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Motivation

Forecasting quantities of interest based on past observations is
an important issue in econometrics.
The uncertainty of the forecast is usually considered very
important information to be provided to the decision-maker.
Usual formalisms for describing forecast uncertainty:

1 Prediction intervals (how to combine with utilities for rational
decision-making?);

2 Bayesian predictive probability distributions (rely on prior probability
distribution).

In this talk,
We argue that the theory of belief functions is a valuable alternative
model to describe forecast uncertainty;
We apply this approach to the prediction of innovation diffusion.
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Historical perspective

Also known as Dempster-Shafer theory or Evidence theory.
Initially introduced by Dempster (1966, 1968) with the objective
to reconcile Bayesian and fiducial inference.
Shafer (1976) later formalized this approach as a general
framework for reasoning and decision-making under uncertainty.
Many applications in statistics, artificial intelligence, risk analysis,
etc.

T. Denœux, O. Kanjanatarakul, S. Sriboonchitta Forecasting using belief functions 5/ 41



Theory of belief functions
Statistical Inference and forecasting

Application to innovation diffusion

Representation of evidence
Combination of evidence

Main features

The theory of belief function subsumes both the logical and
probabilistic approaches to uncertainty: a belief function may be
seen as

a non-additive measure or as
a generalized set.

The belief function approach coincides with the Bayesian
approach when all variables are described by probability
distributions.
However, due to its greater expressive power, the theory of belief
functions allows us to handle more general forms of information.
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Belief and plausibility functions
Mathematical definitions

ω	

Γ(ω)	


Γ	

(Ω,A,µ)	
 (Θ,B)	


Let (Ω,A, µ) be a probability space, (Θ,B) a measurable space,
and Γ be a multivalued mapping from Ω to B defining a random
set.
Belief and plausibility functions on Θ are defined as follows
(assuming certain measurability requirements): for all B ∈ B,

Bel(B) = µ({ω ∈ Ω|Γ(ω) ⊆ B})

Pl(B) = µ({ω ∈ Ω|Γ(ω) ∩ B 6= ∅}) = 1− Bel(B).
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Belief and plausibility functions
Interpretation

Typically, Θ is the domain of an unknown quantity θ, and Ω is a
set of interpretations of a given piece of evidence about θ, only
one of which is true.
If ω ∈ Ω holds, then the evidence tells us that Γ(ω) 3 θ, and
nothing more.
Then

Bel(B) is the probability that the evidence implies B ;
Pl(B) is the probability that the evidence is consistent with B.

Obviously, Bel(A) ≤ Pl(A) for all A.
Bel and Pl are non additive in general:

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)

Pl(A ∪ B) ≤ Pl(A) + Pl(B)− Pl(A ∩ B)
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Special cases

1 The sets Γ(ω) ⊆ Θ are called the focal sets of Bel .
2 If there is only one focal set A, then the evidence tells us that
θ ∈ A for sure, and nothing more. The corresponding belief
function Bel{A} is said to be logical. In particular, the vacuous
belief function Bel{Θ} encodes complete ignorance.

3 If all focal sets are singletons, then Bel = Pl is a probability
measure.

4 If the focal sets are nested, Bel is said to be consonant. We then
have:

Pl(A) = sup
θ∈A

pl(θ)

where pl : θ → Pl({θ}) is the contour function of Bel .
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Dempster’s rule
Definition

Let us assume that we have two pieces of evidence that induce belief
functions Bel1 and Bel2 on Θ.

ω1	


Γ1(ω)	


Γ1	


(Ω1,A1,µ1)	


(Θ,B)	


ω2	


Γ2	


(Ω2,A2,µ2)	
 Γ2(ω)	


If interpretations ω1 and ω2 both hold,
we know that θ ∈ Γ1(ω1) ∩ Γ2(ω2).
If the two pieces of evidence are
independent, the probability that ω1
and ω2 both hold is µ1(ω1)µ2(ω2).
If Γ1(ω1) ∩ Γ2(ω2) = ∅, we know that
ω1 and ω2 cannot hold
simultaneously. The joint probability
distribution on Ω1 × Ω2 must be
conditioned to eliminate such pairs.
This random set induces a new
combined belief function
Bel12 = Bel1 ⊕ Bel2.
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Dempster’s rule
Properties

Commutativity, associativity. Neutral element: Bel{Θ}.
Generalization of intersection: if Bel{A} and Bel{B} are logical
belief functions and A ∩ B 6= ∅, then

Bel{A} ⊕ Bel{B} = Bel{A∩B}

Generalization of probabilistic conditioning: if P is a probability
measure and Bel{A} is a logical function, then P ⊕ Bel{A} is the
conditional probability measure P(·|A).
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The problem

We consider a statistical model {fθ(x), x ∈ X, θ ∈ Θ}, where X is
the sample space and Θ the parameter space.
Having observed x , how to quantify the uncertainty about Θ,
without specifying a prior probability distribution?
Two solutions using belief functions:

1 Dempster’s solution based an auxiliary variable with a pivotal
probability distribution (Dempster, 1967);

2 Likelihood-based approach (Shafer, 1976; Wasserman, 1990;
Denœux, 2013).
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Likelihood-based belief function
Requirements

Let BelΘ
x be a belief function representing our knowledge about θ

after observing x . We impose the following requirements:
1 Likelihood principle: BelΘ

x should be based only on the likelihood
function θ → Lx (θ) = fθ(x).

