12} more committed than m_1, and more committed than m_2.

Let $S_x(m)$ be the set of BBAs m' such that $m' \sqsubseteq_x m$, for some $x \in \{pl, q, s, d\}$.

We thus have $m_{12} \in S_x(m_1)$ and $m_{12} \in S_x(m_2)$ or, equivalently, $m_{12} \in S_x(m_1) \cap S_x(m_2)$.

According to the LCP, one should select the x-least committed element in $S_x(m_1) \cap S_x(m_2)$, if it exists.
Cautious combination of belief functions

Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if \(m_1 \) and \(m_2 \) are consonant, then the \(q \)-least committed element in \(S_q(m_1) \cap S_q(m_2) \) exists and it is unique: it is the consonant BBA with commonality function \(q_{12} = q_1 \land q_2 \).
- In general, neither existence nor unicity of a solution can be guaranteed with any of the \(x \)-orderings, \(x \in \{pl, q, s, d\} \).
- We need to define a new ordering relation.
The \(w \)-ordering

Definition (\(w \)-ordering)

Let \(m_1 \) and \(m_2 \) be two nondogmatic BBAs.
\(m_1 \sqsubseteq_w m_2 \) iff \(w_1(A) \leq w_2(A) \), for all \(A \subset \Omega \).

- Interpretation: \(m_1 = m \cap m_2 \) for some separable BBA \(m \).
- \(m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \sqsubseteq_d m_2 \Rightarrow m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2 \\ m_1 \sqsubseteq_{q} m_2, \end{cases} \)
- No greatest element, but \(m_\Omega \) is the unique maximal element: \(m_\Omega \sqsubseteq_w m \Rightarrow m = m_\Omega \).
- Monotonicity of \(\cap \):
 \(m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \cap m_3 \sqsubseteq_w m_2 \cap m_3, \quad \forall m_1, m_2, m_3 \)
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
The cautious conjunctive rule

Definition

Theorem

Let \(m_1 \) *and* \(m_2 \) *be two nondogmatic BBAs. The* \(w \)-least committed element in* \(S_w(m_1) \cap S_w(m_2) \) *exists and is unique. It is defined by the following weight function:*

\[
w_1 \land_2 (A) = w_1(A) \land w_2(A), \quad \forall A \subset \Omega.
\]

Definition (cautious conjunctive rule)

\[
m_1 \land m_2 = \bigsqcap_{A \subset \Omega} A^{w_1(A) \land w_2(A)}.
\]
The cautious conjunctive rule
Definition

Theorem

Let \(m_1 \) and \(m_2 \) be two nondogmatic BBAs. The \(w \)-least committed element in \(S_w(m_1) \cap S_w(m_2) \) exists and is unique. It is defined by the following weight function:

\[
w_1 \land_2 (A) = w_1(A) \land w_2(A), \quad \forall A \subset \Omega.
\]

Definition (cautious conjunctive rule)

\[
m_1 \land m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \land w_2(A)}.
\]
Cautious rule computation

<table>
<thead>
<tr>
<th>m-space</th>
<th>w-space</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>w_1</td>
</tr>
<tr>
<td>m_2</td>
<td>w_2</td>
</tr>
<tr>
<td>$m_1 \land m_2$</td>
<td>$w_1 \land w_2$</td>
</tr>
</tbody>
</table>
The cautious conjunctive rule

Properties

Commutativity: \(\forall m_1, m_2, \ m_1 \bigotimes m_2 = m_2 \bigotimes m_1 \)

Associativity: \(\forall m_1, m_2, m_3, \)

\[
m_1 \bigotimes (m_2 \bigotimes m_3) = (m_1 \bigotimes m_2) \bigotimes m_3
\]

No neutral element: \(m_\Omega \bigotimes m = m \) iff \(m \) is separable.

