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Abstract

In many classification problems, data are inherently uncertain. The available training
data might be imprecise, incomplete, even unreliable. Besides, partial expert knowledge
characterizing the classification problem may also be available. These different types of un-
certainty bring great challenges to classifier design. The theory of belief functions provides
a well-founded and elegant framework to represent and combine a large variety of uncertain
information. In this thesis, we use this theory to address the uncertain data classification
problems based on two popular approaches, i.e., the k-nearest neighbor rule (kNN) and
rule-based classification systems.

For the kNN rule, one concern is that the imprecise training data in class overlapping
regions may greatly affect its performance. An evidential editing version of the kNN
rule was developed based on the theory of belief functions in order to well model the
imprecise information for those samples in overlapping regions. Another consideration is
that, sometimes, only an incomplete training data set is available, in which case the ideal
behaviors of the kNN rule degrade dramatically. Motivated by this problem, we designed
an evidential fusion scheme for combining a group of pairwise kNN classifiers developed
based on locally learned pairwise distance metrics.

For rule-based classification systems, in order to improving their performance in com-
plex applications, we extended the traditional fuzzy rule-based classification system in the
framework of belief functions and develop a belief rule-based classification system to address
uncertain information in complex classification problems. Further, considering that in some
applications, apart from training data collected by sensors, partial expert knowledge can
also be available, a hybrid belief rule-based classification system was developed to make
use of these two types of information jointly for classification.

Keywords Data classification, Information fusion, Uncertainty management, Theory of
belief functions, k-nearest neighbor rule, rule-based classification system
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Résumé

Dans de nombreux problèmes de classification, les données sont intrinsèquement incer-
taines. Les données d’apprentissage disponibles peuvent être imprécises, incomplètes, ou
même peu fiables. En outre, des connaissances spécialisées partielles qui caractérisent le
problème de classification peuvent également être disponibles. Ces différents types d’incerti-
tude posent de grands défis pour la conception de classifieurs. La théorie des fonctions de
croyance fournit un cadre rigoureux et élégant pour la représentation et la combinaison
d’une grande variété d’informations incertaines. Dans cette thèse, nous utilisons cette
théorie pour résoudre les problèmes de classification des données incertaines sur la base
de deux approches courantes, à savoir, la méthode des k plus proches voisins (kNN) et la
méthode à base de règles.

Pour la méthode kNN, une préoccupation est que les données d’apprentissage imprécises
dans les régions où les classes de chevauchent peuvent affecter ses performances de manière
importante. Une méthode d’édition a été développée dans le cadre de la théorie des
fonctions de croyance pour modéliser l’information imprécise apportée par les échantillons
dans les régions qui se chevauchent. Une autre considération est que, parfois, seul un
ensemble de données d’apprentissage incomplet est disponible, auquel cas les performances
de la méthode kNN se dégradent considérablement. Motivé par ce problème, nous avons
développé une méthode de fusion efficace pour combiner un ensemble de classifieurs kNN
couplés utilisant des métriques couplées apprises localement.

Pour la méthode à base de règles, afin d’améliorer sa performance dans les applications
complexes, nous étendons la méthode traditionnelle dans le cadre des fonctions de croyance.
Nous développons un système de classification fondé sur des règles de croyance pour traiter
des informations incertains dans les problèmes de classification complexes. En outre, dans
certaines applications, en plus de données d’apprentissage, des connaissances expertes
peuvent également être disponibles. Nous avons donc développé un système de classification
hybride fondé sur des règles de croyance permettant d’utiliser ces deux types d’information
pour la classification.

Mots-clés Classification, Fusion d’informations, Gestion de l’incertitude, Théorie des
fonctions de croyance, k plus proches voisins, classification à base de règles
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Introduction

Data classification, also called supervised learning, is the process of predicting the class
label of a new instance based on a set of labeled samples. It occurs in a wide range of human
activities. In many real-world applications, data contains inherent uncertainty [21,100]. For
example, the data may be incomplete, which refers to cases where the value of a variable is
missing. Sometimes, the data may be imprecise, when the value of a variable is given, but
not with enough precision. In addition, the data may be unreliable, i.e., the obtained values
might be wrong. The above types of uncertainty can be caused by a variety of factors, such
as the random nature of the physical data generation and collection processes, measurement
and decision errors, insufficient knowledge, etc. [74]. These widely existed uncertainties
present great challenges to classifier design.

As a research field closely related to real-world applications, in the past several decades,
a wide variety of approaches have been proposed to cope with data classification problem.
Among them, the k-nearest neighbor rule, first developed by Fix and Hodges [38], has
become one of the most popular statistical classification techniques. As a non-parametric
lazy learning algorithm, its classification process is quite simple and it does not depend
on the underlying data distribution. Apart from the traditional statistical approaches,
some computational intelligence-based classification approaches have also been developed
to mimic the human reasoning process. One of the most representative approaches is rule-
based classification [17], which classifies a new instance based on a set of rules learnt from
training samples or expert knowledge. The most useful characteristic of this approach is
high interpretability due to the used linguistic model. In this thesis, our work mainly focuses
on these two approaches, i.e., the k-nearest neighbor rule and rule-based classification
system.

For the k-nearest neighbor (kNN) rule, it has been proved that its error rate ap-
proaches the optimal Bayes error rate asymptotically. However, in the finite sample case,
its performance may greatly affected by the imperfect training data. One consideration is
that the patterns from different classes overlap largely. Though the training samples in
overlapping regions are assigned with precise labels, they actually cannot be seen as truly
representatives of their corresponding clusters. Therefore, there is a need for well modeling
the imprecise information for those samples in overlapping regions. Another consideration
is that sometimes only an incomplete training data set is available. In these situations,

1



2 INTRODUCTION

the ideal performances of the kNN rule degrade dramatically. Therefore, obtaining good
performances based on incomplete training data set is also a critical issue for classifier
design.

For rule-based classification systems, the used linguistic model makes this approach
interpretable to users. However, every coin has two sides. The rule-based classification
systems may face lack of accuracy in some complex applications, due to the lack of flexibility
of the linguistic model. Therefore, there is a real need for improving the performance of the
rule-based classification systems in complex classification problems. In additions, in some
real-world classification problems, apart from training data collected by sensors, partial ex-
pert knowledge provided by humans may also be available. These two types of information
are usually independent but complementary. Thus, we need a hybrid classification model
that can make use of these two types of uncertain information jointly.

The traditional classification approaches usually work within the probabilistic frame-
work. However, probability theory only captures the randomness aspect of the data, but
neither imprecision, nor incompleteness which are inherent in uncertain data. Therefore,
many theories have been developed during the last decades to construct more powerful
representations. In this thesis, we focus on the theory of belief functions, also known as
Dempster-Shafer theory [24, 96], to address the uncertain data classification problems. As
a generalization of probability theory, it offers a well-founded and workable framework to
represent and combine a large variety of uncertain information. We consider data classi-
fication from an information fusion point of view by combining the evidence constructed
from uncertain training data or expert knowledge.

This thesis is structured in three parts:

Part I introduces the theoretical background that supports the thesis and provides a
literature review for related work. Chapter 1 recalls fundamental aspects of belief functions.
We describe how information is represented and combined in the framework of belief
functions. Some useful operations as well as decision rules are also presented. Chapter
2 presents general aspects of classification for uncertain data. After a discussion about
the inherent properties of uncertain data, we formulate four critical issues concerning the
uncertainty in data classification field, which are the main concerns of this thesis. Then, we
provide a literature review for related work, emphasizing on nearest-neighbor-based and
rule-based approaches.

Part II focuses on classification of uncertain data using nearest-neighbor-based ap-
proaches. Chapter 3 is oriented to performance enhancement of the kNN rule for cases in
which patterns from different classes overlap strongly. In contrast, in Chapter 4, we are
mainly concerned the classification problems based on incomplete training data sets, which
is a key issue for nearest-neighbor-based approaches.
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Part III focuses on classification of uncertain data using rule-based approaches. In
Chapter 5, we present a method for improving the performance of the rule-based clas-
sification system in harsh working conditions, where only partially reliable training data
are available. Finally, in Chapter 6, we propose a method for handling expert knowledge
together with training data in rule-based systems.





Part I

Theoretical background and
literature review

The purpose of this fist part is to introduce the theoretical background and to provide
a literature review for related work.

Chapter 1 is intended to provide a detailed introduction about the theory of belief
functions, including some basic concepts and some useful operations.

Chapter 2 is designed to formulate the uncertain data classification problems considered
in this thesis, and to introduce some existed work for classification of uncertain data using
nearest-neighbor-based and rule-based approaches.
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Chapter 1

Theory of belief functions

Uncertain data classification tasks require powerful tools to represent and combine different
types of uncertain information. The theory of belief functions [24, 96], also known as
Dempster-Shafer theory or evidence theory, is a generalization of probability theory. It
offers a well-founded and workable framework to represent and combine a large variety
of uncertain information [125]. It is also a generalization of possibility theory [133] and is
closely linked to other theories including fuzzy sets [132], random sets [77] and imprecise
probability [117].

In this chapter, we first describe in Section 1.1 how different types of information
can be represented in the framework of belief functions. In Section 1.2, we discuss the
combination of mass functions and present some widely-used combination rules. Next, we
describe in Section 1.3 some operations over the frame of discernment, such as conditioning,
deconditioning and discounting. Then, in Section 1.4, we consider the issue of decision
making using belief functions. Finally, Section 1.5 concludes this chapter.

1.1 Representation of evidence

The prerequisite of reasoning in the framework of belief functions is the representation
of the available information, which is usually called evidence. This is done based on some
basic functions used to represent our knowledge about the considered problem. At a glance,
there are three main functions: mass, belief and plausibility functions. The mass function
is the most basic and intuitive way of expressing someone’s degrees of belief. The belief and
plausibility functions are often used to compute intervals in order to bound the uncertainty.
We will see their usefulness and their expressive power in the following sections.

1.1.1 Mass function

In the theory of belief functions, a problem domain is represented by a finite set Ω =

{ω1, ω2, · · · , ωn} of mutually exclusive and exhaustive hypotheses called the frame of
discernment. Given a piece of evidence held by an agent, the state of belief about the

7
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truth of the problem is represented by a mass function or basic belief assignment (BBA)
defined as follows [96].

Definition 1.1 (mass function). A mass function, over a frame of discernment Ω, is a
mapping function m: 2Ω → [0, 1], such that

m(∅) = 0 and
∑
A⊆Ω

m(A) = 1. (1.1)

Elements A ⊆ Ω having m(A) > 0 are called the focal sets of the mass function m.
Each number m(A) represents the part of belief assigned to the hypothesis that the truth
ω lies in the subset A (i.e., the hypothesis ω ∈ A). It is important to understand that the
hypothesis ω ∈ A does not support the membership of ω to any subset B ( A. The belief
assigned to Ω, or m(Ω), is referred to as the degree of ignorance. Definition 1.1 imposes
that the empty set cannot be a focal set. For the open-world assumption [103], the quantity
m(∅) is interpreted as the degree of support of the hypothesis that the truth ω is actually
outside of the frame Ω. In this thesis, the closed-world assumption is used, i.e., the frame
of discernment is considered exhaustive.

To interpret how the formalism of mass function can be used to represent a piece of
evidence, we provide the following murder example [30] for illustration.

Exemple 1.1 (murder). A murder has been committed and there are three suspects:
Peter, John and Mary. The question Q of interest is the identity of the murderer. In the
framework of belief functions, the set Ω = {Peter, John,Mary} can be seen as the frame of
discernment for the considered problem. The piece of evidence under study is a testimony:
a witness saw the murderer and because he is short-sighted, he can only report that he saw
a man. However, this testimony is not fully reliable because we know that the witness is
drunk 20% of the time. How can such a piece of evidence be encoded in the language of
mass functions?

We can see that what the testimony tells us about Q depends on the answer to another
question Q′: Was the witness drunk at the time of the murder? If he was not drunk, we
know that the murderer is Peter or John. Otherwise, we know nothing. Since there is 80%
chance that the former hypothesis holds, we assign a 0.8 mass to the set {Peter, John},
and 0.2 to the frame of discernment Ω, yielding the following mass function:

m({Peter, John}) = 0.8, m(Ω) = 0.2.

The mass function in Definition 1.1 has several special cases, which are quite useful to
encode different types of information. A mass function is said to be

• categorical, if it has only one focal set A (denoted as mA). This can be interpreted
as being certain that the truth lies in A.
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• Bayesian, if all of its focal sets are singletons (i.e., sets with cardinality equal to one).
In this case, the mass function reduces to the precise probability distribution.

• dogmatic, if Ω is not a focal set. In this case, there is no ignorance about the state of
belief for the truth of the problem.

• vacuous, if Ω is the only focal set (denoted as mΩ). This situation corresponds to
complete ignorance as the closed-world assumption implies that hypothesis ω ∈ Ω is
always true.

• simple, if it has at most two focal sets and one of them is Ω if it has two. It is denoted
by Aw, A being the focal set different from Ω and 1−w the confidence that the truth
lies in A. The vacuous mass function can thus be noted as A1 for any A ⊂ Ω, and a
categorical mass function can be noted as A0 for some A 6= Ω.

In Table 1.1, we show some examples of these special mass functions and the types of
information that are encoded.

Table 1.1: Examples of mass functions defined over Ω = {ω1, ω2, ω3}
Mass function Example Type of information
Categorical m({ω1, ω2}) = 1 Certain information
Bayesian m({ω1}) = m({ω2}) = m({ω3}) = 1/3 Precise information
Dogmatic m({ω1}) = 1/2, m({ω2, ω3}) = 1/2 Information without ignorance
Vacuous m(Ω) = 1 Complete ignorance
Simple m({ω1}) = 1/2, m(Ω) = 1/2 Unique hypothesis with partial

confidence

1.1.2 Belief and plausibility functions

In addition to mass function, there are two other important functions to represent evidence:
the belief function Bel and the plausibility function Pl [96].

Definition 1.2 (belief and plausibility functions). The belief and plausibility functions,
over a frame of discernment Ω, are defined, respectively, as

Bel(A) =
∑
B⊆A

m(B), ∀A ⊆ Ω. (1.2)

Pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Ω. (1.3)

The degree of belief Bel(A) quantifies the amount of justified specific support to be
given to A. It can be interpreted as the degree of belief that the truth lies in A. Note
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that this definition is close to that of a mass function. The difference lies in the fact that
the degree of belief Bel(A) can be further divided between some subsets of A. The degree
of plausibility Pl(A) quantifies the maximum amount of potential specific support that
could be given to A. It can be interpreted as the belief that fails to doubt A. The interval
[Bel(A), P l(A)] can be seen as the lower and upper bounds of support to A.

Properties

1. Bel(A) ≤ Pl(A), ∀A ⊆ Ω;

2. Bel and Pl are related by:

Bel(A) = 1− Pl(A), ∀A ⊆ Ω, (1.4)

Pl(A) = 1−Bel(A), ∀A ⊆ Ω; (1.5)

3. A mass function m can be expressed in terms of Bel and Pl in the following way:

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω, (1.6)

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B), ∀A ⊆ Ω. (1.7)

From the definitions and properties of the belief and plausibility functions, we can see
that there exists a one-to-one correspondence between mass, belief and plausibility func-
tions as shown in Figure 1.1. To provide a graphical explanation of belief and plausibility
functions and their relation to the mass function, we consider the following example.

m

Bel Pl

E
q.

(1
.2

)

E
q.(1.3)

Eq.(1.5)

Eq.(1.4)

E
q.

(1
.6

)

E
q.(1.7)

Figure 1.1: One-to-one correspondence between mass (m), belief (Bel) and plausibility (Pl)
functions
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Exemple 1.2. As shown in Figure 1.2, we consider a mass function m with five focal sets
Bi, i = 1, 2, 3, 4, 5. Then, the degree of belief in A is

Bel(A) = m(B1) +m(B2),

whereas the plausibility of A is

Pl(A) = m(B1) +m(B2) +m(B3) +m(B4).

The degree of belief in the complement of A is

Bel(A) = m(B5),

which is clearly equal to 1− Pl(A). The plausibility in the complement of A is

Pl(A) = m(B3) +m(B4) +m(B5),

which is clearly equal to 1−Bel(A).

Ω

B1

B2

B3

B4

B5

A

Figure 1.2: Graphical example of mass, belief and plausibility functions

1.1.3 Distance between mass functions

With two sources of evidence S1 and S2 characterizing the same considered problem,
sometimes we need to know the dissimilarity between them. It can be characterized by the
distance between their corresponding mass functions. Since the introduction of Dempster’s
conflict measure [24], many distance measures between mass functions have been defined
in the literature [54]. Here, we present the definition of Jousselme’s distance dJ [53], which
is one of the most commonly used distances.

Definition 1.3 (Jousselme’s distance). Let m1 and m2 be two mass functions defined
over the same frame of discernment Ω, containing n mutually exclusive and exhaustive
hypotheses. The Jousselme’s distance between m1 and m2 is

dJ(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2), (1.8)
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where −→m1 and −→m2 are column vectors composed of the mass for all of the 2n subsets of

Ω, and D is a 2n × 2n matrix with elements given by Di,j =
|Ai ∩Bj |
|Ai ∪Bj |

, Ai, Bj ∈ 2Ω. The

factor 1/2 is used to normalize dJ so that 0 ≤ dJ(m1,m2) ≤ 1.

From the above definition, another way to write dJ is:

dJ(m1,m2) =

√
1

2
(‖−→m1‖2 + ‖−→m2‖2)− 〈−→m1,

−→m2〉, (1.9)

where ‖−→m‖2 is the square norm of −→m, and 〈−→m1,
−→m2〉 is the scalar product defined by

〈−→m1,
−→m2〉 =

2n∑
i=1

2n∑
j=1

m1(Ai)m2(Bj)
|Ai ∩Bj |
|Ai ∪Bj |

,

with Ai, Bj ∈ 2Ω for i, j = 1, 2, · · · , 2n.

1.2 Combination of evidence

In the preceding section, we have presented some functions that allow us to represent the
available pieces of evidence. The next step of the reasoning process is to combine these
information to obtain a single mass function. In this section, we will introduce some popular
combination rules that allow us to aggregate knowledge held by several pieces of evidence
into a single one. The differences between these combination rules mainly depend on two
issues: the reliability of the sources of information and the degree of dependence between
them.

1.2.1 Dempster’s rule

Given two mass functions m1 and m2 induced from two sources of information, a combi-
nation rule yields a new mass function that represents our new state of knowledge after
taking into consideration both sources of information. Dempster’s rule is the most popular
alternative to combine several distinct bodies of evidence [24].

Definition 1.4 (Dempster’s rule). Let m1 and m2 be two mass functions defined over the
same frame of discernment Ω. One can combine them using Dempster’s rule to compute a
new mass function defined by

(m1 ⊕m2)(A) =


0, for A = ∅

1

1− κ
∑

B∩C=A

m1(B)m2(C), for A ⊆ Ω, A 6= ∅, (1.10)

with
κ =

∑
B∩C=∅

m1(B)m2(C). (1.11)
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The quantity κ measures the conflict between the two mass functions m1 and m2. The
combination rule is valid only if κ < 1, otherwise, m1 and m2 are inconsistent and cannot
be combined.

Properties

1. Commutativity: m1 ⊕m2 = m2 ⊕m1;

2. Associativity: (m1 ⊕m2)⊕m3 = m1 ⊕ (m2 ⊕m3);

3. It has the vacuous mass function mΩ as the unique neutral element: m ⊕ mΩ =

mΩ ⊕m = m;

Next, let us come back to the murder example studied in Example 1.1 and illustrate
how Dempster’s rule works to combine distinct bodies of evidence.

Exemple 1.3 (murder continued). Remember that the first item of evidence gave us the
following mass function:

m1({Peter, John}) = 0.8, m1(Ω) = 0.2,

concerning the murderer over the frame Ω = {Peter, John,Mary}. Let us now assume that
we have a new piece of evidence: a blond hair has been found. This new evidence supports
the hypothesis that the murderer is either John or Mary, as they are blond while Peter is
not. However, this piece of evidence is reliable only if the room has been cleaned before the
crime. If we judge that there is 60% chance that it was the case, then our second piece of
evidence is modeled by the following mass function:

m2({John,Mary}) = 0.6, m2(Ω) = 0.4.

With the above two distinct pieces of evidence, Dempster’s rule can be used to combine
them into an integrated mass function as

m({John}) = 0.48, m({Peter, John}) = 0.32, m({John,Mary}) = 0.12, m(Ω) = 0.08.

From the above combination results, we can see that each focal set of m is obtained by
intersecting one focal set of m1 and one focal set of m2. Consequently, the integrated mass
function m is more focussed than both m1 and m2. Therefore, after combination, we can
obtain a more precise answer about the considered problem.

1.2.2 Cautious rule

A strong assumption of Dempster’s rule is that the pieces of evidence to be combined
are independent. However, this is not always verified in practice. In cases where this
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independence assumption is not reasonable, Denœux [29] proposed to use the cautious
rule. Before defining the cautious rule, let us first show the canonical decomposition of a
mass function.