2 Compatibility with Bayesian inference: when a Bayesian prior P0 is
available, combining it with BelΘ

x using Dempster’s rule should yield
the Bayesian posterior:

BelΘ
x ⊕ P0 = P(·|x).

3 Principle of minimal commitment: among all the belief functions
satisfying the previous two requirements, BelΘ

x should be the least
committed (least informative).
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Likelihood-based belief function
Solution (Denœux, 2013)

BelΘ
x is the consonant belief function with contour function equal

to the normalized likelihood:

plx (θ) =
Lx (θ)

Lx (θ̂)
,

where θ̂ is the MLE of θ.
Corresponding plausibility function:

θ	


pl_x(θ)	  

A	  

Pl_x(A)	  

1	  

0	  

θ	
^	  

PlΘ
x (A) = sup

θ∈A
plx (θ), ∀A ⊆ Θ
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Equivalent random set

Corresponding random set: (Ω,B(Ω), λ, Γx ) with Ω = [0,1], λ is
the Lebesgue measure and

Γx (ω) = {θ ∈ Θ|plx (θ) ≥ ω}.

θ	


pl_x(θ)	  

Γx(ω)	  

ω	


1	  

0	  

λ({ω ∈ Ω|Γx (ω) ∩ A 6= ∅}) = supθ∈A plx (θ).
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Discussion

The likelihood-based method is easy to implement, even for
complex models.
By construction, it boils down to Bayesian inference when a
Bayesian prior is available.
It is compatible with usual likelihood-based inference:

Assume that θ = (θ1, θ2) ∈ Θ1 ×Θ2 and θ2 is a nuisance
parameter. The marginal contour function on Θ1

plx (θ1) = sup
θ2∈Θ2

plx (θ1, θ2) =
supθ2∈Θ2

Lx (θ1, θ2)

sup(θ1,θ2)∈Θ Lx (θ1, θ2)

is the relative profile likelihood function.
Let H0 ⊂ Θ be a composite hypothesis. Its plausibility

PlΘ
x (H0) =

supθ∈H0
Lx (θ)

supθ∈Θ Lx (θ)
.

is the usual likelihood ratio statistics Λ(x).
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The forecasting problem

Observed	  data	  
X	  ~	  fθ(x)	  

Not	  yet	  observed	  	  
data	  

Y	  ~	  gθ(y)	  
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Sampling model

We consider a sampling model of the form

Y = ϕ(θ,Z ),

where
Z ∈ Z is an unobserved auxiliary variable with known probability
distribution µ independent of θ;
ϕ is defined in such a way that the distribution of Y for fixed θ is
gθ(y).

Example 1: Y ∼ B(θ) can be written as:

Y = ϕ(θ,Z ) =

{
1 if Z ≤ θ
0 otherwise,

with Z ∼ U([0,1]).

Example 2: Y ∼ N (m, σ) can be written as:

Y = m + σZ with Z ∼ N (0,1)
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Predictive belief function

From the equation Y = ϕ(θ,Z ), the random set (belief function) on θ
an the probability distribution of Z , we can deduce a random set
(belief function) on Y :

θ	


plx(θ)	


ω	


Γx(ω)	  

z	  

ϕ	  

y	  1	  

0	  

Γ’x(ω,z)	  Z	  

Let Γ′x : [0,1]× Z→ 2Y be the
multi-valued mapping s.t.
Γ′x (ω, z) = ϕ(Γx (ω), z).
The product measure λ⊗ µ on
[0,1]× Z and Γ′x induce a
predictive belief function on Y.
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Example

Assume that X ∼ B(n, θ) and Y ∼ B(1, θ). We have:

plx (θ) =
θx (1− θ)n−x

θ̂x (1− θ̂)n−x
=

(
θ

θ̂

)nθ̂ (1− θ
1− θ̂

)n(1−θ̂)

,

for all θ ∈ Θ = [0,1], where θ̂ = x/n.
Predictive belief function:
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Innovation diffusion

Forecasting the diffusion of an innovation has been a topic of
considerable interest in the last fifty years.
Typically, when a new product is launched, sale forecasts have to
be based on little data and uncertainty has to be quantified to
avoid making wrong business decisions based on unreliable
forecasts.
The approach described in this paper uses the Bass model
(Bass, 1969) for innovation diffusion together with past sales
data to quantify the uncertainty on future sales using the
formalism of belief functions.
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Bass model

Fundamental assumption (Bass, 1969): the probability that an
initial purchase of an innovative product will be made at t , given
that no purchase has yet been made, is an affine function of the
number of previous buyers.
This implies that the probability Φθ(t) that an individual taken at
random from the population will buy the product before time t is

Φθ(t) =
c(1− exp[−(p + q)t ])

1 + (p/q) exp[−(p + q)t ]
,

where
p is the coefficient of innovation;
q the coefficient of imitation;
c is the probability of eventually adopting the product;
θ = (p, q, c).
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Parameter estimation

Data: x1, . . . , xT−1, where xi = observed number of adopters in
time interval [ti−1, ti ).
The number of individuals in the sample of size M who did not
adopt the product at time tT−1 is xT = M −

∑T−1
i=1 xi .