Monotonicity:

\[
m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \bigotimes m_3 \sqsubseteq_w m_2 \bigotimes m_3, \quad \forall m_1, m_2, m_3.
\]

\((M_{nd}, \bigotimes, \sqsubseteq_w) \) is a partially ordered commutative semigroup.
The cautious conjunctive rule

Properties related to the combination of non distinct evidence

Idempotence: $\forall m, \ m \otimes m = m$

Distributivity \cap with respect to \otimes:

$$(m_1 \cap m_2) \otimes (m_1 \cap m_3) = m_1 \cap (m_2 \otimes m_3), \ \forall m_1, m_2, m_3.$$

→ Item of evidence m_1 is not counted twice!
Overview

1 Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3 Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
The agent receives two BBAs m_1 and m_2 from two sources, at least one of which is considered to be reliable.

The resulting BBA should be less committed than m_1 and m_2.

Formally, $m_{12} \in G_x(m_1) \cap G_x(m_2)$, for some $x \in \{w, d, s, pl, q\}$, with $G_x(m) =$ set of BBAs less committed than m according to \sqsubseteq_x.

Most commitment principle: we should choose in $G_x(m_1) \cap G_x(m_2)$ the most committed BBA according to \sqsubseteq_x (if it exists).
Bold disjunctive combination of belief functions

Search for a suitable informational oredring

- With $x = w$, this approach leads to a mass function m_{12} defined by $w_{12} = w_1 \lor w_2$.
- OK with separable BBAs, but $w_1 \lor w_2$ does not always correspond to a belief function.
- We need yet another ordering relation...
Let m be a subnormal BBA. Its complement \overline{m} is nondogmatic and can be decomposed as

$$\overline{m} = \bigcap_{A \subset \Omega} A^{\overline{w}(A)}.$$

Consequently, m can be written

$$m = \bigcap_{A \subset \Omega} A^{\overline{w}(A)} = \bigcup_{A \subset \Omega} A^{\overline{w}(A)}.$$

Each BBA $A^{\overline{w}(A)}$ is the complement of a generalized simple BBA. Its focal sets are \overline{A} and \emptyset. Notation: $\overline{A}_{\nu(\overline{A})}$, with $\nu(\overline{A}) = \overline{w}(A)$.

T. Denœux

Information Fusion using Belief Functions: New Rules 50/82
Theorem

Any subnormal BBA m can be uniquely decomposed as the \bigcup-combination of generalized BBAs $A_{v(A)}$ assigning a mass $v(A) > 0$ to \emptyset, and a mass $1 - v(A)$ to A, for all $A \subseteq \Omega$, $A \neq \emptyset$:

$$m = \bigcup_{A \neq \emptyset} A_{v(A)} \cdot$$

(1)

Definition (Disjunctive weight function)

Function $v : 2^\Omega \setminus \{\emptyset\} \rightarrow (0, +\infty)$ will be referred to as the disjunctive weight function.
Disjunctive weight function

Properties

- **Duality with** w: $v(A) = \overline{w(\overline{A})}$, $\forall A \neq \emptyset$ (similar to $b(A) = \overline{q(\overline{A})}$).

- **Computation from** b:

$$\ln v(A) = - \sum_{B \subseteq A} (-1)^{|A|-|B|} \ln b(B).$$

- **Similarity with**

$$m(A) = \sum_{B \subseteq A} (-1)^{|A|-|B|} b(B), \quad \forall A \subseteq \Omega.$$

- **TBM disjunctive rule**:

$$v_1 \cup_2 = v_1 \cdot v_2.$$
The ν-ordering
Definition and properties

Definition (\nu-ordering)

Let m_1 and m_2 be two subnormal BBAs. $m_1 \sqsubseteq_\nu m_2$ iff $\nu_1(A) \geq \nu_2(A)$, for all $A \neq \emptyset$.

- Interpretation: $m_2 = m \ominus m_1$ for some BBA m such that \overline{m} is separable.
- $m_1 \sqsubseteq_\nu m_2 \Rightarrow m_1 \sqsubseteq_s m_2$.
- No smallest element, but m_{\emptyset} is the unique minimal element: $m \sqsubseteq_\nu m_{\emptyset} \Rightarrow m = m_{\emptyset}$.
- Monotonicity of \ominus:
 $m_1 \sqsubseteq_\nu m_2 \Rightarrow m_1 \ominus m_3 \sqsubseteq_\nu m_2 \ominus m_3$, $\forall m_1, m_2, m_3$.