Shafer [96] defined a separable mass function as the result of the ⊕ combination of
simple mass functions. If this separable mass functionm is non-dogmatic, it can be uniquely
represented by

m =
⊕
∅6=A⊂Ω

Aw(A), (1.12)

with w(A) ∈ [0, 1] for all A ⊂ Ω, A 6= ∅. This representation is called the canonical
decomposition of m. The weights w(A) can be obtained from the commonalities as follows:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1
, ∀A ⊂ Ω, (1.13)

where the commonalities q(B) =
∑
C⊇B

m(C), ∀B ⊆ Ω. The above general formula for

calculating weights w(A) seems complicated. In [29], Denœux provided a simple analytical
formula for the weight function associated to the following special mass function. Let
A1, A2, · · · , An be n subsets of Ω such that Ai ∩ Aj = ∅, for all i, j ∈ {1, 2, · · · , n}, and
let m be a mass function on Ω with focal sets A1, A2, · · · , An, and Ω. The weight function
associated to m is

w(A) =


m(Ω)

m(Ak) +m(Ω)
, if A = Ak

1, otherwise.
(1.14)

Definition 1.5 (cautious rule). Letm1 andm2 be two non-dogmatic mass functions defined
over the same frame of discernment Ω, and w1 and w2 the associated weight functions
from their respective canonical decompositions. Their combination using the cautious rule
is defined as

m1 7m2 =
⊕
∅6=A⊂Ω

Aw1(A)∧w2(A), (1.15)

where ∧ denotes the minimum operator.

Compared to Dempster’s rule, besides the commutativity and associativity, the cautious
rule is also idempotent (i.e., m7m = m), which is a natural requirement for a rule allowing
the combination of dependent pieces of evidence.

1.2.3 Triangular norm-based rules

It is possible to formulate both Dempster’s rule and the cautious rule with a triangular
norm-based combination rule [29]. The combination of two non-dogmatic mass functions
m1 and m2 with Dempster’s rule can be written as an expression similar to Eq. (1.15):

m1 ⊕m2 =
⊕
∅6=A⊂Ω

Aw1(A)w2(A). (1.16)
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With Dempster’s rule, the weights w1(A) and w2(A) are multiplied, whereas with the
cautious rule, the minimum operator is used. Frank’s parameterized family of t-norms [56]
generalizing these two operators is defined as

a>sb =


a ∧ b, if s = 0

ab, if s = 1

logs

(
1 +

(sa − 1)(sb − 1)

s− 1

)
, otherwise,

(1.17)

for all a, b ∈ [0, 1], where s is a positive parameter. For any s ∈ (0, 1), a>sb returns a value
between ab and a ∧ b.

Definition 1.6 (triangular norm-based rules). Let m1 and m2 be two non-dogmatic mass
functions defined over the same frame of discernment Ω, and w1 and w2 the associated
weight functions from their respective canonical decompositions. Their combination using
the Frank’s family of triangular norm-based rules is defined as

m1 ~s m2 =
⊕
∅6=A⊂Ω

Aw1(A)>sw2(A), (1.18)

where >s is Frank’s parameterized family of t-norms with s ∈ [0, 1].

Obviously, when s = 0, the triangular norm-based rule corresponds to the cautious rule
(i.e., ~0 = 7), and when s = 1, it corresponds to Dempster’s rule (i.e., ~1 = ⊕). All these
rules inherit important properties from t-norms: they are commutative and associative,
and they admit the vacuous mass function as neutral element.

1.2.4 Other alternative combination rules

For the above reviewed combination rules, the sources of evidence to be combined are
assumed to be reliable. We could, however, make different assumptions about the reliability
of the two sources. For instance, we could assume that at least one of them is reliable.
This assumption results in the following binary operation, called the disjunctive rule of
combination [101]:

(m1 ∪m2)(A) =
∑

B∪C=A

m1(B)m2(C), for A ⊆ Ω. (1.19)

This operation is clearly commutative and associative, and it does not have a neutral
element. Combining mass functions disjunctively can be seen as a conservative strategy,
as the disjunctive rule relies on a weaker assumption about the reliability of the sources,
as compared to Dempster’s rule. However, mass functions become less and less focussed as
more pieces of evidence are combined using the disjunctive rule. In general, the disjunctive
rule may be preferred in case of heavy conflict between the different pieces of evidence.



16 CHAPTER 1. THEORY OF BELIEF FUNCTIONS

An alternative rule, which is somehow intermediate between the disjunctive rule and
Dempster’s rule, has been proposed by Dubois and Prade [35]. It is defined as:

(m1?m2)(A) =


0, for A = ∅∑
B∩C=A

m1(B)m2(C) +
∑

B∩C=∅,B∪C=A

m1(B)m2(C), for A ⊆ Ω, A 6= ∅.

(1.20)
This rule boils down to Dempster’s rule and disjunctive rule when, respectively, the degree
of conflict equals to zero and one. In other cases, it has some intermediate behavior.

Many other alternatives to Dempster’s rule can be found in the literature [52,62,97,99,
126], which were mainly proposed to address the issue of combining conflicting information.
These alternative rules allow the combination of contradictory information but prevent
the representation of certain types of information. In particular, categorical, Bayesian
and dogmatic mass functions can often not be properly handled by these alternative
combination rules. The use of these alternative rules thus limits the power of belief functions
to represent a large variety of information. In this thesis, we adopt the same point of
view as Haenni [42] who agreed that the so-called counter-intuitive results that may be
obtained from Dempster’s rule are often due to erroneous modeling of the pieces of evidence
to be combined. Efforts should thus be put on properly representing the information at
hand rather than on modifying the combination rule. For instance, in combining unreliable
sources of evidence, one can first discount those original pieces of evidence using Shafer’s
discounting operation [96] (to be introduced in next section) with refined modeling of the
reliability. In such a way, the conflict between different pieces of evidence can be greatly
reduced and Dempster’s rule can be selected as a preferred combination rule.

1.3 Operations over the frame of discernment

In order to manipulate the belief functions more effectively, the conditioning and decon-
ditioning operations are introduced to the framework of belief functions. In addition, we
also give an introduction for the discounting operation, which makes it possible to handle
partially reliable sources of information.

1.3.1 Conditioning operation

In Bayesian probability theory, conditioning is the fundamental mechanism for updating
a probability measure P with new evidence of the form ω ∈ B for some B ⊆ Ω such that
P (B) 6= 0. The conditional probability measure is defined as

P (A | B) =
P (A ∩B)

P (B)
, ∀A ⊆ Ω. (1.21)
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In a similar way, a conditioning operation can also be defined for mass functions in the
framework of belief function [101].

Definition 1.7 (conditioning operation). Let mΩ be a mass function defined over the
frame of discernment Ω. The conditioning of mΩ with respect to B ⊆ Ω is defined as

mΩ[B] = mΩ ⊕mΩ
B, (1.22)

where mΩ
B is the categorical mass function with unique focal set B.

From the above definition, we can see that the conditioning operation for mass functions
is just a special case of Dempster’s rule, in which an arbitrary mass functionmΩ is combined
with a categorical mass function mΩ

B.

1.3.2 Deconditioning operation

In this section, we focus on the inverse question studied in the preceding section. Assume
that a source of evidence gives us a mass function representing evidence about some
problem defined over the frame Ω, assuming that some proposition B ⊆ Ω holds. This
mass function can be interpreted as a conditional mass function mΩ[B] obtained by con-
ditioning some unknown mass function mΩ by B. However, there will usually exist several
mass functions mΩ verifying this property. In the following, a deconditioning operation
is introduced to give the least committed mass function, whose conditioning on B yields
mΩ[B] [101].

Definition 1.8 (deconditioning operation). Let mΩ[B] be a mass function obtained by
conditioning some unknown mass function mΩ by B ⊆ Ω. The deconditioning of mΩ[B]

with respect to B is defined as

mΩ(A) =

{
mΩ[B](C), if A = C ∪B for some C ⊆ Ω

0, otherwise,
(1.23)

where B denotes the complement of set B with respect to set Ω.

Note that the above deconditioning operation usually cannot recover the original un-
conditioned mass function. It only gives the least committed mass function according to
the Least Commitment Principle (LCP) [101], which indicates that, given several mass
functions compatible with a set of constraints, the most appropriate is the least informative.
In the following, we provide an example to show how the operations of conditioning and
deconditioning work to manipulate mass functions.

Exemple 1.4. We consider the following mass function m defined over the frame Ω =

{ω1, ω2, ω3}:

m({ω1}) = 0.4, m({ω2}) = 0.3, m({ω3}) = 0.2, m(Ω) = 0.1.
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Suppose we know that the truth ω lies in B = {ω1, ω2}. With this hypothesis, the above
mass function can be updated using the conditioning operation (1.22) with respect to B as:

m[B]({ω1}) = 0.5, m[B]({ω2}) = 3/8, m[B](B) = 1/8.

Then, with the above conditioned mass function m[B], we intend to recover the original
mass function using the deconditioning operation (1.23) with respect to B as:

m′({ω1, ω3}) = 0.5, m′({ω2, ω3}) = 3/8, m′(Ω) = 1/8.

We can see that the recovered mass function m′ is different from the original mass function
m. Therefore, the conditioning and deconditioning operations are not strictly mutually
reversible. In addition, the recovered mass function m′ becomes less informative than the
original mass function m, which indicates that some information is lost in these operations.

1.3.3 Discounting operation

Let us assume that we receive a piece of evidence from a source S, describing some
information about the truth ω over the frame of discernment Ω. However, this information
is not fully reliable or not fully relevant because, e.g., it is provided by a possible faulty
sensor, the measurement was performed in unfavorable experimental condition, or the
information is related to a situation that only has some similarity with the situation
considered. By considering the information about the reliability of the source, we get a
new, less informative mass function. This operation is called discounting [96].

Definition 1.9 (discounting operation). Given a mass function m defined over the frame
of discernment Ω and a coefficient α ∈ [0, 1], the discounting of m with discount rate 1−α
yields a new mass function αm defined by:

αm(A) =

{
αm(A), for A 6= Ω

αm(Ω) + (1− α), for A = Ω.
(1.24)

The discounting operation is used to model a situation where a source S provides a
mass function m, and the reliability of S is measured by α. If S is fully reliable (i.e.,
α = 1), then m is left unchanged. If S is not reliable at all, m is transformed into the
vacuous mass function. One of the effects of the discounting operation is that Bel(A) is
reduced and Pl(A) is reinforced or remains unchanged for all A ⊂ Ω. In other words, the
evidence becomes less informative due to the unreliability of the source.

The discounting operation is a very useful tool to build mass function from an unreliable
source. Let us reconsider the murder example studied in Example 1.1 and build the mass
function with the discounting operation.
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Exemple 1.5 (murder continued). First, we know that a witness saw the murderer and
because he is short-sighted, he can only report that he saw a man. Based on this evidence,
the following mass function can be constructed for the murderer:

m({Peter, John}) = 1.

Further, we know that the witness is drunk 20% of the time. This means that the above
evidence holds with probability 0.8. Thus, the discounting operation in Eq. (1.24) with a
discount rate of 1− α = 0.2 can be used to obtain the corresponding mass function as

αm({Peter, John}) = 0.8, αm(Ω) = 0.2.

Compared with the result in Example 1.1, we can see that the same mass function is
built by two different ways. Now, we take a comparison for the information conveyed by
the evidence before and after discounting. For the original evidence, both the belief and
plausibility of set {Peter, John} equal to 1. This means it is certain that the murder is one
in {Peter, John}. However, after discounting, the belief of set {Peter, John} reduces to
0.8, while the plausibility keeps unchanged. Accordingly, the support of set {Peter, John}
becomes to an interval [0.8, 1], which reflects the uncertainty of the available information.

1.4 Decision making

In the preceding sections, we have presented some functions and operations that allow us to
represent the available uncertain sources of information and to reason with them. The final
step is to make a decision about the considered problem based on the reasoning results. In
this section, we introduce some decision rules in the framework of belief functions.

1.4.1 Maximum belief/plausibility rule

Let Ω = {ω1, ω2, · · · , ωn} be the frame of discernment, A = {a1, a2, · · · , an} the set of
acts, where ai is the act of selecting ωi. Define a loss function L: A× Ω→ R such that

L(ai, ωj) =

{
0, if i = j,

1, otherwise.

Define the risk of each act ai as the expected loss if ai is selected:

RP (ai) = EP [L(ai, ·)] =
∑
ω∈Ω

L(ai, ω)P ({ω}), ∀ai ∈ A,

where P is a probability measure defined on Ω. With the above notions, the decision making
problem is formalized to select an act with minimal risk.
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In the framework of belief functions, the uncertainty on Ω is described by an interval
[Bel(A), P l(A)], ∀A ⊆ Ω, and the lower and upper expected risk of each act ai can be
defined, respectively, as [27,98]:

R(ai) = E[L(ai, ·)] =
∑
A⊆Ω

m(A) min
ω∈A

L(ai, ω) = 1− Pl({ωi}), ∀ai ∈ A,

R(ai) = E[L(ai, ·)] =
∑
A⊆Ω

m(A) max
ω∈A

L(ai, ω) = 1−Bel({ωi}), ∀ai ∈ A.

Minimizing the lower risk R and the upper risk R result in two decision rules: the maximum
plausibility rule (optimistic strategy) and the maximum belief rule (pessimistic strategy),
respectively.

In practice, the maximum plausibility rule is more widely used because it is computa-
tionally efficient [11]: suppose m = m1 ⊕m2, then

Pl({ωi}) ∝ Pl1({ωi})Pl2({ωi}), ∀ωi ∈ Ω. (1.25)

That is, when combining several mass functions, we do not need to compute the combined
mass function using Dempster’s rule. Instead, we can compute the combined plausibility
using Eq. (1.25) to make the decision according to the maximum plausibility rule.

1.4.2 Maximum pignistic probability rule

In the preceding section, a pessimistic strategy and an optimistic one were derived by
minimizing the upper and lower expected risk, respectively. In this section, we introduce
another decision rule that finds a compromise between the pessimistic and the optimistic
strategies. It is based on the Transferable Belief Model (TBM) [103], which postulates
that uncertain reasoning and decision making are two fundamentally different operations
occurring at two different levels: uncertain reasoning is performed at the credal level using
the formalism of belief functions, while decision making is performed at the pignistic
level, after the mass function has been transformed into a probability measure. This
transformation is called the pignistic transformation.

Definition 1.10 (pignistic transformation). Given a mass function m defined over the
frame of discernment Ω, the pignistic transformation from the mass function m to a
probability measure BetP is defined by:

BetP (A) =
∑
B⊆Ω

|A ∩B|
|B| m(B), ∀A ⊆ Ω, (1.26)

where |X| denotes the cardinality of set X.

The pignistic probability BetP (A) (from the Latin word pignus, meaning a bet) ap-
proximates the unknown probability in [Bel(A), P l(A)]:

Bel(A) ≤ BetP (A) ≤ Pl(A), ∀A ⊆ Ω.
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Accordingly, the expected risk based on the pignistic probability is

RBetP (ai) = EBetP [L(ai, ·)] =
∑
ω∈Ω

L(ai, ω)BetP ({ω}) = 1−BetP ({ωi}), ∀ai ∈ A.

Consequently, the expected risk based on the pignistic probability lies in the interval of
the lower and upper expected risk:

R(ai) ≤ RBetP (ai) ≤ R(ai), ∀ai ∈ A.

Minimizing the pignistic probability-based risk RBetP results in another decision rule: the
maximum pignistic probability rule, which is a compromise between the maximum belief
rule and the maximum plausibility rule. Next, let us come back to the murder example
studied in Example 1.3 and illustrate how these three decision rules work to judge who is
the murderer.

Exemple 1.6 (murder continued). Remember that with the two available pieces of evidence,
based on Dempster’s rule, we obtain the following combined mass function:

m({John}) = 0.48, m({Peter, John}) = 0.32, m({John,Mary}) = 0.12, m(Ω) = 0.08,

concerning the murderer over the frame Ω = {Peter, John,Mary}. To judge who is the
most likely to be the murderer based on the above combined mass function, we compute
the belief, plausibility and pignistic probability for each suspect using Eqs. (1.2,1.3,1.26),
as shown in Table 1.2. The belief Bel and the plausibility Pl for each suspect provide
its lower and upper probabilities to be the murderer, respectively. The pignistic probability
BetP provides an approximate estimate between the lower and upper probabilities. For this
example the same decision is made by maximizing Bel, Pl and BetP : John is most likely
to be the murderer.

Table 1.2: The belief, plausibility and pignistic probability with regard to each suspect
Suspects Bel P l BetP

Peter 0 0.4 0.19
John 0.48 1 0.73
Mary 0 0.2 0.09

1.5 Conclusion

As a generalization of probability theory, the theory of belief functions can be used to
model and reason with many types of uncertain information. This chapter provided a
detailed introduction for the theory of belief functions. Several basic functions that are
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commonly used to represent uncertain information have been described. Some combination
rules and several other operations (i.e., conditioning, deconditioning and discounting) over
the frame of discernment have been introduced. Finally, some decision rules concerning the
uncertainty quantified by belief functions have been presented. This theory will be used
in the following chapters to model different types of uncertain information encountered in
data classification problems.



Chapter 2

Classification of uncertain data

Automatic classification of data is an important problem in a variety of engineering and
scientific disciplines such as biology, psychology, medicine, marketing, computer vision,
military affairs, etc. [50]. In the past several decades, a wide variety of approaches have been
developed towards this task. For traditional classification algorithms, the available data are
often assumed to be exact or perfect. In many emerging applications, however, the data
are inherently uncertain, which brings new challenges to classifier design [1,67,81,86,112].

In this chapter, we first describe in Section 2.1 the definition of classification and
some popular classification methods. In Section 2.2, we discuss the uncertainty in data
classification field. Then, we give brief reviews about classification of uncertain data with
nearest-neighbor-based approaches in Section 2.3 and rule-based approaches in Section 2.4,
respectively. Finally, Section 2.5 concludes this chapter.

2.1 Data classification problem

Before addressing the more advanced issues in data classification field, we first define what
we mean by classification, and then introduce some popular classification methods.

2.1.1 What is classification?

The classification task occurs in a wide range of human activities. In its wider sense, the
term could cover any context in which some decision or forecast is made on the basis of
currently available information, and a classification procedure is then some formal method
for repeatedly making such judgments in new situations [73]. In this thesis we consider a
more restricted interpretation. We assume that the problem concerns the construction of
a procedure that will be applied to a continuing sequence of cases, in which each new case
must be assigned to one of a set of pre-defined classes on the basis of observed features. The
construction of a classification procedure from a set of labeled samples has also been termed
supervised learning (in order to distinguish it from unsupervised learning or clustering in
which the classes are inferred from the data).

23
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Generally, the classification problem considered in this thesis can be formulated as
follows.

• Given

– a set of M pre-defined classes: Ω = {ω1, · · · , ωM}, and

– a set of N labeled training samples: L = {(x1, ω
(1)), · · · , (xN , ω(N))}, with each

sample described by a feature vector x ∈ RP and a class label ω ∈ Ω,

• the classification problem is to assign a new instance y ∈ RP to one of the pre-defined
classes in Ω based on the available training set L.

2.1.2 Overview of some of the more common classification methods

As a research field closely related to real-world applications, the study of data classification
has developed significantly in the past several decades, and a wide variety of approaches
have been taken towards this task. According to the used theoretical tools, three main
historical strands of research can be identified: statistical approaches, logic-based approaches
and perceptron-based approaches [59].

2.1.2.1 Statistical approaches

Statistical approaches are generally characterized by being based on an explicit underlying
probability model, which provides a probability of being in each class rather than simply a
classification [73]. Under this category of classification approaches, one can find Bayesian
networks, k-nearest neighbor, support vector machines, etc.

Bayesian networks [51] A Bayesian Network (BN) is a probabilistic graphical model
that represents a set of random variables and their conditional dependencies via a directed
acyclic graph (DAG). A practical BN commonly used in data classification is the naive
Bayesian (NB) network which is a very simple BN composed of DAGs with only one parent
and several children with a strong assumption of independence among child nodes in the
context of their parent. This classifier learns from training data the conditional probability
of each feature Ap given the class label ω. Classification is then done by applying Bayes
rule to compute the probability of ω given the particular instance of A1, · · · , AP , and
then predicting the class with the highest posterior probability. The major advantage of
the NB classifier is its short computational time for training. However, as the assumption
of independence among child nodes is unrealistic for most applications, the classification
accuracy of the NB classifier is usually not very high.
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k-nearest neighbor [38] The k-nearest neighbor (kNN) rule is based on the principle
that the patterns within a data set will generally exist in close proximity to other patterns
that have similar properties. With the training samples tagged with class labels, the class
label of an unclassified pattern can be determined by observing the class labels of its nearest
neighbors. The kNN rule locates the k nearest training samples to the query pattern and
determines its class by identifying the single most frequent class label. As a type of lazy
learning algorithms, the kNN has been one of the most popular and successful pattern
classification techniques due to its simplicity.