The probability of adopting the innovation between times ti−1 and
ti is pi = Φθ(ti )−Φθ(ti−1) for 1 ≤ i ≤ T − 1, and the probability of
not adopting the innovation before tT−1 is pT = 1− Φθ(tT−1).
Consequently, x = (x1, . . . , xT ) is a realization of
X ∼M(M,p1, . . . ,pT ) and the likelihood function is

Lx(θ) ∝
T∏

i=1

pxi
i =

(
T−1∏
i=1

[Φθ(ti )− Φθ(ti−1)]xi

)
[1− Φθ(tT−1)]xT .

The belief function on θ is defined by plx(θ) = Lx(θ)/Lx(θ̂).
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Problem formulation

Let us assume we are at time at time tT−1 and we wish to
forecast the number Y of sales between times τ1 and τ2, with
tT−1 ≤ τ1 < τ2.
Y has a binomial distribution B(Q, πθ), where

Q is the number of potential adopters at time T − 1;
πθ is the probability of purchase for an individual in that period,
given that no purchase has been made before tT−1:

πθ =
Φθ(τ2)− Φθ(τ1)

1− Φθ(tT−1)
.

Y can be written as Y = ϕ(θ,Z) =
∑Q

i=1 1[0,πθ ](Zi ), where

1[0,πθ ](Zi ) =

{
1 if Zi ≤ πθ
0 otherwise

and Z = (Z1, . . . ,ZQ) has a uniform distribution in [0,1]Q .

T. Denœux, O. Kanjanatarakul, S. Sriboonchitta Forecasting using belief functions 32/ 41



Theory of belief functions
Statistical Inference and forecasting

Application to innovation diffusion

Bass model
Sales forecasting
Example

Predictive belief function
Multi-valued mapping

The predictive belief function on Y is induced by the multi-valued
mapping (ω, z)→ Γ′x(ω, z) = ϕ(Γx (ω), z).
The range of πθ when θ varies in Γx (ω) is [πL

θ(ω), πU
θ (ω)], with

πL
θ(ω) = min

{θ|plx (θ)≥ω}
πθ,

πU
θ (ω) = max

{θ|plx (θ)≥ω}
πθ.

We have
ϕ(Γx (ω), z) = [Y L(ω, z),Y U(ω, z)],

where Y L(ω, z) and Y U(ω, z) are, respectively, the number of zi ’s
that are less than πL

θ(ω) and πU
θ (ω).
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Predictive belief function
Calculation

The belief and plausibilities that Y will be less than, or equal to y
are equal to

BelYx ([0, y ]) =

∫ 1

0
FQ,πL

θ(ω)(y)dω

PlYx ([0, y ]) =

∫ 1

0
FQ,πU

θ (ω)(y)dω,

where FQ,p denotes the cdf of the binomial distribution B(Q,p).
The contour function of Y is

plx (y) =

∫ 1

0

(
FQ,πL

θ(ω)(y)− FQ,πU
θ (ω)(y − 1)

)
dω.

Theses integrals can be approximated by Monte-Carlo
simulation.
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Ultrasound data

Data collected from 209 hospitals through the U.S.A. (Schmittlein and
Mahajan, 1982) about adoption of an ultrasound equipment.
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Forecasting
Predictions made in 1970 for the number of adopters in the period
1971-1978, with their lower and upper expectations:
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Cumulative belief and plausibility functions
Lower and upper cumulative distribution functions for the number of
adopters in 1971, forecasted in 1970:
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Plausibilities
Plausibilities PlYx ([y − r , y + r ]) as functions of y , from r = 0 (lower
curve) to r = 5 (upper curve), for the number of adopters in 1971,
forecasted in 1970:
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Conclusions

Uncertainty quantification is an important component of any
forecasting methodology. The approach introduced in this paper
allows us to represent forecast uncertainty in the belief function
framework, based on past data and a statistical model.
The method is based on two steps:

1 Estimation: evidence on the parameter θ is represented by a
consonant belief function defined from the normalized likelihood
function.

2 Prediction: the quantity of interest Y is written as ϕ(θ,Z ), where Z
is an auxiliary variable; beliefs on θ and Z are then propagated
through ϕ, resulting in a belief function on Y .

The Bayesian predictive probability distribution is recovered
when a prior on θ is available.
The belief function formalism makes it possible to combine
information from several sources (such as expert opinions and
statistical data) and fits with a utility-based decision framework.
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