T. Denœux

Information Fusion using Belief Functions: New Rules
The \(\nu \)-ordering
Definition and properties

Definition (\(\nu \)-ordering)

Let \(m_1 \) and \(m_2 \) be two subnormal BBAs. \(m_1 \sqsubseteq \nu m_2 \) iff \(\nu_1(A) \geq \nu_2(A) \), for all \(A \neq \emptyset \).

- Interpretation: \(m_2 = m \bigcup m_1 \) for some BBA \(m \) such that \(\overline{m} \) is separable.
- \(m_1 \sqsubseteq \nu m_2 \Rightarrow m_1 \sqsubseteq_s m_2 \).
- No smallest element, but \(m_\emptyset \) is the unique minimal element: \(m \sqsubseteq \nu m_\emptyset \Rightarrow m = m_\emptyset \).
- Monotonicity of \(\bigcup \): \(m_1 \sqsubseteq \nu m_2 \Rightarrow m_1 \bigcup m_3 \sqsubseteq \nu m_2 \bigcup m_3, \quad \forall m_1, m_2, m_3 \)
The bold disjunctive rule

Definition

Theorem

Let m_1 and m_2 be two subnormal BBAs. The v-most committed element in $G_v(m_1) \cap G_v(m_2)$ exists and is unique. It is defined by the following disjunctive weight function:

$$v_1 \bigoplus v_2 (A) = v_1 (A) \land v_2 (A), \quad \forall A \in 2^\Omega \setminus \emptyset.$$

Definition (Bold disjunctive rule)

$$m_1 \bigoplus m_2 = \bigcup_{A \neq \emptyset} A v_1 (A) \land v_2 (A).$$
The bold disjunctive rule

Computation

<table>
<thead>
<tr>
<th>m-space</th>
<th>v-space</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>v_1</td>
</tr>
<tr>
<td>m_2</td>
<td>v_2</td>
</tr>
<tr>
<td>$m_1 \lor m_2$</td>
<td>$v_1 \land v_2$</td>
</tr>
</tbody>
</table>
The bold disjunctive rule

Properties

Commutativity: \(\forall m_1, m_2, m_1 \lor m_2 = m_2 \lor m_1 \)

Associativity: \(\forall m_1, m_2, m_3, m_1 \lor (m_2 \lor m_3) = (m_1 \lor m_2) \lor m_3 \)

No neutral element: \(m_{\emptyset} \lor m = m \) iff \(m \) is separable.

Monotonicity:

\[
 m_1 \subseteq_v m_2 \Rightarrow m_1 \lor m_3 \subseteq_v m_2 \lor m_3, \quad \forall m_1, m_2, m_3.
\]

\(\rightarrow (\mathcal{M}_s, \lor, \subseteq_v) \) is a partially ordered commutative semigroup.
The bold disjunctive rule

Properties (continued)

Idempotence: \(\forall m, m \lor m = m; \)

Distributivity of \(\cup \) with respect to \(\lor \):

\[
(m_1 \cup m_2) \lor (m_1 \cup m_3) = m_1 \cup (m_2 \lor m_3), \quad \forall m_1, m_2, m_3.
\]

\(\rightarrow \) Item of evidence \(m_1 \) is not counted twice.

De Morgan laws:

\[
\begin{align*}
\overline{m_1 \lor m_2} & = \overline{m_1} \land \overline{m_2} \\
\overline{m_1 \land m_2} & = \overline{m_1} \lor \overline{m_2}
\end{align*}
\]
Generalizing the cautious and bold rules

<table>
<thead>
<tr>
<th>conjunctive weights w</th>
<th>product \cap</th>
<th>minimum \wedge</th>
<th>\ast</th>
</tr>
</thead>
<tbody>
<tr>
<td>disjunctive weights v</td>
<td>\cup</td>
<td>\vee</td>
<td>\ast</td>
</tr>
</tbody>
</table>

- Properties of the minimum and the product on $\mathbb{R}^+ = (0, +\infty]$:
 - Commutativity, associativity;
 - Monotonicity: $x \leq y \Rightarrow x \wedge z \leq y \wedge z$, $\forall x, y, z \in (0, +\infty]$.
- Neutral element:
 - $+\infty$ for the minimum \rightarrow t-norm;
 - 1 for the product \rightarrow uninorm.
- Generalization to other t-norms and uninorms?
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Proposition

Let $*$ be a positive t-norm on $(0, +\infty]$. Then, for any conjunctive weight functions w_1 and w_2, the function w_1*2 defined by:

$$w_1*2(A) = w_1(A) * w_2(A), \forall A \subset \Omega,$$

is a conjunctive weight function associated to some nondogmatic BBA m_1*2.