Support vector machines [114] The support vector machines (SVMs) are supervised
learning models with associated learning algorithms that analyze data and recognize pat-
terns, for classification and regression analysis. Given a set of training samples, each marked
as belonging to one of two classes, a SVM training algorithm builds a model that assigns
new patterns into one class or the other, making it a non-probabilistic binary linear
classifier. A SVM model is a representation of the samples as points in space, mapped
so that the samples of the separate classes are divided by a clear gap that is as wide as
possible. New patterns are then mapped into that same space and predicted to belong
to a class based on which side of the gap they fall on. The SVM approach has a sound
theoretical foundation, performs well with small datasets, and is insensitive to the number
of dimensions.

2.1.2.2 Logic-based approaches

Logic-based approaches aim to mimic the human reasoning process, and to generate clas-
sification expressions simple enough to be easily understood [73]. Under this category of
classification approaches, one can find decision trees and rule-based classification systems.

Decision trees [82] A decision tree is a flowchart-like structure in which each internal
node represents a test on an feature (e.g., whether a coin flip comes up head or tail),
each branch represents the outcome of the test, and each leaf node represents a class
label (decision taken after computing all features). The paths from root to leaf represent
classification rules. First, the training samples are used to build a decision tree, and then
new patterns are classified starting at the root node and sorted based on their feature
values. One of the most useful characteristics of decision trees is their comprehensibility.
People can easily understand why a decision tree classifies a pattern as belonging to a
specific class.

Rule-based classification systems [17] Decision trees can be translated into a set
of rules by creating a separate rule for each path from the root to a leaf in the tree.



26 CHAPTER 2. CLASSIFICATION OF UNCERTAIN DATA

However, rules can also be directly induced from training data using a variety of rule
generation algorithms. Generally, a rule-based classification system (RBCS) works in two
stages, i.e., to learn a rule base that establishes an association between the feature space
and the class space based on the training data, and to classify a query pattern based on the
learned rule base with a reasoning method. The RBCS is widely employed in real-world
applications due to its capability of building a linguistic model interpretable to users and
addressing both quantitative and qualitative information coming from expert knowledge,
mathematical models or empirical measures.

2.1.2.3 Perceptron-based approaches

In the data classification field, some well-known algorithms are based on the notion of
perceptron [88]. According to the number of perceptron layers used in modeling, these
approaches can be further divided as single-layer perceptrons and multi-layer perceptrons.

Single-layer perceptrons [40] A perceptron is an algorithm for supervised classifica-
tion of an input into one of several possible non-binary outputs. It is a type of linear clas-
sifier, i.e., a classification algorithm that makes its predictions based on a linear predictor
function combining a set of weights with the feature vector. The single-layer perceptrons
(SLP) algorithm for learning from a batch of training samples iterates until it finds a
prediction vector that is correct on all of the training samples. This prediction rule is
then used for predicting the labels on the query patterns. The SLP can have lower time
complexity when dealing with irrelevant features. However, as a linear classifier, the SLP
can only classify linearly separable sets of patterns.

Multi-layer perceptrons [89] A Multi-layer perceptrons (MLP) model has been pro-
posed to solve the nonlinearly separable problem. A MLP consists of large number of
units (neurons) joined together in a pattern of network. First, the network is trained on
a set of training data to determine input-output mapping. The weights of the connections
between neurons are then fixed, and the network is used to determine the class labels of new
patterns. MLP has been applied to many real-world problems. However, it is a black-box
method: its conclusion cannot be easily interpreted.

2.2 Data classification under uncertainty

In many applications, data contains inherent uncertainty. A number of factors contribute
to the uncertainty, such as the random nature of the physical data generation and collection
processes, measurement and decision errors, insufficient knowledge, etc. [74]. In this section,
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we first provide a brief survey for different categories of uncertainty emerging in real-
world applications, and then talk about some issues concerning the uncertainty in data
classification field, which are the targets of this thesis.

2.2.1 Types of uncertainty

Uncertainty can be generally characterized as lack of information. Different types of infor-
mation may be lacking in data and knowledge bases, and consequently give rise to different
kinds of uncertainty. As discussed in [21,100], uncertainty can broadly be divided into the
following three categories:

• Incompleteness: Incomplete information refers to cases where the states of a variable
or an event are missing. Consider a database of battlefield reports that should include
information about detected unit position (latitude and longitude), category (friendly,
neutral, or hostile), and type (tank, armored personnel carrier, or Humvee) for each
report. The incomplete information can arise in the following two levels. First, if, for
example, the state of the variable representing the type of a detected hostile unit
at a specific position is missing from a report, then the information in the report
becomes incomplete. Second, if, for example, some reports representing the state of
battlefield in one period of time are missing from the database, then the information
in the database also becomes incomplete.

• Imprecision: Imprecise information refers to cases where the value of a variable is
given, but not with enough precision. Suppose the value of the variable representing
the type of a detected hostile unit at a certain location is "tank" or "Humvee". The
information is complete because the values of each of the three variables representing
the unit’s position, category, and type are given, but the information is imprecise
because there is some ambiguity as to the exact type of the detected unit.

• Unreliability : Unreliable information refers to cases where the information is com-
plete, precise, but uncertain since it might be wrong. This type of uncertainty appears
when the observer (human or sensor) is taken into account. It is the observer that is
not reliable about the available information.

The above descriptions broadly categorize different types of uncertainty according to
the types of information lacking in data and knowledge bases. This partition is not unique
and each type of uncertainty can be further subdivided into several subtypes. One can
refer to Chapter 3 of [21] for more information.
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2.2.2 Uncertainty in data classification

Different types of uncertainty described in the preceding section exist widely in data clas-
sification problems. In this thesis, we confine to the following four critical issues concerning
the uncertainty in data classification field.

1. Imprecise information in overlapping regions: For most real-world classification prob-
lems, the patterns from different classes usually partly overlap. Though the training
samples in overlapping regions are assigned with precise labels, they actually cannot
be seen as truly representatives of their corresponding clusters.

2. Incomplete training data set : Incomplete training data set refers to cases where the
training data set is non-exhaustive. Generally, if the training data set is exhaustive
enough to characterize the real class-conditional probability distributions, data clas-
sification is easy to do for any classifier. However, in small data set situations, the
ideal behaviors of many traditional classifiers degrade dramatically.

3. Unreliable training data set : Unreliable training data set refers to cases where the
training data have noisy class labels or feature values. The class noise, also known
as labeling error, occurs when a sample is assigned to an incorrect class. In contrast,
the feature noise is used to refer to corruptions in the values of one or more features
of samples in a data set.

4. Partial training data and expert knowledge: In some real-world classification prob-
lems, both partial training data collected by sensors and partial expert knowledge
provided by human may be available. These two types of information are usually
independent but complementary for classification.

As reviewed in Chapter 1, the theory of belief functions is an effective tool to model and
reason with uncertain information. The use of belief function theory in pattern classification
fields is not new, and some classifiers have already been developed based on belief functions
in the past. For instance, Smets [101] and Appriou [7] have proposed model-based classifiers
based on the generalized Bayes theorem (GBT) [101] which is an extension of Bayes theorem
in transferable belief model (TBM) [103]. There are some other case-based evidential
classifiers based on k-nearest neighbors [26, 68, 69, 137], support vector machines [61],
decision trees [113], and neural network [28]. In essence, these methods are devoted to
addressing different types of uncertainty based on different classification models.

In this thesis, we aim to solve the above listed four uncertain data classification problems
in the framework of belief functions. As pointed out in the title, our work mainly focuses
on two popular classification approaches: nearest-neighbor-based classification and rule-
based classification. Specifically, we study the first two issues in nearest-neighbor-based
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classification, and the last two issues in rule-based classification. We will give a review of
related work in the following two sections.

2.3 Nearest-neighbor-based classification

In classification problems, complete statistical knowledge regarding the conditional den-
sity of each class is rarely available, which precludes applications of the optimal Bayes
classification procedure. In these cases, a good solution is to classify each new pattern
using the evidence of nearby sample observations. One such non-parametric procedure has
been introduced by Fix and Hodges [38], and has since become well-known in the pattern
recognition field as the k-nearest neighbor (kNN) rule. It is one of those algorithms that
are very simple to understand but work quite well in practice. In this section, we first
describe the main principle of the kNN rule, and then emphasize on two issues that affect
the performance of the kNN rule.

2.3.1 k-nearest neighbor rule

The kNN rule is based on a simple method of density estimation. The idea is very similar
to kernel density estimation [109]. Instead of using kernel functions, here the estimation is
made in a simple way. For estimating the density at a point x, place a hypercube centered
at x and keep increasing its size till k neighbors are captured. Then the estimate of the
density at point x is given by

p̂(x) =
k

NV
, (2.1)

where N is the number of total samples and V is the volume of the hypercube.

Having obtained an expression for a density estimate, we can now use this in a decision
rule. Suppose that in the first k samples there are km samples from class ωm (so that∑M

m=1
km = k). Let the total number of samples in class ωm be Nm (so that

∑M

m=1
Nm =

N). Then, the class-conditional density can be estimated as

p̂(x | ωm) =
km
NmV

, (2.2)

and the prior probability as

p̂(ωm) =
Nm

N
. (2.3)

Then the decision rule is to assign x to ωm, if

p̂(ωm | x) ≥ p̂(ωi | x), for all i = 1, 2, · · · ,M, (2.4)

or, using Bayes’ theorem,

km
NmV

Nm

N
≥ ki
NiV

Ni

N
, for all i = 1, 2, · · · ,M, (2.5)
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that is, assign x to ωm, if

km ≥ ki, for all i = 1, 2, · · · ,M. (2.6)

Thus, the decision rule is to assign x to the class that receives the largest vote amongst
the k nearest neighbors.

The kNN rule is an non-parametric lazy learning algorithm. First, it is non-parametric,
which means that it does not make any assumptions on the underlying data distribution.
This is quite useful, as in the real world, most of the practical data does not obey the
typical theoretical assumptions made (e.g., Gaussian mixtures, linearly separable, etc.).
Second, it is a lazy algorithm, which means that there is no explicit training phase, or it
is very minimal. In addition, Cover and Hart [20] have provided a statistical justification
of this procedure by showing that, as the numbers N and k both tend to infinity in such
a way that k/N → 0, the error rate of the kNN rule approaches the optimal Bayes error
rate. Beyond these remarkable properties, the kNN rule owes much of its popularity in the
pattern recognition community to its good performance in practical applications.

However, in the finite sample case, the classical k-NN rule is not guaranteed to be
the optimal way of using the information contained in the neighborhood of unclassified
patterns. This is the reason why the improvement of this rule has remained an active
research topic in the past 60 years. There are several key issues that affect the performance
of the kNN rule. One of the problems encountered in using the voting kNN rule is that
the distances from different nearest neighbors are neglected in the decision. To address
this problem, several variants have been proposed [26, 36, 75]. Particularly, an evidential
version of k-nearest neighbor rule (EkNN) has been proposed based on the theory of belief
functions in [26]. In EkNN, each neighbor of a sample to be classified is considered as an
item of evidence supporting certain hypotheses concerning the class membership of that
sample. The evidence of the k nearest neighbors is then pooled by means of Dempster’s
rule of combination. This approach provides a well treatment for the uncertainty caused
by the distance issue.

In this thesis, we focus on another two major issues in the kNN rule. One is that
in using the kNN rule, each of the training samples is considered equally important in
the assignment of the class label to the query pattern. This limitation frequently causes
difficulty in regions where the data sets from different classes overlap. Atypical samples
in overlapping regions are given as much weight as those that are truly representatives of
the clusters. In order to overcome this difficulty, the sample editing procedure [122] was
proposed to preprocess the original training samples. Besides, the choice of the distance
metric [130] is another important consideration, especially in small data set situations.
Although various metrics can be used to compute the distance between two points, the
most desirable distance metric is one for which a smaller distance between two samples
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implies a greater likelihood of having the same class. In the following two sections, we will
provide brief reviews for the existing sample editing methods and distance metrics.

2.3.2 Sample editing methods

In order to address the uncertain information in overlapping regions, several editing pro-
cedures have been proposed to preprocess the original training samples [55,58,76,110,115,
122]. According to the structure of the edited labels, the editing procedures can be divided
into two categories: crisp editing and soft editing.

In [122], Wilson proposed a simple editing procedure to preprocess the training set.
This procedure classifies a training sample xi using the kNN rule with the remainder of
the training set, and deletes it from the original training set if its original label ω(i) does not
agree with the classification result. Later, concerned with the possibility of large amounts
of samples being removed from the training set, Koplowitz and Brown [58] developed a
modification of the simple editing technique. For a given value of k, another parameter k′

is defined such that (k+ 1)/2 ≤ k′ ≤ k. Instead of deleting all of the conflicting samples, if
a particular class (excluding the original class) has at least k′ representatives among these
k nearest neighbors, then xi is labeled according to that majority class (see Algorithm 1).
Essentially, both the simple editing procedure and its modification belong to the category
of crisp editing procedures, in which each edited sample is either removed or assigned to a
single class.

Algorithm 1: Modified simple editing algorithm
Require: the original training set T composed of N labeled samples, two parameters k
and k′ with (k + 1)/2 ≤ k′ ≤ k
T ′ ← T
for i = 1 to N do
Find k nearest neighbors of xi in T \ {xi, ω(i)}
if a class label, say c, is held by at least k′ neighbors then
set the label of xi in T ′ to c

else
remove {xi, ω(i)} from T ′

end if
end for
return the edited training set T ′

In order to overcome the weakness of the crisp editing method, a fuzzy editing procedure
was proposed that reassigns fuzzy membership to each training sample xi based on its kedit
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nearest neighbors according to the following equation [55]:

uj(xi) =

{
0.51 + (kj/kedit) ∗ 0.49, if ωj = ω(i)

(kj/kedit) ∗ 0.49, if ωj 6= ω(i),
(2.7)

where the value kj is the number of the neighbors found which belong to class ωj . This
fuzzy editing procedure belongs to the soft editing category, in which each edited sample
can be assigned to several classes. It provides more detailed information about the samples’
membership than the crisp editing procedures.

2.3.3 Distance metrics

As the core of the kNN rule, the distance metric plays a crucial role in determining
the classification performance, especially in small data set situations. To overcome the
limitations of the original Euclidean (L2) distance metric, a number of methods have been
proposed. According to the structure of the metric, these methods can be mainly divided
into two categories: global distance metric learning [10, 37, 119, 124], and local distance
metric learning [49,79,80,118,121,131].

The global distance metric learning approach learns the distance metric in a global
sense, i.e., the same global weighted (GW) distance metric is defined for all of the patterns:

dGW (x,y) =

√√√√ P∑
j=1

λ2
j (xj − yj)2, (2.8)

where x is a sample in the training set, y is a query pattern to be classified, and λj is
the weight of the j-th feature. Although the above global distance metric is intuitively
appealing, it is too coarse as the feature weights of the distance metric are irrelevant with
the class labels of the patterns. For classification problems with a large number of classes,
it is hard to learn a GW distance metric that can simultaneously separate all of the class
pairs well.

In contrast, the local distance metric learning approach can learn a local distance
metric for some specific patterns. According to the types of the used local information,
this approach can be further subdivided into two categories: geometry-based local distance
metric learning and label-based local distance metric learning. For the geometry-based
local distance metric learning, the aim is to learn a locally adaptive distance metric in the
neighborhood of each query pattern. Recently, Paredes et al. [79,80] provided another idea
to learn the locally adaptive distance metric, i.e., the local distance metric is relevant to
the class labels of the training samples. In their work, a class-dependent weighted (CDW)
distance metric was defined as

dCDW (x,y) =

√√√√ P∑
j=1

λjc
2
(xj − yj)2, (2.9)



2.4. RULE-BASED CLASSIFICATION 33

where λjc is the weight of the j-th feature and c is the class index of training sample x.
The CDW distance metric provides more freedom than the GW distance metric and can
be learnt adaptively for different classes of the training samples. However, as illustrated in
the following example, this distance metric is insufficient to reflect the local specificities in
feature space for query patterns from different classes.

Exemple 2.1. Figure 2.1 illustrates a simple three-class classification problem, where
the data in each class are uniformly distributed. (x1, A), (x2, B) and (x3, C) are two-
dimensional data points in training set T . y1 and y2 are the query data to be classified.
Considering the classification of data y1 between Class A and Class B, when calculating
the distance of y1 to x1 and x2, intuitively, to avoid classifying it as Class B mistakenly,
feature X should be assigned a larger weight. However, when classifying data y2 as Class
B or Class C, feature Y should be assigned a larger weight to determine the distance of y2

to x2 and x3. However, as indicated in Eq. (2.9), the CDW distance is only relevant to the
class labels of the training samples, it lacks the flexibility of designing local feature weights
for query patterns from different classes.
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Figure 2.1: A three-class classification example

2.4 Rule-based classification

Rules are one of the most common forms for representing various kinds of knowledge. Rule-
based systems, usually constructed from human knowledge in forms of IF-THEN rules, are
often applied to inference problems [14]. However, for most classification problems, the
available information is in the format of a collection of training data. If rules can be learnt
from the training data, the rule-based systems can be used for classification purpose. One
such learning procedure has been introduced by Chi et al. [17], and has since become
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well-known in the pattern recognition field as the fuzzy rule-based classification system
(FRBCS). Due to its capability of building linguistic models interpretable to users, the
FRBCS has been successfully applied to different real-world classification tasks, including
image processing [104], intrusion detection [111], fault classification [93], and medical
applications [3, 116]. In this section, we first describe the main principle of the FRBCS
developed by Chi et al. [17], and then provide a brief review for different improved FRBCSs
in order to get better accuracy and robustness. Finally, we discuss the possibility and
necessity of combining partial training data and expert knowledge based on the rule-based
systems to perform classification.

2.4.1 Fuzzy rule-based classification system

A fuzzy rule-based classification system (FRBCS) is composed of two main conceptual
components, the fuzzy rule base (FRB) and the fuzzy reasoning method (FRM). The FRB
establishes an association between the space of pattern features and the space of consequent
classes. The FRM provides a mechanism to classify a query pattern based on the FRB.

The fuzzy rule in the FRB for an M -class (denoted as Ω = {ω1, ω2, · · · , ωM}) pattern
classification problem with P features has the following structure [17]:

Fuzzy Rule Rq : If x1 is Aq1 and · · · and xP is AqP , then consequence is Cq

with rule weight θq, q = 1, 2, · · · , Q,
(2.10)

where x = (x1, x2, · · · , xP ) is the pattern feature vector and Aq = (Aq1, · · · , AqP ) is
the antecedent part, with each Aqp belonging to fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np}
associated with the p-th feature. Cq ∈ Ω is the label of the consequent class, and Q is the
number of fuzzy rules in the FBR. The rule weight θq, characterizing the certainty grade
of the fuzzy rule Rq, is used as the strength of Rq in fuzzy reasoning.

Based on the above fuzzy rule structure, several FRB generation methods have been
proposed [16, 17, 47]. Here, we introduce the one proposed by Chi et al. [17] because it
is one of the most widely used algorithms. To generate the FRB, this method uses the
following steps:

1. Construction of the fuzzy regions. Usually, the partition of the pattern space is related
to the specific classification problem. If no prior knowledge is available, the method
based on fuzzy grids is usually employed [46]. Figure 2.2 shows an example of the
fuzzy partition of a two-dimensional pattern space with triangular fuzzy sets. Based
on this method, once the domain interval and the partition number for each feature
are determined, the fuzzy regions are easily computed.

2. Generation of a fuzzy rule for each training pattern. Assume that N labeled P -
dimensional training patterns xi = (xi1, · · · , xiP ), i = 1, 2, · · · , N are available. For
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116 2.1. Fuzzy rule-based classification system

117 A fuzzy rule-based classification system (FRBCS) is composed of two main conceptual components, the fuzzy rule base
118 (FRB) and the fuzzy reasoning method (FRM). The FRB establishes an association between the space of pattern features
119 and the space of consequent classes. The FRM provides a mechanism to classify a query pattern based on the FRB.
120 The fuzzy rule in the FRB for an M-class (denoted as X , fx1;x2; . . . ;xMg) pattern classification problem with P features
121 has the following structure [10]:
122

Fuzzy Rule Rq : If x1 is Aq
1 and � � � and xP is Aq

P ; then the consequence is Cq

with rule weight hq; q ¼ 1;2; . . . ;Q ;
ð1Þ

124124

125 where x ¼ ðx1; x2; . . . ; xPÞ is the pattern feature vector and Aq ¼ ðAq
1; . . . ;Aq

PÞ is the antecedent part, with each Aq
p belonging to

126 fuzzy partitions fAp;1;Ap;2; . . . ;Ap;npg associated with the p-th feature. Cq 2 X is the label of the consequent class, and Q is the
127 number of fuzzy rules in the FBR. The rule weight hq, characterizing the certainty grade of the fuzzy rule Rq, is used as the
128 strength of Rq in fuzzy reasoning.
129 Based on the above fuzzy rule structure, several FRB generation methods have been proposed [9,10,25]. Here, we intro-
130 duce the one proposed by Chi et al.[10] because it is one of the most widely used algorithms. To generate the FRB, this
131 method uses the following steps:

132 1. Establishment of the fuzzy regions. Usually, the partition of the pattern space is related to the specific classification prob-
133 lem. If no prior knowledge is available, the method based on simple fuzzy grids is usually employed [24]. Fig. 1 shows an
134 example of the fuzzy partition of a two-dimensional pattern space with triangular fuzzy sets. Based on this method, once
135 the domain interval and the partition number for each feature are determined, the fuzzy regions are easily computed.
136 2. Generation of a fuzzy rule for each training pattern. Assume that N labeled P-dimensional training patterns
137 xi ¼ ðxi1; . . . ; xiPÞ; i ¼ 1;2; . . . ;N are available. For each training pattern xi, the following steps are necessary
138 (a) To calculate its matching degree lðxiÞ with different fuzzy regions using the product operator
139

lAq ðxiÞ ¼
YP

p¼1

lAq
p
ðxipÞ; ð2Þ

141141

142 where lAq
p
ð�Þ is the membership function of the fuzzy set Aq

p,

143 (b) To assign the training pattern xi to the fuzzy region with the greatest matching degree,
144 (b) To generate a rule for this training pattern, with the antecedent part determined by the selected fuzzy region and the
145 consequent class equal to the class label of the training pattern, and
146 (c) To compute the rule weight hq.147

148

149 Rules with the same antecedent part may be generated during the learning process. In this case, only the one having the
150 maximum rule weight is maintained, whereas the remainder are removed.

Fig. 1. An example of the fuzzy partition of a two-dimensional pattern space by simple fuzzy grids.
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Figure 2.2: An example of the fuzzy partition of a two-dimensional pattern space by fuzzy grids

each training pattern xi, the following steps are necessary:

(a) To calculate its matching degree µ(xi) with different fuzzy regions using the
geometric mean operator

µAq(xi) = P

√√√√ P∏
p=1

µAq
p
(xip), (2.11)

where µAq
p
(·) is the membership function of the fuzzy set Aqp;

(b) To assign the training pattern xi to the fuzzy region with the greatest matching
degree;

(c) To generate a rule for this training pattern, with the antecedent part determined
by the selected fuzzy region, the consequent class determined by the class label
of the training pattern, and the rule weight determined by the greatest matching
degree.

3. Reduction of the generated FRB. Rules with the same antecedent part may be gen-
erated during the learning process. In this case, only the one having the maximum
rule weight is maintained, and the other ones are removed.

Once the FRB has been constructed, the query patterns can be classified by the
following single winner FRM [17]. Let S be the set of Q constructed fuzzy rules. A query
pattern y = (y1, y2, · · · , yP ) is classified by a single winner rule Rw, which is chosen from
rule set S as

Rw = arg max
Rq∈S
{µAq(y)θq}. (2.12)
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That is, the winner rule Rw has the maximum product of the matching degree µAq(y) and
the rule weight θq in S. Because it is limited by the number of training patterns, the query
pattern may not always be covered by any rule in the FRB, in which case the classification
is rejected. To avoid the non-covering problem, several techniques have been proposed,
such as using bell-shaped fuzzy sets instead of the triangular fuzzy sets [78] or stretching
a rule by deleting one or more of its antecedent terms [45].

As one of the computational intelligence-based classification approaches, the most useful
characteristic of the FRBCS is high interpretability. In contrast with statistical machine
learning approaches, which are based on complicated statistical models and perceptron-
based approaches, which are based on black-box models, the FRBCS can build a linguistic
model interpretable to users. In addition, due to the use of fuzzy sets, the FRBCS can use
both quantitative and qualitative information coming from expert knowledge, mathemat-
ical models or empirical measures [95].

However, the FRBCS may face lack of accuracy when dealing with some complex
applications, due to the inflexibility of the concept of the linguistic variable, which imposes
hard restrictions on the fuzzy rule structure [5]. For example, when the input-output
mapping varies in complexity within the space, homogeneous partitioning using linguistic
variables for the input and output spaces becomes inefficient. Besides, the fuzzy rule
structure is not robust to pattern noise and wrong rules may be generated in noisy
conditions, which hinders its applications in harsh working conditions (e.g., battlefield
target recognition). Therefore, plenty of work has been done in the past two decades in
order to improve the accuracy and robustness of the FRBCS. In the following section, we
will give a brief review of different improved FRBCSs.

2.4.2 Improved FRBCSs

In the past two decades, many researchers have proposed variants of the original FRBCS
developed by Chi et al. [17], in order to improve its accuracy and robustness. These
approaches can be mainly divided into two categories: learning an optimized rule base
with sophisticated methods, and changing the rule structure to make it more flexible to
characterize the input-output mapping.

Approaches in the first category are motivated by the fact that unsatisfactory classi-
fication results may be due to defects of the rule generation method. The original fuzzy
rule structure displayed as Eq. (2.10) is still used, but optimized rule bases are learnt with
sophisticated methods. For example, in [16], the rule base was built from the given training
samples based on a support vector learning approach; in [4, 18], the genetic algorithms
were used for designing fuzzy rule bases and determining an appropriate combination of
antecedent and consequent linguistic values of each fuzzy rule.
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In contrast, work in the second category is mainly based on the claim that the original
fuzzy rule structure is insufficient to characterize the complex input-output mapping. The
original fuzzy rule structure is extended in different ways to become more flexible (e.g.,
by extending the consequent part or the antecedent part). In [19], the following fuzzy rule
structure with certainty degrees for all classes in the consequent part was provided:

Rq : If x1 is Aq1 and · · · and xP is AqP , then (θq1, · · · , θqM ), q = 1, 2, · · · , Q, (2.13)

where θqj is the certainty degree for rule Rq to predict class ωj for a pattern belonging to the
fuzzy region represented by the antecedent part of the rule. This type of rule extends the
original fuzzy rule using different values for the consequent part (θq1, · · · , θqM ). Considering

θqj =

{
θq, if ωj = Cq

0, otherwise,

we get the original fuzzy rule. Accordingly, based on this new extended fuzzy rule structure,
an additive combination reasoning method is employed to classify a query pattern y as
follows:

ω = arg max
ωj∈Ω

Q∑
q=1

µAq(y) · θqj . (2.14)

A different approach was proposed in [64], where the antecedent part of the original
fuzzy rule is extended with belief degrees embedded in each antecedent terms as follows:

Rq : If x1 is {(A1,j , α
q
1,j)}n1

j=1 and · · · and xP is {(AP,j , αqP,j)}
nP
j=1,

then consequence is Cq, with rule weight θq, q = 1, 2, · · · , Q,
(2.15)

where the antecedent term for each feature {(Ap,j , αqp,j)}
np

j=1 is in belief distribution. Con-
sidering

αqp,j =

{
1, if Ap,j = Aqp

0, otherwise
, p = 1, · · · , P,

we get the original fuzzy rule. Accordingly, based on this rule structure, each training
sample is developed as a rule to model the input-output relationship. The query pattern
is then classified by the additive combination of the weighted consequences of all of the
generated rules.

2.4.3 Classification with partial training data and expert knowledge

According to the type of information used in modeling, pattern classification methods can
be categorized into data-driven and knowledge-driven [107]. Data-driven models are based
on learning from the training data characterizing the problem at hand. These data are
usually collected by sensors observing the environment. In the previous part of this chapter,
we mainly focused on data-driven models. In contrast, knowledge-driven models are based
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on the expert knowledge understanding a particular domain or problem. Expert knowledge
is often encoded into rules or relations, based on which an inference is made [70]. Examples
of the most popular systems using knowledge-driven models are expert systems [48,90] and
decision support systems [13,44].

In some real-world pattern classification applications, both training data and expert
knowledge may be available. For example, for target recognition [9,23], historical measure-
ments from a long period of collection by sensors can be used to train the target recognition
system. In addition, the expert knowledge about target characteristics obtained from the
manufacturers or intelligence also provides important information for target recognition. In
the classification process, training data and expert knowledge are usually complementary.
The training data trends to provide a relatively fine estimate for the real class-conditional
distribution, but they may be unreliable in some specific regions of feature space, due to
limited training patterns and the potential measurement noise. In contrast, the expert
knowledge usually provides a relatively rough but overall reliable estimate for the real
class-conditional distribution.

In the past, several methods have been proposed to address the classification problem
based on both training data and expert knowledge. For instance, Zhou et al. [134] proposed
to build an initial rule base from the available expert knowledge, and then to optimize the
rule base by adding or pruning rules based on training data. In [108], Tang et al. developed
a knowledge-based naive Bayes classifier, which uses training data to estimate the involved
conditional probabilities. Later, in [107], they proposed another similar method, which
builds a fuzzy rule-based system based on expert knowledge and then uses training data
to optimize the involved fuzzy membership functions. In essence, these methods follow the
same idea that first building a base model from expert knowledge and then optimizing this
model based on training data. However, one major disadvantage of this idea is that the
weights of training data and expert knowledge cannot be adjusted according to the qualities
of these two types of information. To overcome this limitation, we intend to address the
hybrid classification problem with a different idea. That is, to build a data-driven model
and a knowledge-driven model independently, and then to combine them into an adaptive
hybrid classification model by taking into account their weights.

In order to integrate training data and expert knowledge for classification, we need
to find a common representation model that can make use of both the two types of
information. The IF-THEN rule is a good representation model because, on the one hand,
as reviewed in the previous section, the IF-THEN rules can be learnt from training data
and, on the other hand, expert knowledge is also easily coded into IF-THEN rules. Many
rule-based systems have been proposed to deal with the classification problems using either
training data or expert knowledge [46,84,94,111]. Therefore, it is a natural way to combine
partial training data and expert knowledge based on the rule-based systems.
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2.5 Conclusion

Different types of uncertainty may exist in real-world data classification problems. In this
chapter, we discussed four critical issues concerning the uncertainty in data classification
field, i.e., imprecise information in overlapping regions, incomplete training data set, un-
reliable training data set, and incomplete training data and expert knowledge, which are
the targets of this thesis. In the following four chapters, we will solve the above uncertain
data classification problems in the framework of belief functions based on two classification
approaches: nearest-neighbor-based classification and rule-based classification.





Part II

Nearest-neighbor-based classification

This part focuses on classification of uncertain data using nearest-neighbor-based ap-
proaches.

Chapter 3 focuses on improving the performance of the kNN rule for cases in which
patterns from different classes overlap strongly. An evidential editing version of the kNN
rule is developed based on the theory of belief functions in order to well model the imprecise
information for those samples in overlapping regions.

Chapter 4 concerns the classification problems based on incomplete training data sets.
A polychotomous classification problem is solved by combining a group of locally learned
pairwise kNN classifiers in the framework of belief functions to deal with the uncertain
output information.
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Chapter 3

Evidential editing k-nearest

neighbor classifier

One of the difficulties that arise when using the k-nearest neighbor rule is that each of the
labeled training samples is given equal importance in deciding the class of the query pattern
to be classified, regardless of their typicality. In this chapter, the theory of belief functions is
introduced into the k-nearest neighbor rule to develop an evidential editing version of this
algorithm. An evidential editing procedure is proposed to reassign the original training
samples with new labels represented by an evidential membership structure. With the
introduction of the evidential editing procedure, the imprecise information in overlapping
regions can be well characterized. After the evidential editing, a classification procedure is
developed to handle the more general situation in which the edited training samples are
assigned dependent evidential labels.

In this chapter, we first describe in Section 3.1 the background and motivations. The
details of the proposed evidential editing k-nearest neighbor classifier are presented in
Section 3.2. Four experiments are performed in Section 3.3 to evaluate the performance of
the proposed method. Finally, Section 3.4 concludes this chapter.

3.1 Introduction

As one of the most well-known classification methods, the k-nearest neighbor (kNN) rule
[38] provides a simple non-parametric procedure for the assignment of a class label to
the query pattern based on its k nearest neighbors. In this decision rule, the class label
represented by each neighbor is considered equally important, regardless of their typicality.
This rule may have difficulty for cases where the data sets from different classes overlap
strongly. It may be argued that the atypical samples in overlapping regions should not
be given as much weight as those that are truly representatives of the clusters. In order
to overcome this difficulty, the editing procedure was proposed to preprocess the original
training samples and the kNN rule was used to classify the query pattern based on the
edited training samples.
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As reviewed in Section 2.3.2, according to the structure of the edited labels, the editing
procedures can be divided into crisp editing and soft editing. A fuzzy editing procedure,
proposed by Keller et al. [55], as a type of soft editing techniques, can provide more detailed
information about the sample membership than the crisp editing procedures. However, dif-
ferent types of uncertainty may coexist in real-world classification problems, e.g., fuzziness
may coexist with imprecision. The fuzzy editing procedure, which is based on fuzzy set
theory [132], cannot address imprecise information effectively in the modeling and reasoning
processes. In contrast, the theory of belief functions can well model imprecise information
thanks to the belief functions defined on the power set of the frame of discernment. The
theory of belief functions has already been used in the kNN rule [26,31,68,69,137]. However,
these methods mainly focus on modeling the uncertainty in the classification process, none
of them considers any editing procedure and the original training set is used to make
classification.

In this chapter, an evidential editing k-nearest neighbor (EEkNN) is proposed based
on the theory of belief functions. The proposed EEkNN classifier contains two stages:
evidential editing and classification. First, an evidential editing procedure reassigns the
original training samples with new labels represented by an evidential membership struc-
ture. Compared with the fuzzy membership used in fuzzy editing, the evidential labels
provide more expressiveness to characterize the imprecision for those samples in overlapping
regions. After the evidential editing procedure, a classification procedure is developed to
classify a query pattern based on the edited training samples.

3.2 Evidential editing k-nearest neighbor classifier

Let us consider an M -class classification problem and let Ω = {ω1, · · · , ωM} be the set of
classes. Assuming that a set ofN labeled training samples T = {(x1, ω

(1)), · · · , (xN , ω(N))}
with input vectors xi ∈ RP and class labels ω(i) ∈ Ω are available, the problem is to classify
a query pattern y ∈ RP based on the training set T .

The proposed evidential editing k-nearest neighbor (EEkNN) procedure is composed
of the following two stages:

1. Preprocessing (evidential editing): The evidential editing algorithm assigns evidential
labels to each labeled sample.

2. Classification: The class of the query pattern is decided based on the distance to the
sample’s k nearest neighbors and these k nearest neighbors evidential membership
information.
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3.2.1 Evidential editing

The goal of the evidential editing stage is to assign to each sample in the training set T a
new soft label with an evidential structure as follows:

T ′ = {(x1,m1), (x2,m2), · · · , (xN ,mN )}, (3.1)

where mi, i = 1, 2, · · · , N , are mass functions defined on the frame of discernment Ω.

Remark 3.1. The above evidential membership structure provides a more general rep-
resentation model than the traditional crisp label or fuzzy membership. For one training
sample xi, if there is no imprecision among the frame of discernment Ω, the evidential
membership just reduces to fuzzy membership as a special case. Further, if there is also no
probability uncertainty, it finally reduces to crisp label.

The problem is now to compute an evidential label for each training sample. In [26],
an evidential k-nearest neighbor (EkNN) rule was proposed based on the theory of belief
functions, where the classification result of the query pattern is a mass function. In the
following part, we use the EkNN rule to carry out the evidential editing.

For each training sample xi, i = 1, 2, · · · , N , we denote the leave-it-out training set
as Ti = T \ {(xi, ω(i))}, i = 1, 2, · · · , N . Now, we consider the evidential editing for one
training sample xi on the basis of the information contained in Ti. For the training sample
xi, each neighbor xj (j 6= i) provides an item of evidence regarding the class membership
of xi as follows 

mi({ωq} | xj) = αφq(dij)

mi(Ω | xj) = 1− αφq(dij)
mi(A | xj) = 0, ∀A ∈ 2Ω \ {Ω, {ωq}},

(3.2)

where dij = d(xi,xj), ωq is the class label of xj (that is, ω(j) = ωq), and α is a parameter
such that 0 < α < 1. As suggested in [26], α = 0.95 can be used to obtain good results on
average. When d is the Euclidean distance, a good choice for φq is

φq(d) = exp(−γqd2), (3.3)

where γq is a positive parameter associated to class ωq, which can be heuristically set to
the inverse of the mean squared Euclidean distance between training samples belonging to
class ωq.

Based on the distance d(xi,xj), we select the kedit nearest neighbors of xi in training
set Ti and calculate the corresponding kedit mass functions in the above way. As the items
of evidence from different neighbors are independent (because the training samples are
usually measured or collected independently), the kedit mass functions are combined using
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Dempster’s rule defined by Eq. (1.10) to form a resulting mass function mi, synthesizing
the final evidential membership regarding the label of xi as

mi = mi(· | xi1)⊕mi(· | xi2)⊕ · · · ⊕mi(· | xikedit ), (3.4)

where i1, i2, · · · , ikedit are the indices of the kedit nearest neighbors of xi in Ti. Generally,
the selection of parameter kedit depends on the specific classification problem. In practice,
we can use cross-validation to search for the best value.

3.2.2 Classification

After the evidential editing procedure introduced in Section 3.2.1, the problem now turns
into classifying a query pattern y ∈ RP based on the new edited training set T ′ as shown
in Eq. (3.1). In this section, we extend the evidential k-nearest neighbor (EkNN) rule [26]
to handle the more general situation in which the edited training samples are assigned
dependent evidential labels. This classification procedure is composed of the following two
steps: first, the mass functions from the k nearest neighbors of the query pattern are
computed; then, the k mass functions are combined to obtain the final result.

3.2.2.1 Determination of the mass functions

Consider the k nearest neighbors of the query pattern y. If one training sample xi is very
close to y, generally, it means that xi is a very reliable piece of evidence for the classification
of y. In contrast, if xi if far from y, then it provides only little reliable evidence. In the
theory of belief functions, Shafer’s discounting operation defined by Eq. (1.24) can be used
to discount the unreliable evidence before combination.

Denote as mi the class membership of the training sample xi, and βi the confidence
degree of the class membership of y with respect to the training sample xi. The evidence
provided by xi for the class membership of y is represented with a discounted mass function
βimi by discounting mi with a discount rate 1− βi as follows:{

βimi({ωq}) = βimi({ωq}), q = 1, 2, · · · ,M
βimi(Ω) = βimi(Ω) + (1− βi).

(3.5)

The confidence degree βi is determined based on the distance di between xi and y, in such
a way that a larger distance results in a smaller confidence degree. Thus, βi should be a
decreasing function of di. We use a similar decreasing function with Eq. (3.3) to define the
confidence degree βi ∈ (0, 1] as

βi = exp(−λid2
i ), (3.6)
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where λi is a positive parameter associated to the training sample xi and is defined as

λi =

 M∑
q=1

mi({ωq})dq +mi(Ω)d

−2

, (3.7)

where d is the mean distance between all training samples, and d
q is the mean distance

between training samples belonging to each class ωq, q = 1, 2, · · · ,M .

Remark 3.2. In calculating the confidence degree, parameter λi is designed by extending
the parameter γq in Eq. (3.3) to the evidential membership structure. In Eq. (3.7), suppose
that the label of the training sample xi is crisp with ωq, i.e., mi({ωq}) = 1, mi({ωj}) = 0,
for j = 1, 2, · · · ,M , j 6= q, mi(Ω) = 0. Then, the parameter λi reduces to γq in the
case of crisp labels. With this design for parameter λi, the confidence degree βi defined in
Eq. (3.6) is not independent with the mass function mi any longer. Considering that the
dependence between them is quite weak (because distance di is more influential than mi in
determining βi), we still use Shafer’s discounting operation to obtain the discounted mass
function approximately.

3.2.2.2 Combination of the mass functions

To make a decision about the class of the query pattern y, the generated k mass functions
should be combined to obtain the final fusion result. For combination, Dempster’s rule
relies on the assumption that the items of evidence combined are independent. However,
as illustrated in the following example, in the editing process, common training samples
may be used for calculating the class membership of different edited samples. Therefore,
the items of evidence from different edited samples to classify the query pattern y cannot
be regarded as independent.

Exemple 3.1. Figure 3.1 illustrates the dependence between different edited training sam-
ples. In this example, "4" denotes the training samples, and "�" denotes the query pattern.
In the evidential editing process, kedit is set to 2 to search for the nearest neighbors, and in
the classification process, the number of nearest neighbors k is set to 3. The three nearest
neighbors used for the classification of the query pattern y are x1, x2 and x3. As, in
the evidential editing process, the training sample x4 is used for calculating both the class
membership of x1 and x2, the edited training samples x1 and x2 are no longer independent.
In contrast, the edited training samples x3 is still independent with both x1 and x2 as they
did not use common training samples in the evidential editing process. Therefore, the items
of evidence from different edited training samples to classify the query pattern y may have
partial dependence.

To account for this dependence, we use the parameterized t-norm based combination
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y

x1 x2

x3

x4

Figure 3.1: Illustration of dependence between edited training samples

rule shown in Eq. (1.18) and obtain the final combination result for query pattern y as

m = βi1mi1 ~s
βi2mi2 ~s · · ·~s βikmik , (3.8)

where i1, i2, · · · , ik are the indices of the k nearest neighbors of y in T ′. The selection of
parameter s depends on the potential dependence degrees of the edited samples. In practice,
we can use the cross-validation to search for the optimal t-norms based combination rule.

For making decisions based on the above combined mass function m, the pignistic
probability BetP shown in Eq. (1.26) is used and the query pattern y is assigned to the
class with the maximum pignistic probability.