Definition (T-norm-based conjunctive rule)

$$m_1 \ast_w m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) * w_2(A)}.$$
Let \mathcal{M}_{nd} be the set of nondogmatic BBAs, and \otimes_w the conjunctive rule based on t-norm \ast. Then $(\mathcal{M}_{nd}, \otimes_w, \sqsubseteq_w)$ is a commutative, partially ordered semigroup.

The minimum is the largest t-norm on $(0, +\infty]$. Consequently:

Proposition

Among all t-norm based conjunctive operators, the cautious rule is the w-least committed:

\[m_1 \otimes_w m_2 \sqsubseteq_w m_1 \bigwedge m_2, \quad \forall m_1, m_2. \]
T-norm based disjunctive rules
Definition and properties

- Let \(\ast \) be a t-norm on \((0, +\infty] \). The disjunctive rule associated to \(\ast \) is

\[
m_1 \circledast_v m_2 = \bigcup_{\emptyset \neq A \subseteq \Omega} A_{v_1}(A) \ast_{v_2}(A).
\]

- \((\mathcal{M}_s, \circledast_v, \sqsubseteq_v)\) is a commutative, partially ordered semigroup.

- Among all t-norm based disjunctive operators, the bold rule is the \(v \)-most committed.

- De Morgan laws:

\[
\overline{m_1 \circledast_w m_2} = \overline{m_1} \circledast_v \overline{m_2}
\]

\[
\overline{m_1 \circledast_v m_2} = \overline{m_1} \circledast_w \overline{m_2}
\]
Proposition

Let \top be a positive t-norm on $[0, 1]$, and let \bot be a t-conorm on $[0, 1]$. Then the operator $\ast_{\top, \bot}$ defined by

$$
x \ast_{\top, \bot} y = \begin{cases}
x \top y & \text{if } x \lor y \leq 1, \\
\left(\frac{1}{x} \bot \frac{1}{y}\right)^{-1} & \text{if } x \land y > 1, \\
x \land y & \text{otherwise,}
\end{cases}
$$

for all $x, y \in (0, +\infty]$ is a t-norm on $(0, +\infty]$.

→ For each pair (\top, \bot), there is a pair of dual conjunctive and disjunctive rules generalizing the cautious and bold rules, respectively.
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Uninorm-based conjunctive rules

Definition

Let \circ be a uninorm on $(0, +\infty]$ with 1 as neutral element, such that $x \circ y \leq xy$ for all $x, y \in (0, +\infty]$. Then, for any w functions w_1 and w_2, the function $w_{1\circ2}$ defined by:

$$w_{1\circ2}(A) = w_1(A) \circ w_2(A), \forall A \subset \Omega,$$

is a w function associated to some nondogmatic BBA $m_{1\circ2}$.

Proposition

Let \circ be a uninorm on $(0, +\infty]$ with 1 as neutral element, such that $x \circ y \leq xy$ for all $x, y \in (0, +\infty]$. Then, for any w functions w_1 and w_2, the function $w_{1\circ2}$ defined by:

$$w_{1\circ2}(A) = w_1(A) \circ w_2(A), \forall A \subset \Omega,$$

is a w function associated to some nondogmatic BBA $m_{1\circ2}$.

Definition (Uninorm-based conjunctive rule)

Let \circ be a uninorm on $(0, +\infty]$ verifying the above condition.

$$m_1 \odot_w m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \circ w_2(A)}.$$
Proposition

Let \mathcal{M}_{nd} be the set of nondogmatic BBAs, and \circ_w the conjunctive rule based on uninorm \circ with one as neutral element, and verifying $x \circ y \leq xy$ for all $x, y \in (0, +\infty]$. Then $(\mathcal{M}_{nd}, \circ_w, \sqsubseteq_w)$ is a commutative, partially ordered monoid, with the vacuous BBA as neutral element.