3.3 Experiments

The performance of the proposed evidential editing k-nearest neighbor (EEkNN) classifier
was evaluated in four different experiments. In the first experiment, the combination rule
used in the EEkNN classifier was evaluated under different dependence degrees of the
edited samples. In the second experiment, the effects of the two main parameters kedit and
k in the EEkNN classifier were analyzed. In the last two experiments, the performance of
the EEkNN classifier was compared with those of other nearest-neighbor-based methods
(the modified simple editing kNN (SEkNN) [58], the fuzzy editing kNN (FEkNN) [55] and
the evidential kNN (EkNN) [26]) using synthetic data sets and real data sets.

3.3.1 Evaluation of the combination rules

This experiment was designed to evaluate the combination rules used in the proposed
EEkNN method. A two-dimensional three-class classification problem was considered. The
following class-conditional normal distributions were assumed:
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Class A: µA = (6, 6)T , ΣA = 4I;

Class B: µB = (14, 6)T , ΣB = 4I;

Class C: µC = (14, 14)T , ΣC = 4I.

A training set of 150 samples and a test set of 3000 samples were generated from the
above distributions using equal prior probabilities. For each case, 30 trials were performed
with 30 independent training sets. The average test classification rate over the 30 trials was
calculated. In the preprocessing stage, kedit = 3, 9, 15, 21 were selected. For classification,
values of k ranging from 1 to 25 have been investigated. The t-norms based combination
rules (TR) with parameter s ranging from 0 to 1 have been evaluated. Note that the
cautious rule (CR) is retrieved when s = 0, and the Dempster’s rule (DR) is retrieved
when s = 1.
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Figure 3.2: Classification results for different combination rules and different kedit values with
values of k ranging from 1 to 25

Figure 3.2 shows the classification accuracy for different combination rules and different
kedit values with values of k ranging from 1 to 25. It can be seen that the best combination
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rules vary with changes of the value of kedit. In other words, the kedit value has great
influence to the dependence of the edited samples. A larger kedit value tends to result
in larger dependence. For one specific classification problem, the selection of the best
combination rule depends on the potential dependence of the edited samples, which further
depends on the utilized kedit value. Therefore, for the EEkNN method, the optimal t-norms
based combination rule should be searched for each specific kedit value.

3.3.2 Parameter analysis

This experiment was designed to analyze the effect of parameters kedit and k for the pro-
posed EEkNN method. The same training and test samples with the previous experiment
were used. The difference is that in the preprocessing stage, kedit = 3, 6, 9, 12, 15, 18, 21, 24

were selected and the optimal t-norms based combination rule for each specific kedit value
was used to make the classification. Average classification accuracy over the 30 trials with
values of k ranging from 1 to 25 has been investigated.
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Figure 3.3: Classification results of the EEkNN method for different kedit and k

From Figure 3.3, it can be seen that the classification performance can improve clearly
as the parameter kedit increases within an interval ([3,12] in this example). When kedit

exceeds an upper boundary (kedit = 12 in this example), the classification performance
no longer improves ideally. In addition, when kedit takes small values, the classification
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performance can improve as the parameter k increases. Whereas, when kedit exceeds the
upper boundary, the parameter k has little effect to the classification performance.

3.3.3 Synthetic data test

This experiment was designed to compare the proposed EEkNN with other nearest-neighbor-
based methods using synthetic data sets with different class overlapping ratios, defined as
the number of training samples in the overlapping region divided by the total number of
training samples. A training sample xi is considered to be in the overlapping region if
its corresponding maximum plausibility Plmax

i after evidential editing is less than a set
upper bound Pl∗, namely, Pl∗ = 0.9. A two-dimensional three-class classification problem
was considered. The following class-conditional normal distributions were assumed. For
comparisons, we changed the variance of each distribution to control the class overlapping
ratio.

Case 1 Class A: µA = (6, 6)T ,ΣA = 3I; Class B: µB = (14, 6)T ,ΣB = 3I;

Class C: µC = (14, 14)T ,ΣC = 3I. Overlapping ratio ρ = 6.67%

Case 2 Class A: µA = (6, 6)T ,ΣA = 4I; Class B: µB = (14, 6)T ,ΣB = 4I;

Class C: µC = (14, 14)T ,ΣC = 4I. Overlapping ratio ρ = 10.00%

Case 3 Class A: µA = (6, 6)T ,ΣA = 5I; Class B: µB = (14, 6)T ,ΣB = 5I;

Class C: µC = (14, 14)T ,ΣC = 5I. Overlapping ratio ρ = 21.33%

A training set of 150 samples and a test set of 3000 samples were generated from the
above distributions using equal prior probabilities. For each case, 30 trials were performed
with 30 independent training sets. The average classification accuracy and the correspond-
ing 95% confidence interval1 were calculated. For each trial, the best values for the parame-
ters kedit and s in the EEkNN method were determined in the sets {3, 6, 9, 12, 15, 18, 21, 24}
and {1, 10−1, 10−2, 10−3, 10−4, 10−5, 0}, respectively, by cross-validation. For all of the
considered method, values of k ranging from 1 to 25 have been investigated.

Figure 3.4 shows the classification results for synthetic data sets with different overlap-
ping ratios. It can be seen that, for the three cases, the EEkNN method provides better
classification performance than other nearest-neighbor-based methods. With the increase
of the class overlapping ratio, the performance improvement becomes more important.
Furthermore, the EEkNN method is less sensitive to the value of k and it performs well
even with a small value of k.

1Computed as
[
p− u1−α

2

S√
Nt

, p+ u1−α
2

S√
Nt

]
, where p =

1

Nt

∑Nt

i=1
pi, S =√

1

Nt − 1

∑Nt

i=1
(pi − p)2, with pi, i = 1, 2, · · · , Nt, being the classification accuracy rates for the

Nt trials.
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(a) Case 1: ρ = 6.67%
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(b) Case 2: ρ = 10.00%
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(c) Case 3: ρ = 21.33%

Figure 3.4: Classification results for synthetic data sets with different overlapping ratios (SEkNN:
modified simple editing kNN, FEkNN: fuzzy editing kNN, EkNN: evidential kNN, EEkNN:
evidential editing kNN)
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3.3.4 Real data test

This experiment was designed to compare the proposed EEkNN with other nearest-neighbor-
based methods using some real-world classification problems from the well-known UCI
Repository of Machine Learning Databases [72]. The main characteristics of the 10 real
data sets used in this experiment are summarized in Table 3.1. To assess the results, we
considered the resampled paired test. A series of 30 trials was conducted. In each trials,
the available samples were randomly divided into a training set and a test set (with equal
sizes). For each data set, we calculated the average classification rate of the 30 trials and
the corresponding 95% confidence interval. For the proposed EEkNN method, the best
values for the parameters kedit and s were determined with the same procedure used in
the previous experiment. For all of the considered method, values of k ranging from 1 to
25 have been investigated.

Table 3.1: Description of the benchmark data sets employed in the study
Data set # Instances # Features # Classes Overlapping ratio
Balance 625 4 3 19.23%
Glass 214 9 6 11.04%
Haberman 306 3 2 18.59%
Ionosphere 214 9 6 18.29%
Liver 345 6 2 19.19%
Pimaa 336 8 2 19.05%
Transfusion 748 4 2 20.60%
Vertebral 310 6 3 11.20%
Waveform 5,000 21 3 19.60%
Yeast 1,484 8 10 22.74%

aFor the data sets containing missing values, instances with missing feature values are removed.

Figure 3.5 shows the classification results of different methods for benchmark data sets.
It can be seen that, for data sets with high overlapping ratios, such as Balance, Haberman,
Ionosphere, Liver, Pima, Transfusion, Waveform and Yeast, the EEkNN method provides
better classification performance than other nearest-neighbor-based methods, especially
for small value of k. In contrast, for those data sets with relatively low overlapping ratios,
such as Glass and Vertebral, the classification performances of different methods were quite
similar. The reason is that, for these two data sets, the best classification performance was
obtained when k took a small value and, under this circumstance, the evidential editing
cannot improve the classification performance. We can also see that, different from other
nearest-neighbor based methods, the EEkNN method is less sensitive to the value of k and
it usually performs well even with a small value of k.
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(b) Glass
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(c) Haberman
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(d) Ionosphere
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(e) Liver
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(g) Transfusion
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(h) Vertebral
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(i) Waveform
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Figure 3.5: Classification results of different methods for benchmark data sets

3.4 Conclusion

An evidential editing k-nearest neighbor (EEkNN) classifier has been developed based on
an evidential editing procedure that reassigns the original training samples with new labels
represented by an evidential membership structure. Thanks to this procedure, patterns
situated in overlapping regions have less influence on the decisions. Our results show that
the proposed EEkNN classifier achieves better performance than other considered nearest-
neighbor-based methods, especially for data sets with high overlapping ratios. In particular,
the proposed EEkNN classifier is not too sensitive to the value of k and it can gain a quite
good performance even with a small value of k. This is an advantage in time or space-
critical applications, in which only a small value of k is permitted in the classification
process.





Chapter 4

Evidential fusion of pairwise

k-nearest neighbor classifiers

The performance of the k-nearest neighbor (kNN) classifier is known to be very sensitive to
the distance metric used in classifying a query pattern, especially in small training data set
cases. In this chapter, a pairwise distance metric related to pairs of class labels is proposed.
Compared with the existing distance metrics, it provides greater flexibility to design the
feature weights so that the local specificities in feature space can be well characterized.
Based on the proposed pairwise distance metric, a polychotomous classification problem is
solved by combining a group of pairwise kNN (PkNN) classifiers in the framework of belief
functions to deal with the uncertain output information.

In this chapter, we first describe the background and motivations in Section 4.1. In
Section 4.2, a pairwise distance metric is defined and a parameter optimization procedure
is designed based on maximum likelihood principle. Using the proposed pairwise distance
metric, the corresponding PkNN classifiers are combined in the framework of belief func-
tions in Section 4.3. Two experiments to evaluate the performance of the proposed method
are reported in Section 4.4. Finally, Section 4.5 concludes this chapter.

4.1 Introduction

The k-nearest neighbor (kNN) rule is known to have good performance for large training
data set [20]. However, in many practical pattern classification applications, the training
data set is incomplete, and the real class-conditional probability distributions cannot
be well characterized using the limited training samples. In such small training data
set situations (relative to the intrinsic dimensionality of the data involved), the ideal
asymptotical behavior of the kNN classifier degrades dramatically [33]. This observation
motivates the growing interest in finding variants of the kNN rule and adequate distance
metrics that potentially improve the kNN classification performance in small data set
situations.

As the core of the kNN rule, the distance metric plays a crucial role in determining

57
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the classification performance. To overcome the limitations of the original Euclidean (L2)
distance metric, a number of methods have been proposed to address the distance metric
learning issue. As reviewed in Section 2.3.3, according to the structure of the metric, these
methods can be mainly divided into global distance metric learning and local distance met-
ric learning. The main drawback of the global learning approach is that the learned single
distance metric usually cannot separates all of the class pairs well. As one representative
label-based local distance metric learning method, Paredes et al. [79] proposed to learn a
class-dependent weighted (CDW) distance metric adaptively for each class. However, as
illustrated in Example 2.1, as the learned CDW distance metric is only relevant to the class
labels of the training samples, it is insufficient to reflect the local specificities in feature
space for query patterns in different classes.

In this chapter, we focus on the label-based local distance metric learning problem. To
overcome the limitations of the CDW distance metric, a pairwise distance metric related
to the labels of the class pairs to be classified is defined. For a polychotomous classification
problem, instead of learning a global distance metric, we decompose it into learning a
group of pairwise distance metrics. Because only two classes are involved for each pairwise
distance metric, the feature weights can be learnt in a more local way. Based on each
learned pairwise distance metric, a pairwise kNN (PkNN) classifier can be designed to
separate two classes. Then, a polychotomous kNN classification problem can be solved by
fusing several PkNN classifiers. A variety of schemes have been proposed for deriving a
combined decision from individual ones, such as voting rule [39], Bayes combination [60],
multilayered perceptrons [105], etc. Considering that the output of each PkNN classifier
may have high uncertainty, the PkNN classifiers are combined in the framework of belief
functions due to its well capability of modeling and combining uncertain information.

4.2 Pairwise distance metric learning

To better characterize the local specificities in feature space, in Section 4.2.1, we define
a pairwise weighted distance metric and design a parameter optimization procedure to
learn it based on the maximum likelihood principle. Then, in Section 4.2.2, we extend the
pairwise weighted distance metric to further consider the potential correlation between
different features.

4.2.1 Pairwise weighted distance metric learning

Definition 4.1 (Pairwise weighted distance metric). Suppose x and y are two P -dimensional
patterns whose labels belong to class pair Ωp,q = {ωp, ωq}. The pairwise weighted (PW)
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distance metric between x and y is defined as

dPW (x,y) =

√√√√ P∑
j=1

λjp,q
2
(xj − yj)2, (4.1)

where λjp,q is a constant that weights the role of the j-th feature in the distance metric
concerning class pair Ωp,q.

This definition includes, as particular cases, the distance metrics reviewed in Section
2.3.3. If λjp,q = 1 for all p = 1, · · · ,M , q = 1, · · · ,M , j = 1, · · · , P , the above defined PW
distance metric reduces to the L2 distance metric. In addition, the GW and CDW distance
metrics correspond to the cases where the metric weights do not depend on the class labels
or are only dependent on the class label of the first pattern, respectively. Therefore, the
PW distance metric provides a more general dissimilarity measure than the L2, GW or
CDW distance metrics.

Remark 4.1. Compared with the the above mentioned distance metrics, the PW distance
metric provides greater flexibility to design the feature weights so that the local specificities
in feature space can be well characterized. We study the three-class classification problem
illustrated in Example 2.1 again. In Figure 4.1, using the PW distance metric, to discrimi-
nate Class B and Class A, λXB,A (the two subscripts denote the class labels, the superscript
denotes the feature index) can take much larger value than λYB,A. In contrast, one can assign
smaller value to λXB,C than to λYB,C to discriminate Class B and Class C.
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Figure 4.1: A three-class classification example

In the above defined PW distance metric, the only free parameters are the feature
weights related to the labels of the two considered classes. In the following part, we aim
to learn feature weights λjp,q (1 ≤ p < q ≤ M , j = 1, · · · , P ) from the training data by
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optimizing some criteria. A simple way of defining the criteria for the desired metric is to
keep the data pairs from the same class close to each other while separating those data
pairs from different classes far from each other [124].

We divide training set T into M subsets Tk, k = 1, · · · ,M , with each Tk containing all
of the Nk training data belonging to class ωk:

Tk = {(xi, ωk) | i ∈ Ik},

where Ik is the set of indices for training data xi belonging to class ωk.

We now consider learning feature weights λjp,q (j = 1, · · · , P ) from training subsets Tp
and Tq. Let us denote the set of data pairs from the same class as

S = {(xm,xn) | m,n ∈ Ip;m < n} ∪ {(xm,xn) | m,n ∈ Iq;m < n} ,

and the set of data pairs from different classes as

D = {(xm,xn) | m ∈ Ip;n ∈ Iq} .

Following the idea presented in [130], a logistic regression model can be assumed when
estimating the probability for any data pair (xm,xn) to share the same class,

Pr(+ | (xm,xn)) =
1

1 + exp
(
d2
PW (xm,xn)− µp,q

) , (4.2)

and then the probability for any data pair (xm,xn) to share different classes is

Pr(− | (xm,xn)) = 1− 1

1 + exp
(
d2
PW (xm,xn)− µp,q

)
=

1

1 + exp
(
−d2

PW (xm,xn) + µp,q
) , (4.3)

where "+" and "−" denote data pair (xm,xn) belonging to the same class and different
classes, respectively. Parameter µp,q is the threshold. The data pair (xm,xn) will be
assigned higher probability to be in the same class when their square PW distance is
much smaller than threshold µp,q. In contrast, if their square PW distance is much larger
than threshold µp,q, they will be given more probability to have different classes.

Then, the overall log-likelihood for both the data pairs in S and D can be written as

Lg
(
{λjp,q}Pj=1, µp,q

)
= logPr(+ | S) + logPr(− | D)

= −
∑

(xm,xn)∈S

log
(
1 + exp

(
d2
PW (xm,xn)− µp,q

))
−

∑
(xm,xn)∈D

log
(
1 + exp

(
−d2

PW (xm,xn) + µp,q
))

= −
∑

(xm,xn)∈S

log

1 + exp

 P∑
j=1

λjp,q
2
(xmj − xnj)2 − µp,q


−

∑
(xm,xn)∈D

log

1 + exp

− P∑
j=1

λjp,q
2
(xmj − xnj)2 + µp,q

 .

(4.4)
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With the maximum likelihood estimation, the PW distance metric learning can be
formulated as the following optimization problem

max
{λjp,q}Pj=1,µp,q

Lg
(
{λjp,q}Pj=1, µp,q

)
s.t. λjp,q ≥ 0, j = 1, · · · , P, and µp,q ≥ 0.

(4.5)

This is a convex programming problem, which can be solved using Newton’s method [8].

4.2.2 Extension to pairwise Mahalanobis distance metric learning

In the previous section, the distance metric was learnt under the assumption that the
P considered features are independent. However, in many real-world applications, this
assumption is hardly tenable [120]. Therefore, in the following, we extend the PW distance
metric to further consider the correlation between different features.

Definition 4.2 (Pairwise Mahalanobis distance metric). Suppose x and y are two P -
dimensional patterns whose labels belong to class pair Ωp,q = {ωp, ωq}. The pairwise Ma-
halanobis (PM) distance metric between x and y is defined as

dPM (x,y) =
√

(x− y)TAp,q(x− y), (4.6)

where Ap,q ∈ RP×P is a positive semi-definite matrix (i.e., Ap,q � 0) that weights the
role of features in the distance metric concerning class pair Ωp,q. If we restrict Ap,q to be
diagonal, the defined PM distance metric reduces to the PW distance metric.

In a similar way as described in the previous section, the PM distance metric learning
can also be formulated as a nonlinear optimization problem. However, in the case of learning
a full matrix Ap,q, the constraint that Ap,q be positive semi-definite becomes difficult to
enforce, and Newton’s method often becomes prohibitively expensive (requiring O(P 6)

time to invert the Hessian over P 2 parameters). To simplify the computation, we model
the matrix Ap,q using the eigenspace of the training samples [130]. Based on training
subsets Tp and Tq, the covariance matrix between any two features is computed as

Mp,q =
1

np,q − 1

∑
i∈Ip,q

(xi − x)(xi − x)T , (4.7)

where Ip,q is the set of indices for training sample xi belonging to class ωp or ωq, np,q is
the number of training samples, and x is the mean feature vector over the np,q training
samples. Let vkp,q, k = 1, 2, · · · ,K, are the top K (K ≤ P ) eigenvectors of matrix Mp,q.
We then assume that Ap,q is a linear combination of the top K eigenvectors:

Ap,q =
K∑
k=1

γkp,qv
k
p,qv

k
p,q

T
, (4.8)
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where γkp,q, k = 1, 2, · · · ,K, are the non-negative weights for linear combination.

Then, with the above matrix Ap,q, the overall log-likelihood for both the data pairs in
S and D can be written as

Lg
(
{γkp,q}Kk=1, µp,q

)
= logPr(+ | S) + logPr(− | D)

= −
∑

(xm,xn)∈S

log
(
1 + exp

(
d2
PM (xm,xn)− µp,q

))
−

∑
(xm,xn)∈D

log
(
1 + exp

(
−d2

PM (xm,xn) + µp,q
))

= −
∑

(xm,xn)∈S

log

(
1 + exp

(
K∑
k=1

γkp,qν
k
m,n − µp,q

))

−
∑

(xm,xn)∈D

log

(
1 + exp

(
−

K∑
k=1

γkp,qν
k
m,n + µp,q

))
,

(4.9)

with νkm,n = (xm − xn)Tvkp,qv
k
p,q

T
(xm − xn).

With the maximum likelihood estimation, the PM distance metric learning can be
formulated as the following optimization problem

max
{γkp,q}Kk=1,µp,q

Lg
(
{γkp,q}Kk=1, µp,q

)
s.t. γkp,q ≥ 0, k = 1, · · · ,K, and µp,q ≥ 0,

(4.10)

which is similar to the optimization problem for the PW distance metric learning, and can
be solved using the same optimization method.

4.3 Fusion of PkNN classifiers in the framework of belief

functions

With the proposed pairwise distance metric concerning class pair Ωp,q, a pairwise kNN
(PkNN) classifier can be designed to separate the two classes Ωp and Ωq based on the
training subset Tp∪Tq. For anM -class classification problem,M(M−1)/2 PkNN classifiers
Cp,q (1 ≤ p < q ≤ M) can be designed and the final classification result can be obtained
by combining the outputs of these PkNN classifiers. A popular method of combining the
outputs of pairwise classifiers is the voting rule [39], where each classifier gives a vote for
the predicted class and the class with the largest number of votes is predicted. However,
a classifier Cp,q is trained to distinguish only between classes Ωp and Ωq, thus its vote for
a query pattern from a different class should be taken with care. In this section, we aim
to overcome this difficulty by modeling the uncertainty related to the outputs of PkNN
classifiers in the framework of belief functions. Figure 4.2 shows the evidential fusion scheme
of the PkNN classifiers in the framework of belief functions.
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with νkm,n = (x(m) − x(n))T vk
p,qvk

p,q
T (x(m) − x(n)).

With the maximum likelihood estimation, the PM distance metric learning can be formulated as the following

optimization problem

max
{γk

p,q}Kk=1,µp,q

Lg

(
{γk

p,q}Kk=1, µp,q

)

s.t. γk
p,q ≥ 0, k = 1, · · · ,K, and µp,q ≥ 0,

(12)

which is similar to the optimization problem for the PW distance metric learning, and can be solved using the same

optimization method.

3. Fusion of PkNN classifiers in the framework of belief function theory

With the proposed pairwise distance metric concerning class pair Ωp,q, a pairwise kNN (PkNN) classifier can be

designed to separate the two classes Ωp and Ωq based on the training subset Tp ∪ Tq. For an M-class classification

problem, M(M−1)/2 PkNN classifiers Cp,q (1 ≤ p < q ≤ M) can be designed and the final classification result can be

obtained by combining the output of these PkNN classifiers. A popular method of combining the output of pairwise

classifiers is the voting rule [8], where each classifier gives a vote for the predicted class and the class with the largest

number of votes is predicted. However, a classifier Cp,q is trained to distinguish only between classes Ωp and Ωq, thus

its vote for an query pattern from a different class should be taken with care. In this section, we aim to overcome this

difficulty by modeling the uncertainty related to the output of PkNN classifiers in the framework of belief function

theory. Fig. 2 shows the fusion scheme of the PkNN classifiers in the framework of belief function theory.
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Figure 2: Fusion scheme of the PkNN classifiers in the framework of belief function theory

3.1. Basics of the belief function theory

In the belief function theory, a problem domain is represented by a finite set Ω = {ω1, ω2, · · · , ωn} of mutually

exclusive and exhaustive hypotheses called the frame of discernment. A mass function or basic belief assignment

(BBA) expressing the belief committed to the elements of 2Ω by a given source of evidence is a mapping function m:

2Ω → [0, 1], such that

m(∅) = 0 and
∑

A∈2Ω
m(A) = 1. (13)

7

Figure 4.2: Fusion scheme of the PkNN classifiers in the framework of belief functions

Our aim is to use the belief function theory to model the uncertainty inherent in the
pairwise classification. Now, with a set of PkNN classifiers Cp,q (1 ≤ p < q ≤ M), we first
study the representation of their outputs in terms of belief functions.

For the output of each PkNN classifier Cp,q, there are two types of uncertainty. The
first one is related to the fact that the real class label of query pattern y may actually
not belong to class pair Ωp,q (called outer-pair uncertainty). The second one is that even
the real class label of query pattern y belongs to class pair Ωp,q, affected by the noise of
the training patterns, the result of the classifier is not always accurate (called inner-pair
uncertainty). Therefore, the frame of discernment should be set as Ω = {ω1, · · · , ωM},
which can characterize both kinds of uncertainty.

For the PkNN classifier Cp,q, suppose xj is one of the k nearest neighbors of query
pattern y in the training subset Tp ∪ Tq, and its class label is ωi ∈ Ωp,q. It can be seen as
a piece of evidence that supports the query pattern y belongs to ωi. However, considering
the outer-pair uncertainty, this piece of evidence is conditioned on hypothesis ωi ∈ Ωp,q:

mΩ[Ωp,q]({ωi} | xj) = 1. (4.11)

Further, due to the inner-pair uncertainty, this piece of evidence does not by itself provide
100% reliability. In the formalism of belief functions, this can be expressed by saying that
only some part of the belief is committed to ωi{

mΩ[Ωp,q]({ωi} | xj) = αj

mΩ[Ωp,q]({Ωp,q} | xj) = 1− αj ,
(4.12)

where αj ∈ [0, 1] is the probability that sample xj and query pattern y share the same
class, and can be determined using the logistic regression model in Eq. (4.2) as

αj =
1

1 + exp
(
d2
PW (xj ,y)− µp,q

) . (4.13)
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For the PkNN classifier Cp,q, based on the k nearest neighbors of query pattern y,
we can calculate all the corresponding k mass functions in the above way. As the items
of evidence from different neighbors are independent, the k mass functions are combined
using Dempster’s rule defined by Eq. (1.10) to form a resulting mass function synthesizing
the overall conditional belief regarding the label of y as

mΩ[Ωp,q] = mΩ[Ωp,q](· | xi1)⊕mΩ[Ωp,q](· | xi2)⊕ · · · ⊕mΩ[Ωp,q](· | xik), (4.14)

where i1, i2, · · · , ik are the indices of the k nearest neighbors of y.

In a similar way, based on the outputs of theM(M−1)/2 PkNN classifiers Cp,q (1 ≤ p <
q ≤M), we can calculate all the correspondingM(M−1)/2 conditional mass functions. In
order to combine these conditional mass functions in a uniform framework, the conditional
mass function constructed as Eq. (4.14) should be deconditioned using Eq. (1.23) as

mΩ
p,q({ωq}) = mΩ[Ωp,q]({ωp})

mΩ
p,q({ωp}) = mΩ[Ωp,q]({ωq})

mΩ
p,q(Ω) = mΩ[Ωp,q](Ωp,q).

(4.15)

where {ωp} and {ωq} denote the complement of set {ωp} and {ωq} with respect to set Ω,
respectively.

Because the mass and plausibility functions are in one-to-one correspondence, we can
compute the plausibility function Plp,q from the above constructed and deconditioned mass
function mΩ

p,q using Eq. (1.3) as

Plp,q({ωi}) =


1−mΩ[Ωp,q]({ωq}), if i = p

1−mΩ[Ωp,q]({ωp}), if i = q

1, otherwise .

(4.16)

In order to decrease the computation complexity, instead of combining the M(M −
1)/2 mass functions mΩ

p,q (1 ≤ p < q ≤ M) using Dempster’s rule of combination, we
can compute the combined plausibility function Pl directly using Eq. (1.25) to make the
decision as follows

Pl({ωi}) ∝ Pl′({ωi}) =
∏

1≤p<q≤M
Plp,q({ωi}),∀ωi ∈ Ω. (4.17)

Note that the combined plausibility function Pl is proportional to Pl′, so the maximum
plausibility rule can be used for Pl′ equivalently to make a decision. The class label of
query pattern y is assigned to the class with maximum plausibility.

Remark 4.2. As can be seen from above, the fusion process of PkNN classifiers is quite
time-efficient. Therefore, when classifying a query pattern, the time is mainly consumed in
the classification process of multiple PkNN classifiers. Even though the number of PkNN
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classifiers is of M2 order (with M(M − 1)/2 classifiers), each classifier only uses the
training samples from the corresponding classes (about 2N/M samples averagely). Hence
the total number of the computed samples is about N(M−1), which is justM−1 times larger
than the original kNN classifier. For most classification problems, such as the benchmark
data sets studied in next section, the number of considered classes is not very large, so the
computation cost of the proposed method is not a big problem.

4.4 Experiments

The performance of the proposed kNN classification method based on the pairwise distance
metric and the belief function theory (denoted as PkNN-BF) was assessed by two different
types of experiments. In the first experiment, a synthetic data set was used to show the
behavior of the proposed method in a controlled setting. In the second one, several real
data sets from the well-known UCI Repository of Machine Learning Databases [72] were
considered, with the aim to show that the proposed technique is adequate for a variety of
real tasks involving different data conditions: large vs. small size, high vs. low dimension,
etc.

4.4.1 Synthetic data test

A two-dimensional three-class classification problem was used to compare our method with
the-state-of-art methods reviewed in Section 2.3.3, including the original kNN classifier
based on L2 distance metric (L2-kNN) [38], the kNN classifier based on GW distance
metric (GW-kNN) [124] and the kNN classifier based on CDW distance metric (CDW-
kNN) [79]. The following class-conditional normal distributions were assumed.

µA = (6, 6)T , µB = (14, 6)T , µC = (14, 14)T ,

ΣA = 3I, ΣB = 3I, ΣC = 3I.

Training sets of 60, 120 and 240 samples were generated using equal prior probabilities.
A test set of 3000 samples was used for classification accuracy estimation. For each case, 30
trials were performed with independent training sets. The average classification accuracy
and the corresponding 95% confidence interval were calculated. For the proposed PkNN-
BF method, as the features are independent from each other in this study, we used the
PW distance metric. For all of the considered methods, values of k ranging from 1 to
25 have been investigated. Figure 4.3 shows the classification accuracy of the considered
methods with different training set sizes. As can be seen from the results, the GW-kNN
classifier shows similar performance as compared to the original L2-kNN classifier, because
the learned GW distance metric has almost the same weights for the two involved features.
The CDW-kNN classifier, which is based on the CDW distance metric, is just slightly
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Figure 4.3: Classification accuracy rate (in %) for synthetic data with different training set sizes
(L2-kNN: kNN based on L2 distance metric, GW-kNN: kNN based on GW distance metric, CDW-
kNN: kNN based on CDW distance metric, PkNN-BF: kNN based on pairwise distance metric and
the belief function theory)
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better than the original L2-kNN classifier. The proposed PkNN-BF classifier produces the
highest classification accuracy for all of the three cases. The reason is that, for each PkNN
sub-classifier, the pairwise distance metric characterizes more local specificities in feature
space, and further in the combination process, the output uncertainty of those PkNN sub-
classifiers is well addressed. In addition, the performance improvement is more significant
for small training set, in which case the distance metric plays a more important role in
determining the performance of the kNN-based classifiers.

To better illustrate the superiority of the proposed PkNN-BF classifier, the classification
results of one test sample y (with real label Class B) for different methods using 60 training
samples are shown in Figure 4.4. To visualize the results, for the GW-kNN classifier and
the three pairwise sub-classifiers (i.e., PkNNA,B, PkNNA,C and PkNNB,C), each original
point x is replaced by Ax, where A is a diagonal matrix filled by the learned feature
weights. After this procedure, the classification problem is transformed into applying the
standard Euclidean metric to the rescaled data to find the nearest neighbors1. As can be
seen in Figure 4.4(a), test sample y is quite close to the boundaries of the three classes, and
in this small training set condition, it is quite difficult to make the right classification. The
L2-kNN classifier just misclassifies this data point with the 1NN rule. For the GW-kNN
classifier, as the learned global feature weights are almost equivalent (λX = 0.2180, λY =

0.2033), the rescaled data distributions are quite similar with the original distributions.
Accordingly, as can be seen in Figure 4.4(b), the GW-kNN classifier also misclassifies the
test sample y. For our proposed PkNN-BF classifier, three sub-classifiers with separately
learned distance metrics are designed to classify the test sample y. In classifying y between
Class A and Class B, feature X is assigned larger weight (λXA,B = 0.2231, λYA,B = 0.0357),
whereas in classifying y between Class B and Class C, feature Y is assigned larger weight
(λXB,C = 0.0265, λYB,C = 0.2156). Thanks to this locally learned pairwise distance metric,
as shown in Figure 4.4(c) and (e), both the two sub-classifiers PkNNA,B and PkNNB,C
provide the correct classification result. The PkNN-BF classifier classifies test sample y by
combining the results of the three PkNN sub-classifiers:

PlA,B({A}) = 0.17, P lA,B({B}) = 1, P lA,B({C}) = 1;

PlA,C({A}) = 1, P lA,C({B}) = 1, P lA,C({C}) = 0.42;

PlB,C({A}) = 1, P lB,C({B}) = 1, P lB,C({C}) = 0.22.

Then, after the fusion of multiple PkNN sub-classifiers in the framework of belief functions,
we get the combined result:

Pl′({A}) = 0.17, P l′({B}) = 1, P l′({C}) = 0.09.

Finally, based on the maximum plausibility rule, we get Class B as the final classification.
1As the CDW distance metric does not satisfy the symmetry property, it is impossible to rescale the

data to apply the standard Euclidean metric, so we did not visualize the result of the CDW-kNN in this
illustration.
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and (e), both the two sub-classifiers PkNNA,B and PkNNB,C provide right classification result. The PkNN-BF classifier

classifies test sample y by combining the results of the three PkNN sub-classifiers:

PlA,B({A}) = 0.17, PlA,B({B}) = 1, PlA,B({C}) = 1;

PlA,C({A}) = 1, PlA,C({B}) = 1, PlA,C({C}) = 0.42;

PlB,C({A}) = 1, PlB,C({B}) = 1, PlB,C({C}) = 0.22.

Then after the fusion of multiple PkNN sub-classifiers within the framework of belief function theory, we can get the

combined result:

Pl′({A}) = 0.17, Pl′({B}) = 1, Pl′({C}) = 0.09.

Finally, based on the maximum plausibility rule, we get Class B as the final classification result.
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Figure 4: Classification results of test sample y for different methods with 30 training data (with “◦” for class A, “�” for class B and “△” for class

C, respectively).

4.2. Real data test

In this second experiment, ten well-known benchmark data sets from UCI repository were used to evaluate the

performance of the PkNN-BF classifier. The main characteristics of the data sets are summarized in Table 1. In

order to evaluate the effectiveness of the combination process with the belief functions theory, apart from the above

compared methods, we also consider the method of combining the PkNN sub-classifiers using voting rule (denoted as
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Figure 4.4: Classification results of test sample y for different methods with 60 training samples
(with ’◦’ for class A, ’�’ for class B and ’4’ for class C, respectively)

4.4.2 Real data test

In this second experiment, ten well-known real data sets from the UCI repository were
used to evaluate the performance of the PkNN-BF classifier. The main characteristics of
the data sets are summarized in Table 4.1. In order to evaluate the effectiveness of the
combination process using the belief functions, apart from the above compared methods,
we also considered the method of combining the PkNN sub-classifiers using the voting
rule (denoted as PkNN-VOTE). As for these real data sets, the feature correlations are
unknown, the PM distance metric has been used for the PkNN sub-classifiers, and the
extension of GW-kNN in Mahalanobis distance (denoted as GM-kNN) [124] was instead
for comparison. For all these kNN-based methods, the results for the optimal value of k
ranging from 1 to 25, observed in each method were reported.

The classification results of the ten benchmark data sets are shown in Table 4.2. The
significance of the differences between results is evaluated using a Mc Nemar test [34] at
a level of significance of α = 0.05. For each data set, the best classification accuracy is
underlined, and those that are significantly improved than the baseline L2-kNN method
are printed in bold. As can be seen from these results, the PkNN-BF method, presented in
this chapter, outperforms the L2-kNN, GM-kNN and CDW-kNN methods for most of the
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Table 4.1: Statistics of the benchmark data sets used in the experiment

Data set # Instances # Features # Classes # Training # Testing
Balance 625 4 3 500 125
Ecoli 336 7 8 200 136
Glass 214 9 6 139 75
Satimage 6,435 36 6 4,435 2,000
Segment 2,310 19 7 1,400 910
Vehicle 846 18 4 646 200
Vertebral 310 6 3 150 160
Waveform 5,000 21 3 3,500 1,500
Wine 178 13 3 75 103
Yeast 1,484 8 10 1,000 484

data sets. Additionally, for Ecoli, Glass, Satimage, Segment, Vehicle, Waveform and Wine
data sets, the improvements are statistically significant than the baseline L2-kNN method,
because the local distance metric plays more crucial role in determining the kNN-based
classification performance for these small-size and high-dimension cases. In addition, the
PkNN-BF method always performs better than PkNN-VOTE, especially for those data
sets with small number of classes, because the voting rule will take great adventure when
the total number of votes (M(M − 1)/2, with M be the number of classes) is small.

Table 4.2: Classification accuracy rate (in %) of our proposed method compared with other kNN-
based methods for real data
Data set L2-kNN GM-kNN CDW-kNN PkNN-VOTE PkNN-BF
Balance 88.40 89.60 91.20a 89.60 90.40
Ecoli 84.56 84.56 85.29 87.50b 88.24
Glass 69.33 70.67 70.67 72.00 74.67
Satimage 89.45 91.55 89.30 91.95 92.55
Segment 95.05 96.15 94.51 96.70 96.92
Vehicle 69.50 70.50 69.50 72.00 74.50
Vertebral 83.88 83.25 84.50 83.88 85.12
Waveform 80.67 81.07 84.07 84.53 85.93
Wine 77.67 78.64 89.32 88.35 93.20
Yeast 56.82 55.58 55.79 57.02 57.23

aThe results underlined correspond to the best accuracy.
bThe results typeset in boldface are significantly better than the baseline L2-kNN method at level

α = 0.05.
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4.5 Conclusion

In order to improve the performance of the kNN-based classifier in incomplete data set
situations, a new distance metric called pairwise distance metric, has been proposed in
this chapter. Compared with the existing distance metrics, the pairwise distance metric
provides greater flexibility to design the feature weights so that the local specificities in
feature space can be well characterized. A parameter optimization procedure was designed
to learn the pairwise distance metric from the training data set. Based on the pairwise
distance metric, a PkNN-BF classifier was developed, which combines the outputs of PkNN
classifiers in the framework of belief functions. From the results reported in the last section,
we can conclude that the proposed method achieved a uniformly good performance when
applied to a variety of classification tasks, including those with high dimension and small
sample size, in which cases the training data set is not rich enough to well characterize the
real class-conditional probability distributions.



Part III

Rule-based classification

This part focuses on classification of uncertain data using rule-based approaches.

Chapter 5 focuses on improving the performance of the rule-based classification system
in complex applications. We extend the traditional rule-based classification system in the
framework of belief functions and develop a belief rule-based classification system to address
uncertain information in complex classification problems.

Chapter 6 concerns the classification problems based on partially available training data
and expert knowledge. A hybrid belief rule-based classification system is developed to make
use of these two types of information jointly for classification.

71





Chapter 5

Belief rule-based classification

system

Among the computational intelligence techniques employed to solve classification problems,
the fuzzy rule-based classification system (FRBCS) is a popular tool capable of building
a linguistic model interpretable to users. However, it may face lack of accuracy in some
complex applications, because the inflexibility of the concept of the linguistic variable
imposes hard restrictions on the fuzzy rule structure. In this chapter, we extend the FRBCS
with a belief rule structure and develop a belief rule-based classification system (BRBCS) to
address the uncertain information in complex classification problems. The two components
of the proposed BRBCS, i.e., the belief rule base and the belief reasoning method, are
designed specifically by taking into account the pattern noise that exists in many real-
world data sets.

In this chapter, we first give an introduction about the background and motivations
in Section 5.1. Then, the belief rule-based classification system is developed within the
framework of belief functions in Section 5.2. Three experiments are then performed in
Section 5.3 to evaluate the accuracy, robustness, and time complexity of the proposed
method. Finally, Section 5.4 concludes this chapter.

5.1 Introduction

The fuzzy rule-based classification system (FRBCS), first developed by Chi et al. [17], has
become a popular framework for classifier design due to its capability of building a linguistic
model interpretable to users. However, the FRBCS may have low accuracy when dealing
with some complex applications, due to the inflexibility of the concept of the linguistic
variable, which imposes hard restrictions on the fuzzy rule structure [5]. Besides, the fuzzy
rule structure is also not robust to pattern noise, which hinders its applications in harsh
working conditions. As reviewed in Section 2.4.2, plenty of work has been done in the past
two decades in order to improve the accuracy and robustness of the FRBCS.

In fact, different types of uncertainty, such as fuzziness, imprecision and incompleteness,

73
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may coexist in real-world complex systems. The FRBCS, which is based on fuzzy set theory
[132], cannot effectively address imprecise or incomplete information in the modeling and
reasoning processes. The theory of belief functions, proposed and developed by Dempster
[24] and Shafer [96], has become one of the most powerful frameworks for uncertain
modeling and reasoning. As the fuzzy set theory is well suited to dealing with fuzziness,
and the belief function theory provides an ideal framework for handling imprecision and
incompleteness, many researchers have investigated the relationship between fuzzy set
theory and belief function theory and suggested different methods of integrating them
[12, 15, 65, 127, 128]. Among these methods, Yang et al. [128] extended the fuzzy rule in
the framework of belief functions and proposed a new knowledge representation scheme
in a belief rule structure, which is capable of capturing fuzzy, imprecise, and incomplete
causal relationships. The belief rule structure has been successfully applied in clinical risk
assessment [57], inventory control [63], fault diagnosis [135], and new product development
[106,129].

In this chapter, we aim to extend the fuzzy rule in FRBCS with the belief rule structure
developed in [128] for classification applications. Compared with the fuzzy rule, the conse-
quence part of the belief rule is in a belief distribution form, which is more informative and
can characterize the uncertain information (i.e., fuzziness, imprecision, and incompleteness)
existing in the training set. In addition, feature weights are introduced in the belief rule to
characterize the different degrees of importance of features to the consequence. Therefore,
the belief rule is more suitable for modeling those complex classification problems with
high uncertainty. Based on the belief rule structure, a belief rule-based classification system
(BRBCS) is developed as an extension of the FRBCS in the framework of belief functions.
In the proposed BRBCS, a data-driven belief rule base (BRB) generation method is
developed to establish the uncertain association between the feature space and the class
space. This BRB generation method enables the automatic generation of belief rules from
the training data without the requirement of a priori expert knowledge. Then, to classify
a query pattern based on the BRB, a belief reasoning method (BRM) is developed based
on the belief function theory. This BRM can well address the uncertainty existing in the
consequences of activated belief rules for a query pattern.