Question: Can we relax the condition $x \circ y \leq xy$ for all $x, y \in (0, +\infty]$, and get an operator \circ_w that is not more committed than \cap?
Theorem (Pichon and Denœux, 2007)

Let \circ be a binary operator on $(0, +\infty]$ such that

1. $x \circ 1 = 1 \circ x = x$ for all x and
2. $x \circ y > xy$ for some $x, y > 0$.

Then, there exists two BBAs m_1 and m_2 such that $w_1 \circ w_2$ is not a valid w function.

Corollary

Consequence: among all uninorm-norm based conjunctive operators, the TBM conjunctive rule is the w-least committed:

$$m_1 \bigcirc_w m_2 \preceq_w m_1 \bigcap m_2, \quad \forall m_1, m_2, \forall \bigcirc_w.$$
Uninorm-based disjunctive rules
Definition and properties

- Let \circ be a uninorm on $(0, +\infty]$ with 1 as neutral element, such that $x \circ y \leq xy$ for all $x, y \in (0, +\infty]$. The disjunctive rule associated to \circ is defined as:

$$m_1 \circ_v m_2 = \bigcup_{A \subseteq \Omega} A_{v_1}(A) \circ v_2(A).$$

- $(\mathcal{M}_s, \circ_v, \sqsubseteq_v)$ is a commutative, partially ordered monoid, with m_{\emptyset} as neutral element.

- Among all uninorm-norm based disjunctive operators, the TBM disjunctive rule is the v-most committed.

- De Morgan laws:

$$\overline{m_1 \circ_w m_2} = \overline{m_1} \circ_v \overline{m_2}$$
$$\overline{m_1 \circ_v m_2} = \overline{m_1} \circ_w \overline{m_2}$$
Construction of uninorms on $[0, +\infty]$

Proposition

Let \top be a positive t-norm on $[0, 1]$ verifying $x \top y \leq xy$ for all $x, y \in [0, 1]$, and let \top' be a t-norm on $[0, 1]$ verifying $x \top y \geq xy$ for all $x, y \in [0, 1]$. Then the operator defined by

$$x \circ_{\top, \top'} y = \begin{cases}
 x \top y & \text{if } x \lor y \leq 1, \\
 \left(\frac{1}{x} \top' \frac{1}{y}\right)^{-1} & \text{if } x \land y \geq 1, \\
 x \land y & \text{otherwise,}
\end{cases}$$

for all $x, y \in (0, +\infty]$ is a uninorm on $(0, +\infty]$ verifying $x \circ_{\top, \top'} y \leq xy$ for all $x, y > 0$.

→ For each pair (\top, \top'), there is a pair of dual conjunctive and disjunctive uninorm-based rules.
Let \top and \top' be t-norms on $[0, 1]$, and \bot be a t-conorm on $[0, 1]$.

One can build:

- a t-norm $\ast_{\top, \bot}$ on $(0, +\infty]$;
- a uninorm $\odot_{\top, \top'}$ on $(0, +\infty]$.

The corresponding t-norm and uninorm based conjunctive rules \ast_w and \odot_w coincide on separable BBAs.

Consequence: to define a rule for combining separable BBAs, one only needs to define a t-norm \top.

Coincidence for separable BBAs
Summary

- We now have four infinite families of rules:
 - conjunctive and disjunctive t-norm-based rules;
 - conjunctive and disjunctive uninorm-based rules.
- In each of these families, one rule plays a special role and is well justified by the LCP:
 - the \wedge and \cap rules are the w-least-committed conjunctive rules in the t-norm-based and uninorm-based families, respectively;
 - the \lor and \cup rules are the v-most committed disjunctive rules in the t-norm-based and uninorm-based families, respectively.
- The justification of the other rules is less clear but...
- Can they be useful in practice?
Overview

1. Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition

2. The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

3. Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications
Application to classification

The problem

Let us consider a classification problem where objects are described by feature vectors $\mathbf{x} \in \mathbb{R}^p$ and belong to one of K groups in $\Omega = \{\omega_1, \ldots, \omega_K\}$.