To handle the pattern noise commonly existing in many real-world data sets, two
techniques are developed in the BRB generation and BRM design processes. First, the
consequence part of each belief rule in BRB is generated by fusing the information coming
from all of the training samples assigned to the corresponding antecedent fuzzy region. In
this way, the adverse effects of the noisy training samples on the consequence of the belief
rule can be reduced to some extent. Furthermore, in BRM, the final consequent class of
a query pattern is obtained by combining the consequence parts of all of the belief rules
activated by the query pattern. Thus, even if some unreliable belief rules are generated in
noisy conditions, this procedure can further reduce the risk of misclassification.



5.2. BELIEF RULE-BASED CLASSIFICATION SYSTEM 75

5.2 Belief rule-based classification system

Considering the advantages of belief functions for representing and reasoning with un-
certain information, in this section we extend the classical FRBCS in the framework of
belief functions and develop a belief rule-based classification system (BRBCS). As shown
in Figure 5.1, the proposed BRBCS is composed of two components: the belief rule base,
which establishes an association between the feature space and the class space, and the
belief reasoning method which provides a mechanism to classify a query pattern based
on the constructed rule base. In Section 5.2.1, we first describe the belief rule structure
for classification applications, which extends the traditional fuzzy rule structure in the
framework of belief functions. Based on the belief rule structure, we learn the belief rule
base from the training data in Section 5.2.2, and then the belief reasoning method is
developed in Section 5.2.3.

Query 

Pattern
Class

Training 

Data

Belief Rule Base

(BRB)

Belief Reasoning Method

(BRM)

Input OutputBRBCS

Figure 5.1: Belief rule-based classification system

5.2.1 Belief rule structure

The fuzzy rule structure expressed in Eq. (2.10) is relatively simple in that it does not
consider the distribution of consequence and the relative importance of each feature. To
take the above aspects into consideration, two concepts are introduced [128]:

• Belief degrees of consequence. For a complex classification problem, it is likely that
the consequence of a rule may take a few values with different belief degrees. Suppose
the consequence may haveM different classes, ω1, ω2, · · · , ωM , and the corresponding
belief degrees are represented by βi(i = 1, 2, · · · ,M), then the consequence with a
belief structure can be represented by {(ω1, β1), (ω2, β2), · · · , (ωM , βM )}.

• Feature weights. In real-world classification problems, different features may behave
distinctly in determining the consequent class. Thus, there is a need to assign a weight
to each feature to describe such degrees of importance.
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To take into account the belief degrees of consequence and the feature weights, the
fuzzy rule structure expressed in Eq. (2.10) can be extended to the following belief rule
structure for classification purposes:

Belief Rule Rq :

If x1 is Aq1 and · · · and xP is AqP , then consequence is Cq = {(ω1, β
q
1), · · · , (ωM , βqM )}

with rule weight θq and feature weights δ1, · · · , δP , q = 1, 2, · · · , Q,
(5.1)

where βqm is the belief degree to which ωm is believed to be the consequent class for the q-th
belief rule. In the belief structure, the consequence may be incomplete, i.e.,

∑M

m=1
βqm < 1,

and the left belief 1−
∑M

m=1
βqm denotes the degree of ignorance about the class label. The

rule weight θq with 0 ≤ θq ≤ 1 characterizes the certainty grade of the belief rule Rq and
the feature weights δ1, · · · , δP with 0 ≤ δ1, · · · , δP ≤ 1 describe the importance of different
features in determining the consequent class.

Remark 5.1. Compared with the fuzzy rule structure, the belief rule structure has some
advantages for classification problems as follows. a) In the belief rule structure, the con-
sequence is in a belief distribution form. On the one hand, with the distribution form,
any difference in the antecedent part can be clearly reflected in the consequence, whereas
in a traditional fuzzy rule, different antecedents may lead to the same consequence. On
the other hand, by introducing belief functions, the belief structure makes the rule more
appropriate to characterize the uncertain information. In generating each rule, only limited
training samples are available, and each training sample only provides partial evidence about
the consequence of this rule. Thus, the corresponding consequence of this rule should not
be complete. The belief rule structure can well characterize this incompleteness, with the
remained belief 1−

∑M

m=1
βqm denoting the degree of ignorance about the class label induced

by the limited training samples. b) With the introduction of feature weights, the importance
of different features to the consequence can be well characterized, which is closer to reality.
In summary, compared with the traditional fuzzy rule, the belief rule is more informative,
more flexible and thus more suitable for modeling those complex classification problems.

5.2.2 Belief rule base generation

To make a classification with BRBCS, the first step is to generate a BRB from the training
set. The FRB generation method given by Chi et al. [17] is used as a base model in
this section to develop the BRB generation method in the framework of belief functions.
As displayed in Eq. (5.1), each belief rule is composed of four components, namely, the
antecedent part, the belief degrees of consequence, the rule weight and the feature weights.
Because the antecedent part in the belief rule is the same as that in the fuzzy rule, here
we only focus on the generation of the latter three components, i.e., the belief degrees of
consequence, the rule weight and the feature weights.
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5.2.2.1 Generation of belief degrees of consequence

In this part, with the symbols defined in Section 5.2.1, we develop an algorithm to generate
the belief degrees of consequence in BRB.

Similar to the generation of the consequent class in FRB in the first step, we also need
to calculate the matching degree µAq(xi) of each training sample xi with the antecedent
part Aq using Eq. (2.11). In FRB, the consequent class is directly specified as the class
label of the training sample having the greatest matching degree with the antecedent part
Aq. However, this procedure may entail great risk, especially when class noise exists in the
training set. In BRB, we fuse the class information of all of the training samples assigned
to the corresponding antecedent fuzzy region to get the consequence in a belief distribution
form.

Denote as T q the set of training samples assigned to the antecedent fuzzy region Aq.
From the view of belief functions, the class set Ω = {ω1, · · · , ωM} can be regarded as the
frame of discernment of the problem. For any training sample xi ∈ T q, the class label
Class(xi) = ωm can be regarded as a piece of evidence that increases the belief that the
consequent class belongs to ωm. However, this piece of evidence does not by itself provide
100% certainty. In the framework of belief functions, this can be expressed by saying that
only some part of the belief (measured by the matching degree µAq(xi)) is committed to
ωm. Because Class(xi) = ωm does not point to any other particular class, the rest of the
belief should be assigned to the frame of discernment Ω representing ignorance. Therefore,
this item of evidence can be represented by a mass function mq

i verifying:


mq
i ({ωm}) = µAq(xi)

mq
i (Ω) = 1− µAq(xi)

mq
i (A) = 0, ∀A ∈ 2Ω \ {Ω, {ωm}},

(5.2)

with 0 < µAq(xi) ≤ 1.

For each xi ∈ T q, a mass function depending on both its class label and its matching
degree with the antecedent part can therefore be defined. To obtain the consequence
associated with the antecedent part Aq in a belief distribution form, these mass functions
can be combined using Dempster’s rule. As shown in Eq. (5.2), only two focal elements are
involved in each mass function. Because of the particular structure of the mass function,
the computational burden of Dempster’s rule can be greatly reduced, and the analytical
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formulas can be derived as

mq({ωm}) =
1

1−Kq

1−
∏

xi∈T q
m

(1− µAq(xi))

 ∏
r 6=m

∏
xi∈T q

r

(1− µAq(xi)),

m = 1, 2, · · · ,M,

mq(Ω) =
1

1−Kq

M∏
r=1

∏
xi∈T q

r

(1− µAq(xi)),

(5.3)

where T qm is a subset of T q, corresponding to those training samples belong to class ωm,
and Kq is the total conflicting belief mass

Kq = 1 + (M − 1)

M∏
r=1

∏
xi∈T q

r

(1− µAq(xi))−
M∑
m=1

∏
r 6=m

∏
xi∈T q

r

(1− µAq(xi)). (5.4)

Therefore, the belief degrees of consequence of rule Rq can be obtained as{
βqm = mq({ωm}), m = 1, 2, · · · ,M,

βqΩ = mq(Ω),
(5.5)

where βqΩ is the belief degree unassigned to any individual class.

Remark 5.2. In the classical FRBCS reviewed in Section 2.4.1, the consequence of each
rule is only determined by the class label of the training sample having the greatest matching
degree with the antecedent part, whereas the consequence in the belief rule fuses information
that comes from all of the training samples assigned to the corresponding antecedent fuzzy
region. Thus, it can effectively reduce the adverse effects of some noisy training samples.
The method to generate the consequence is similar to some data-cleaning approaches [6,22].
The difference is that the data-cleaning approaches remove the unreliable training samples,
whereas our method retains all training samples and generates the consequence in a belief
distribution form, which can be considered as soft labels. Compared with the data cleaning
approaches, the belief distribution form maintains more information from the training
samples and can be further combined with the consequences of other rules in later processing.

Remark 5.3. The idea to generate the belief degrees of consequence in this chapter is
inspired by the EkNN classification method developed by Denœux [26], in which each of
the k nearest neighbors of the query pattern is considered as an item of evidence that
supports certain hypotheses regarding the class membership of that training sample. The
corresponding relations of the two methods are as follows: a) the training samples assigned
to the corresponding antecedent fuzzy region correspond to the k nearest neighbors of the
query pattern in EkNN, and b) the validity of each training sample is measured by the
matching degree with the antecedent part, and in EkNN, that is measured by the distance
from the query pattern. With the above relationship, it can be further deduced that the
consequence generation method in FRB reviewed in Section 2.4.1 has a similar idea to the
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voting kNN classification method [38]. As illustrated in [26], the EkNN classifier can obtain
much better performance than the voting kNN classifier, especially in noisy conditions.
Thus, it is expected that the belief distribution form of consequence in the BRB can handle
the class noise more effectively than the single class form of consequence in the FRB.

5.2.2.2 Generation of rule weights

In the area of data mining, two measures called confidence and support have often been
used for evaluating association rules [2]. Our belief rule Rq in Eq. (5.1) can be viewed as
a type of association rule of the form Aq ⇒ Cq. The main difference from the standard
formulation of the association rule is that in our belief IF-THEN rule, the input variable
is in fuzzy form and the output variable is in belief distribution form. In this part, we will
draw the rule weight θq from the concepts of confidence and support.

The confidence is defined as a measure of the validity of one association rule [2]. For
our belief IF-THEN rule, the consequence part Cq is obtained by combining the items of
evidence coming from all of the training samples assigned to the antecedent fuzzy region
Aq. It is believed that if the items of evidence involved are in conflict with each other
(e.g., if the items of evidence assign different classes with the highest belief), then the
consequence has low validity. In the framework of belief functions, several models are
proposed to measure the conflict among different items of evidence [66, 102]. The conflict
factor

∑
B∩C=∅

m1(B)m2(C) derived in Dempster’s rule is employed here for its simplicity

and convenience. The confidence of the belief rule Rq is hence defined as

c(Rq) = 1−Kq, (5.6)

with the average conflict factor 0 ≤ Kq ≤ 1 calculated by

Kq =


0, if |T q| = 1,

1

|T q|(|T q| − 1)

∑
xi,xj∈T q ;i<j

∑
B∩C=∅

mq
i (B)mq

j(C), otherwise. (5.7)

where |T q| is the number of training samples assigned to the fuzzy region Aq.

On the other hand, as described in [2], the support indicates the grade of the coverage
by one association rule. For our belief IF-THEN rule, N training samples are available for
rule generation, whereas only those assigned to the corresponding antecedent fuzzy region
are used to generate the consequence. Therefore, the support of the belief rule Rq is defined
as

s(Rq) =
|T q|
N

. (5.8)

As defined above, the confidence and support characterize the weight of the belief rule
in two distinct aspects and should therefore be considered jointly. On the one hand, if the



80 CHAPTER 5. BELIEF RULE-BASED CLASSIFICATION SYSTEM

belief rule Rq has high confidence but low support (e.g., if only one training sample is
assigned to the antecedent fuzzy region Aq), the belief rule weight should be decreased, as
the consequence may be easily affected by the class noise. On the other hand, if the belief
rule Rq has high support but low confidence (e.g., if a large number of training samples are
contained in T q but with great divergence in the class label), the belief rule weight should
also be decreased, considering the great conflicts. The product of the confidence c(Rq) and
the support s(Rq) is used to characterize the weight of the belief rule Rq as

θq ∝ c(Rq)s(Rq). (5.9)

Following a normalization process, we obtain the weights of all of the belief rules as

θq =
c(Rq)s(Rq)

max
q
{c(Rq)s(Rq), q = 1, · · · , Q} , q = 1, 2, · · · , Q. (5.10)

5.2.2.3 Generation of feature weights

In the belief rule displayed as Eq. (5.1), the feature weights reflect the relative importance
of the antecedent features with respect to their influence on the consequence. An antecedent
feature with a higher weight is more influential on the consequence. Therefore, to determine
a feature weight is to find a way to measure the relative intensity of the influence that this
antecedent feature imposes on the consequence in comparison with others. In this part,
such a measurement is quantified by a so-called correlation factor between each feature
and the consequence.

Suppose np fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np} are established for feature Ap. Now,
we will derive the weight of feature Ap by correlation analysis with the corresponding
consequence. Specifically, we use the relationship between the changes of different fuzzy
partitions that Ap takes and the changes of the consequence to determine the correlation
between Ap and the consequence.

As Q belief rules with different antecedent parts are available in the BRB, in the first
place, for feature Ap, according to its np fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np}, we divide
the BRB into np sub-BRBs Bk, k = 1, 2, · · · , np, with each sub-BRB Bk containing all of
the belief rules using the fuzzy partition Ap,k for feature Ap:

Bk =
{
Rq | Aqp = Ap,k, q = 1, 2, · · · , Q

}
, k = 1, 2, · · · , np. (5.11)

Then, for each sub-BRB Bk, the consequence parts of all of the contained belief rules are
combined to obtain the integrated consequence mk with the weighted averaging operation:

mk({ωm}) =
1∑

Rq∈Bk

θq

∑
Rq∈Bk

θqβqm, m = 1, 2, · · · ,M,

mk({Ω}) =
1∑

Rq∈Bk

θq

∑
Rq∈Bk

θqβqΩ,
(5.12)
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where βqm, m = 1, 2, · · · ,M , and βqΩ are the belief degrees of consequence of rule Rq

generated in Section 5.2.2.1, and θq is the rule weight of Rq generated in Section 5.2.2.2.

Thus, when Ap changes its fuzzy partition from Ap,k to Ap,k+1, k = 1, 2, · · · , np − 1,
the change of the consequence is

∆Cp,k = dJ(mk,mk+1), (5.13)

where dJ is Jousselme’s distance, as defined by Eq. (1.8).

Then, the average change of the consequence for k changing from 1 to np−1 is obtained
as

∆Cp =

np−1∑
k=1

∆Cp,k

np − 1
. (5.14)

In this chapter, we define ∆Cp as the correlation factor (CF) between feature Ap and
the consequence, i.e.,

CFp = ∆Cp. (5.15)

In a similar way, we obtain the correlation factors CFp, p = 1, 2, · · · , P for all features.
Further, δp, the weight of feature Ap, can be generated from the normalized CFp as follows

δp =
CFp

max
p
{CFp, p = 1, 2, · · · , P} , p = 1, 2, · · · , P. (5.16)

5.2.3 Belief reasoning method

As reviewed in Section 2.4.1, in FRBCS, the single winner FRM is used to classify a new
query pattern. However, when excessive noise exists in the training set, this method may
have a great risk of misclassification. In this section, we will fuse the consequences of all
of the rules activated by the query pattern in the framework of belief functions to get a
more robust classification. The main idea is firstly calculating the association degrees of the
query pattern with the consequences of the activated belief rules and then combining these
consequences with respect to their reliability (characterized by the association degrees).

5.2.3.1 Association degree with the consequence of a belief rule

Denote as y = (y1, y2, · · · , yP ) a query pattern to be classified. In the first place, the
matching degree of the query pattern with the antecedent part of each rule is calculated.
As the feature weights are complemented in the belief rule, we use the following simple
weighted multiplicative aggregation function to calculate the matching degree

µAq(y) = P

√√√√ P∏
p=1

[
µAq

p
(yp)

]δp
, (5.17)
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where µAq
p
is the membership function of the antecedent fuzzy set Aqp, and δp is the weight

of the p-th feature given in Eq. (5.16).

Remark 5.4. In Eq. (5.17), the contribution of a feature towards the matching degree is
positively related to the weight of the feature. A more important feature plays a greater role

in determining the matching degree. Particularly, if δp = 0, then
[
µAq

p
(yp)

]δp
= 1, which

shows that a feature with zero importance does not have any impact on the matching degree;

if δp = 1, then
[
µAq

p
(yp)

]δp
= µAq

p
(yp), which shows that the most important feature has

the largest impact on the matching degree.

Let S be the set of Q constructed belief rules in the BRB. Denote as S ′ ⊆ S the set of
belief rules activated by query pattern y:

S ′ = {Rq | µAq(y) 6= 0, q = 1, 2, · · · , Q} . (5.18)

The association degree of query pattern y with the consequence of one activated belief
rule Rq ∈ S ′ is determined by two factors, the matching degree and the rule weight. The
matching degree reflects the similarity between the query pattern and the antecedent part
of the belief rule, and the rule weight characterizes the reliability of the belief rule. Thus,
the association degree is defined as

αq = µAq(y)θq, for Rq ∈ S ′. (5.19)

Remark 5.5. As a result of limitation due to the number of training samples, in some ap-
plications, there may be no rule activated by query pattern y. In such a case, we classify the
non-covered query pattern based on the generated rule which has the nearest distance with
it. For a non-covered query pattern y, we first find the fuzzy region A∗ = (A∗1, A

∗
2, · · · , A∗P )

that has the greatest matching degree with it. The distance between a non-covered query
pattern y and one generated rule Rq is defined as d(y, Rq) = ‖A∗ −Aq‖2, where Aq is the
antecedent fuzzy region of rule Rq.

5.2.3.2 Reasoning using belief functions

In the previous part, the association degrees of the query pattern y with the consequences
of the activated belief rules are calculated. In essence, the association degree is a measure of
the reliability of the corresponding consequence regarding the class of the query pattern.
Therefore, in the consequence combining process, the reliability of consequence of each
activated belief rule should be taken into account. In the framework of belief functions,
Shafer’s discounting operation, defined by Eq. (1.24), is usually used to discount the
unreliable evidence before combination. Regarding association degree α in Eq. (5.19) as
the reliability factor, the consequence of one activated belief rule in Eq. (5.5) is discounted
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using Shafer’s discounting operation as

{
αm({ωm}) = αβm, m = 1, 2, · · · ,M
αm(Ω) = αβΩ + (1− α).

(5.20)

For all of the |S ′| = L activated belief rules, with the above formula, we can get the
corresponding discounted consequences αmi, i = 1, 2, · · · , L.

To make a decision regarding the discounted consequences of activated belief rules,
the corresponding mass functions can be combined using Dempster’s rule. However, as
indicated in [32,123], the direct use of Dempster’s rule will result in an exponential increase
in computational complexity for the reason of enumerating all subsets or supersets of a
given subset A of Ω, and the operation becomes impractical when the frame of discernment
has more than 15 to 20 elements. The following part is intended to develop an operational
algorithm for evidence combination with linear computational complexity, considering the
fact that the focal elements of each associated mass function are all singletons except the
ignorance set Ω.

Define I(i) as the index set of the former i mass functions. Let mI(i) be the mass
function after combining all of the former i mass functions associated with I(i). Given the
above definitions, a recursive evidence combination algorithm can be developed as follows

mI(i+1)({ωq}) = KI(i+1)

[
mI(i)({ωq})αmi+1({ωq}) +mI(i)(Ω)αmi+1({ωq})

+mI(i)({ωq})αmi+1(Ω)
]
, q = 1, 2, · · · ,M,

mI(i+1)(Ω) = KI(i+1)

[
mI(i)(Ω)αmi+1(Ω)

]
,

KI(i+1) =

1−
M∑
j=1

M∑
p=1,p 6=j

mI(i)({ωj})αmi+1({ωp})

−1

i = 1, 2, · · · , L− 1,

(5.21)

where KI(i+1) is a normalizing factor, so that
∑M

q=1
mI(i+1)({ωq}) +mI(i+1)(Ω) = 1.

Note that mI(1)({ωq}) = αm1({ωq}) for q = 1, 2, · · · ,M , and mI(1)(Ω) = αm1(Ω).
Thus, this recursive evidence combination algorithm can initiate with the first mass func-
tion. Accordingly, as the recursive index i reaches L − 1, the final results mI(L)({ωq}),
q = 1, 2, · · · ,M and mI(L)(Ω) (m({ωq}) and m(Ω) for short, respectively) are obtained by
combining all of the L mass functions. This combination result is the basis for the later
decision process.