Learning set $\mathcal{L} = \{(\mathbf{x}_1, z_1), \ldots, (\mathbf{x}_n, z_n)\}$, where $z_i \in \Omega$ denotes the class of object i.

Problem: predict the class of a new object described by feature vector \mathbf{x}.

Application of new combination rules to:

- combine neighborhood information in the evidential k nearest neighbor rule;
- combine outputs from classifiers built from different features.
Example 1: evidential k-NN rule

Principle

- The evidence of example i is represented by a simple BBA m_i on Ω defined by
 \[m_i = \{ z_i \} \varphi(d_i) \]
 where d_i is the distance between x and x_i, and φ is an increasing function from \mathbb{R}^+ to $[0, 1]$.
- The evidence of the k nearest neighbors of x in \mathcal{L} is pooled using the TBM conjunctive rule:
 \[m = \bigcap_{i \in N_k(x)} \{ z_i \} \varphi(d_i). \]
- Generalization: replace \bigcap by another conjunctive operator \ast_w defined by a t-norm taken in a parameterized family ranging from the product to the minimum (e.g. Dubois-Prade, Frank).
Results
Heart disease and USPS datasets

Heart disease data set

USPS data set

T. Denœux
Information Fusion using Belief Functions: New Rules 75/82
Results
Ionosphere and Letter recognition datasets

![Graph of Ionosphere data set](image)

- **Ionosphere data set**
 - Cautious rule
 - TBM conj. rule

![Graph of Letter recognition data set](image)

- **Letter recognition data set**
 - Cautious rule
 - TBM conj. rule
Example 2: classifier fusion

Principle

- One separate classifier for each feature x_j.
- Classifier using input feature x_j produces a BBA m_j.
- Method:
 - logistic regression;
 - posterior probabilities transformed into consonant BBAs using the isopignistic transformation.
- Classifier outputs combined using t-norm based conjunctive operators.
- T-norm on $[0, 1]$ taken in Frank’s family.
Results

Segment data

Cross-validation error rate vs. s

- Cautious rule
- TBM conj. rule

Waveform data

Cross-validation error rate vs. s

- Cautious rule
- TBM conj. rule
Summary
Four basic rules

- Two new dual commutative, associative et idempotent rules:
 - cautious conjunctive rule $w_1 \ominus_2 = w_1 \land w_2$;
 - bold disjunctive rule $v_1 \oslash_2 = v_1 \land v_2$.

- Both rules are derived from the Least commitment principle, for some (different) informational ordering relations.

- With the TBM conjunctive and disjunctive rules, we now have four basic rules:

<table>
<thead>
<tr>
<th>sources</th>
<th>all reliable</th>
<th>at least one reliable</th>
</tr>
</thead>
<tbody>
<tr>
<td>distinct</td>
<td>\cap</td>
<td>\cup</td>
</tr>
<tr>
<td>non distinct</td>
<td>\wedge</td>
<td>\lor</td>
</tr>
</tbody>
</table>
The \lor and \cap rules have fundamentally different algebraic properties:

- The \lor rule is based on a t-norm on $(0, +\infty]$ and has no neutral element;
- The \cap rule is based on a uninorm on $(0, +\infty]$ and has a neutral element (the vacuous BBA).

Similarly, the \lor and \lor rules are based, respectively, on a t-norm and a uninorm; \lor has a neutral element, whereas \lor has not.

The pairs \lor-\lor and \lor-\lor are dual to each other and are related by De Morgan laws.
Summary

T-norm and uninorm-based rules

- To each of the four basic rules corresponds one infinite family of combination rules:
 - the t-norm-based conjunctive and disjunctive families;
 - the uninorm-based conjunctive and disjunctive families.
 → at least as much flexibility and diversity as in Possibility theory!
- Each of the four basic rules occupies a special position in its family:
 - The \land and \cap rules are the least committed elements;
 - The \lor and \cup rules are the most committed elements.
- Preliminary experiments suggest that the use of general t-norm and uninorm-based rules may improve the performances of information fusion systems.
References

Ph. Smets.

T. Denœux.
Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence. *Artificial Intelligence (In press)*, 2007.