For decision making based on the combined mass functionm calculated with Eq. (5.21),
the belief function Bel, plausibility function Pl and pignistic probability BetP are common
alternatives. As the focal elements of the combined mass function m are all singletons
except the ignorance set Ω, the credibility, plausibility and pignistic probability of each
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class ωq are calculated as follows

Bel({ωq}) = m({ωq}),
P l({ωq}) = m({ωq}) +m(Ω),

BetP ({ωq}) = m({ωq}) +
m(Ω)

M
,

q = 1, 2, · · · ,M.

(5.22)

It is supposed that based on this evidential body, a decision has to be made in assigning
query pattern y to one of the classes in Ω. Because of the particular structure of the
combined mass function (i.e., the focal elements are either singletons or the whole frame
Ω), it can be easily discovered that

ω = arg max
ωq∈Ω

Bel({ωq})

= arg max
ωq∈Ω

Pl({ωq})

= arg max
ωq∈Ω

BetP ({ωq})

= arg max
ωq∈Ω

m({ωq}).

(5.23)

That is, the strategies maximizing the three criteria Bel, Pl, and BetP in Eq. (5.22) lead
to the same decision: the query pattern is assigned to the class with maximum basic belief
assignment.

Remark 5.6. For some classification applications under harsh working conditions (e.g.,
battlefield target recognition), significant noise may exist in the training set. Though the
consequence generation method proposed in Section 5.2.2.1 can reduce the adverse effects
from pattern noise, the consequence of one rule may still be unreliable in excessively noisy
conditions. The BRM developed within the framework of belief functions combines the
consequences of all of the activated rules to obtain the final consequent class. Therefore,
compared with the single winner FRM, the BRM can further reduce the risk of misclassifi-
cation.

5.3 Experiments

The performance of the proposed BRBCS was empirically assessed by three different
experiments with 20 real-world classification problems from the well-known UCI Repository
of Machine Learning Databases [72]. In the first experiment, the original data sets were
used to evaluate the classification accuracy of the proposed BRBCS. In the second one,
the noise was added to the data sets artificially in controlled settings to evaluate the
classification robustness of the proposed BRBCS in noisy training set conditions. In the
last experiment, we provided an analysis for its time complexity.
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5.3.1 Data sets and experimental conditions

Twenty well-known benchmark data sets from the UCI repository were selected to evaluate
the performance of the BRBCS. The main characteristics of the 20 data sets are summa-
rized in Table 5.1, where "# Instances" is the number of instances in the data set, "#
Features" is the number of features, and "# Classes" is the number of classes. Notice that
for the data sets Cancer, Diabetes and Pima, we have removed the instances with missing
feature values.

Table 5.1: Description of the benchmark data sets employed in the study
Data set # Instances # Features # Classes
Banknote 1,372 4 2
Breast 106 9 6
Cancera 683 9 2
Diabetesa 393 8 2
Ecoli 336 7 8
Glass 214 9 6
Haberman 306 3 2
Iris 150 4 3
Knowledge 403 5 4
Letter 20,000 16 26
Liver 345 6 2
Magic 19,020 10 2
Pageblocks 5,473 10 4
Pimaa 336 8 2
Satimage 6,435 36 6
Seeds 210 7 3
Transfusion 748 4 2
Vehicle 846 18 4
Vertebral 310 6 3
Yeast 1,484 8 10

aFor the data sets containing missing values, instances with missing feature values are removed.

To develop the different experiments, we considered the B-Fold Cross-Validation (B-
CV) model [85]. Each data set was divided into B blocks, with B − 1 blocks as a training
set and the remaining block as a test set. Therefore, each block was used exactly once as a
test set. We used the 5-CV here, i.e., five random partitions of the original data set, with
four of them (80%) as the training set and the remainder (20%) as the test set. For each
data set, we considered the average results of the five partitions.

For the first and the third experiments, the original data sets described above were
used directly, whereas for the second, some additional processes were needed. As discussed
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in [91, 92, 136], the pattern noise in the data set can be distinguished into two categories:
class noise and feature noise. The class noise, also known as labeling error, occurs when a
sample is assigned to an incorrect class. It can be attributed to several causes, including
subjectivity during the labeling process, data entry errors, or limitations of the equipped
measure instrument. In contrast, the feature noise is used to refer to corruptions in the
values of one or more features of samples in a data set, which is often encountered in harsh
working conditions. With the above consideration, in the second experiment, we managed
the robustness evaluation under two types of noise scenarios, class noise and feature noise.

As the initial amount of noise present in the original data sets was unknown, we used
manual mechanisms to independently add noise to each data set to control the noise level
for comparison. Additionally, to observe how noise affects the accuracy of the classifiers,
the noise was only added in the training sets, and the test sets remained unchanged. Based
on the type of noise, as in [91], different schemes of noise introduction were designed as
follows.

• Introduction of class noise. In this scheme, a class noise level of x% indicates that x%

of the samples in the training set are mislabeled. The class labels of these samples
are randomly changed to different ones within the domain of the class.

• Introduction of feature noise. In this scheme, a feature noise level of x% indicates
that x% of the feature values in the training set are erroneous. The corrupted feature
is assigned a random value between the minimum and maximum of the domain of
that feature, following a uniform distribution.

To evaluate the performance of the difference methods, in the first experiment, the
classification accuracy criterion was used. In the second experiment, apart from the classi-
fication accuracy under each level of induced noise, we also taken into account the following
relative loss of accuracy (RLA) to observe the form in which the accuracy of one algorithm
was affected when increasing the level of noise with respect to the case without noise.

RLAx% =
Acc0% −Accx%

Acc0%
, (5.24)

where RLAx% is the relative loss of accuracy at noise level x%, Acc0% is the classification
accuracy in the test with the original data set, and Accx% is the classification accuracy
when testing the data set with noise level x%.

To assess whether significant differences exist among different methods, we adopted
a nonparametric statistical analysis. For conducting multiple statistical comparisons over
multiple data sets, as suggested in [25,41], the Friedman test and the corresponding post hoc
Bonferroni-Dunn test were employed. For performing multiple comparisons, it is necessary
to check whether the results obtained by different methods present any significant difference
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(Friedman test), and in the case of finding one, we can find out by using a post hoc test
to compare the control method with the remaining methods (Bonferroni-Dunn test). We
used α = 0.05 as the level of significance in all cases. For a detailed description of these
tests, one can refer to [25,41].

5.3.2 Classification accuracy evaluation

In the first experiment, we aim to compare the classification accuracy of our proposed
BRBCS with the classical FRBCS proposed by Chi et al. [17], and two improved FRBCSs
(denoted as EFRBCS [19] and EBRB [64], respectively) reviewed in Section 2.4.2. The
settings of the considered methods are summarized in Table 5.2. As for the considered
data sets no prior knowledge about the establishment of the fuzzy regions was available,
and the fuzzy grids were used to partition the feature space. We normalized each feature
value into a real number in the unit interval [0, 1]. Once the number of partitions for
each feature was determined, the fuzzy partitions can be easily computed. Here, different
numbers of partitions (C = 3, 5, 7) were employed to make the comparison.

Table 5.2: Settings of considered methods for classification accuracy evaluation
Method Setting

Rule structure Reasoning method Membership function Partition number
FRBCS Eq. (2.10) Single winner Triangular C = 3,5,7
EFRBCS Eq. (2.13) Additive combination Triangular C = 3,5,7
EBRB Eq. (2.15) Additive combination Triangular C = 3,5,7
BRBCS Eq. (5.1) Belief reasoning Triangular C = 3,5,7

Table 5.3 show the classification accuracy of our proposed BRBCS in comparison with
other rule-based methods over the test data. The numbers in brackets represent the rank
of each method. It can be seen that, the proposed BRBCS outperforms other methods for
most of the data sets. To compare the results statistically, we used nonparametric tests for
multiple comparisons to find the best method, considering the average ranks obtained over
the test data. First, we used the Friedman test to determine whether significant differences
exist among all of the mean values. Table 5.4 shows the Friedman statistic FF for each
number of partitions, and it relates them to the corresponding critical values by using a
level of significance of α = 0.05. Given that the Friedman statistics are clearly greater
than their associated critical values, there are significant differences among the observed
results with a level of significance α = 0.05 for all of the three partition numbers. Then, we
applied the Bonferroni-Dunn test to compare the best ranking method (i.e., BRBCS) with
the remaining methods. Table 5.5 presents these results. We can see that the Bonferroni-
Dunn test rejects all of the hypotheses of equality with the rest of the methods with
p < α/(k − 1). Therefore, by the analysis of the statistical study shown in Tables 5.4 and
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5.5, we conclude that our BRBCS is a solid model for classifier design, as it has shown
itself to be the best accuracy method when compared with the other rule-based methods
applied in this study.

Table 5.4: Friedman test of the accuracy for the considered methods (α = 0.05)
Partition number Statistic FF Critical value Hypothesis
C = 3 27.005 2.490 Rejected
C = 5 21.000 2.490 Rejected
C = 7 7.798 2.490 Rejected

Table 5.5: Bonferroni-Dunn test of the accuracy for comparing BRBCS with other methods (α =

0.05)
Partition number Method z value p value Critical value α/(k−1)a Hypothesis

FRBCS 5.88 4.13E-9 0.0167 Rejected
C = 3 EFRBCS 3.55 3.83E-4 0.0167 Rejected

EBRB 2.82 0.0048 0.0167 Rejected
FRBCS 4.65 3.26E-6 0.0167 Rejected

C = 5 EFRBCS 3.55 3.83E-4 0.0167 Rejected
EBRB 5.02 5.13E-7 0.0167 Rejected
FRBCS 3.55 3.83E-4 0.0167 Rejected

C = 7 EFRBCS 2.57 0.0101 0.0167 Rejected
EBRB 3.67 2.39E-4 0.0167 Rejected

ak is the number of considered methods.

To analyze the effect of partition numbers on classification performance, in Table 5.3,
the best accuracy for each data set is underlined. It can be seen that the classification
accuracy is not always ideally improving according to the increase of partition number,
especially for those data sets with relatively more features, which is caused by the limited
number of training samples. Additionally, as will be shown in Section 5.3.4, a larger
partition number usually means a greater computation burden. Therefore, in practice,
for those data sets with fewer features (M < 10), we suggest using a partition number
C = 5; otherwise, a partition number C = 3 is suggested to get a better trade-off between
accuracy and complexity.

5.3.3 Classification robustness evaluation

In the second experiment, we aim to analyze the classification robustness of our proposed
BRBCS when noise is present in the training sets. Apart from the classical FRBCS [17]
introduced in Section 2.4.1, the following two robust classifiers were also considered for
comparison.
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1. C4.5 [83]: C4.5 is considered to be a robust learner tolerant to noisy data. It itera-
tively builds a decision tree that correctly classifies the largest number of examples.
Additionally, a pruning strategy is used to reduce the chances of the classifier being
affected by noisy data from the training set.

2. BagC4.5 [91]: This is a multiple classifier system that considers C4.5 as the base
classifier. In this method, the bagging technique is used to resample the original
training set, and then the base classifier is trained with different data sets. As
experimentally analyzed in [91], BagC4.5 is a good noise-robust multiple classifier
system.

The settings of the considered methods are summarized in Table 5.6. In this experiment,
different types of noise (class noise and feature noise) with different noise levels (NL =

10%, 20%, 30%, 40%, 50%) were tested for comparison.

Table 5.6: Settings of considered methods for classification robustness evaluation
Method Setting
FRBCS • C = 5 for feature number M < 10, otherwise C = 3
C4.5 • Confidence level c = 0.25; • Minimal instances per leaf i = 2

BagC4.5 • Replicate number T = 10; • Majority vote combination
BRBCS • C = 5 for feature number M < 10, otherwise C = 3

Figure 5.2 shows the classification accuracy of each data set at different class noise
levels. It may be observed that for most data sets, the proposed BRBCS outperforms the
other methods at any class noise level. To verify the robustness of the proposed method
more specifically, Table 5.7 gives the RLA of our proposed BRBCS in comparison with other
robust methods at different class noise levels. The numbers in brackets represents the rank
of each method. For nonparametric statistical analysis, firstly, based on the average ranks of
the different methods in Table 5.7, the Friedman test was conducted to evaluate whether
significant differences exist among the different methods. Table 5.8 shows the Friedman
test result of RLA for the considered methods at different class noise levels. Given that
the Friedman statistics are clearly greater than their associated critical values, there are
significant differences among the observed results with a level of significance of α = 0.05 at
all class noise levels. Then, we used the Bonferroni-Dunn test to compare the best ranking
method (i.e., BRBCS) with the remaining methods. Table 5.9 presents these results. We
can see that the Bonferroni-Dunn test rejects all of the hypotheses of equality with the
rest of the methods with p < α/(k − 1), except for the BagC4.5 method at noise level
NL = 10%. This means that there is no significant difference only between BRBCS and
BagC4.5 at noise level NL = 10% with significance level α = 0.05. With the increase of
the noise level, the p value associated with each of the remaining methods becomes much
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lower. Thus, the RLA differences are more significant at higher noise levels, showing the
superior robustness of the proposed BRBCS in disruptive class noise conditions.

668 of the noise level, the p value associated with each of the remaining methods becomes much lower. Thus, the RLA differences
669 are more significant at higher noise levels, which shows the superior robustness of the proposed BRBCS in disruptive feature
670 noise conditions.

671 4.4. Interpretability analysis

672 As mentioned in the introduction, in addition to accuracy, interpretability is also an important criterion for rule-based
673 systems. In [21], the authors presented an overview of the interpretability measures of rule-based systems. In this experi-
674 ment, the following three widely accepted interpretability measures recommended in [21] are utilized to make a quantita-
675 tive analysis.

676 � Number of rules (# Rule): According to the principle of Occam’s razor (the best model is the simplest one fitting the system
677 behavior well), the set of fuzzy rules should be as small as possible under conditions in which the model performance is
678 preserved to a satisfactory level.
679 � Number of conditions (# Conditions): The number of conditions should be as small as possible in order to ease the read-
680 ability of the rules.
681 � Number of fired rules for a given input (# Fired rule): The number of rules used for the reasoning of a given input should be
682 as small as possible in order to control the semantic interpretability.
683

684 Based on the above three interpretability measures, we test the four rule-based methods shown in Table 3. Twenty real-
685 world problems shown in Table 2 are considered for evaluation, and the 5-CV model is used to calculate the average results.
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Fig. 3. Classification accuracy rate (in %) of our proposed BRBCS in comparison with other methods at different class noise levels. The symbol ‘M’ denotes the
FRBCS, ‘	’ denotes the C4.5, ‘�’ denotes the BagC4.5, and ‘�’ denotes the BRBCS.
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Figure 5.2: Classification accuracy rate (in %) of our proposed BRBCS in comparison with other
methods at different class noise levels (The symbol ′4′ denotes the FRBCS, ′◦′ denotes the C4.5,
′∗′ denotes the BagC4.5, and ′�′ denotes the BRBCS.)

Figure 5.3 shows the classification accuracy of each data set with different feature
noise levels. Similar to the results under class noise conditions, for most data sets, the
test accuracy is always higher for BRBCS than for the other robust methods under the
feature noise scheme. Table 5.10 shows the RLA of our proposed BRBCS in comparison
with other robust methods at different feature noise levels. In a similar manner, we first
used the Friedman test to evaluate whether significant differences exist among the different
methods. Table 5.11 shows the Friedman test result of RLA for the considered methods
at different feature noise levels. It can be seen that the Friedman statistics are clearly
greater than their associated critical values at all feature noise levels, which means that
there are significant differences among the observed results with a level of significance of
α = 0.05. Then, we used the Bonferroni-Dunn test to compare the best ranking method
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Table 5.8: Friedman test of RLA for considered methods at different class noise levels (α = 0.05)
Noise level Statistic FF Critical value Hypothesis
NL = 10% 6.3672 2.490 Rejected
NL = 30% 8.7372 2.490 Rejected
NL = 50% 30.096 2.490 Rejected

Table 5.9: Bonferroni-Dunn test of RLA for comparing BRBCS with other methods at different
class noise levels (α = 0.05)
Noise level Method z value p value Critical value α/(k−1)a Hypothesis

FRBCS 3.31 9.44E-4 0.0167 Rejected
NL = 10% C4.5 3.18 0.0015 0.0167 Rejected

BagC4.5 1.35 0.1779 0.0167 Accepted
FRBCS 3.92 8.88E-5 0.0167 Rejected

NL = 30% C4.5 3.55 3.83E-4 0.0167 Rejected
BagC4.5 2.82 0.0048 0.0167 Rejected
FRBCS 5.27 1.39E-7 0.0167 Rejected

NL = 50% C4.5 5.02 5.13E-7 0.0167 Rejected
BagC4.5 2.45 0.0143 0.0167 Rejected

ak is the number of considered methods.

(i.e., BRBCS) with the remaining methods. As shown in Table 5.12, the Bonferroni-Dunn
test rejects all of the hypotheses of equality with the rest of the methods with p < α/(k−1),
except for the BagC4.5 method at noise levels NL = 10% and NL = 30%. In other words,
there is no significant difference between BRBCS and BagC4.5 at noise levels NL = 10%

and NL = 30% with significance level α = 0.05. This is mainly because the feature noise
is not very disruptive at relatively lower noise levels. With the increase of the noise level,
the p value associated with each of the remaining methods becomes much lower. Thus,
the RLA differences are more significant at higher noise levels, which shows the superior
robustness of the proposed BRBCS in disruptive feature noise conditions.

5.3.4 Time complexity analysis

In this section, a time complexity analysis of the proposed BRBCS was provided to show to
what extent the runtime depends on factors such as the number of instances, the number
of features and the number of partitions. Twenty real-world problems (with the numbers
of training instances ranging from 85 to 16, 000 and the numbers of features ranging from
3 to 36) shown in Table 5.1 were considered for evaluation. Three different numbers of
partitions, C = 3, 5, 7, were tested, and the 5-CV model was used to calculate the average
runtime. The numerical experiments were executed by MATLAB 7.12 on an HP EliteBook
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Table 10
Friedman test of RLA for considered methods at different class noise
levels (a ¼ 0:05).

Noise level Statistic F F Critical value Hypothesis

NL = 10% 6.3672 2.490 Rejected
NL = 30% 8.7372 2.490 Rejected
NL = 50% 30.096 2.490 Rejected

Table 11
Bonferroni-Dunn test of RLA for comparing BRBCS with other methods at different class noise levels (a ¼ 0:05).

Noise level Method z value p value Critical value a=ðk� 1Þ Hypothesis

FRBCS 3.31 9.44E�4 0.0167 Rejected
NL = 10% C4.5 3.18 0.0015 0.0167 Rejected

BagC4.5 1.35 0.1779 0.0167 Accepted

FRBCS 3.92 8.88E�5 0.0167 Rejected
NL = 30% C4.5 3.55 3.83E�4 0.0167 Rejected

BagC4.5 2.82 0.0048 0.0167 Rejected

FRBCS 5.27 1.39E�7 0.0167 Rejected
NL = 50% C4.5 5.02 5.13E�7 0.0167 Rejected

BagC4.5 2.45 0.0143 0.0167 Rejected
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Fig. 4. Classification accuracy rate (in %) of our proposed BRBCS in comparison with other methods at different feature noise levels. The symbol ‘M’ denotes
the FRBCS, ‘	’ denotes the C4.5, ‘�’ denotes the BagC4.5, and ‘�’ denotes the BRBCS.
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Figure 5.3: Classification accuracy rate (in %) of our proposed BRBCS in comparison with other
methods at different feature noise levels (The symbol ′4′ denotes the FRBCS, ′◦′ denotes the C4.5,
′∗′ denotes the BagC4.5, and ′�′ denotes the BRBCS.)

Table 5.11: Friedman test of RLA for considered methods at different feature noise levels (α = 0.05)
Noise level Statistic FF Critical value Hypothesis
NL = 10% 3.8365 2.490 Rejected
NL = 30% 7.4993 2.490 Rejected
NL = 50% 11.303 2.490 Rejected

8570p with an Intel(R) Core(TM) i7-3540 M CPU @3.00 GHz and 8 GB memory. Table
5.13 shows the average runtime of the proposed BRBCS in the training and testing phases
for different data sets and different partition numbers, where "# Training" is the number
of training instances in the data set, "# Features" is the number of features, and "# Rules"
is the number of generated rules. "T. Tra." and "T. Tes." are the average runtimes in the
training phase and testing phase (classifying one pattern), respectively.

By analyzing the results presented in Table 5.13, we can see that the runtimes for both
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Table 5.12: Bonferroni-Dunn test of RLA for comparing BRBCS with other methods at different
feature noise levels (α = 0.05)
Noise level Method z value p value Critical value α/(k−1)a Hypothesis

FRBCS 2.45 0.0143 0.0167 Rejected
NL = 10% C4.5 2.94 0.0033 0.0167 Rejected

BagC4.5 1.47 0.1416 0.0167 Accepted
FRBCS 3.06 0.0022 0.0167 Rejected

NL = 30% C4.5 3.92 8.89E-5 0.0167 Rejected
BagC4.5 2.33 0.0200 0.0167 Accepted
FRBCS 3.80 1.47E-4 0.0167 Rejected

NL = 50% C4.5 4.29 1.81E-5 0.0167 Rejected
BagC4.5 3.18 0.0015 0.0167 Rejected

ak is the number of considered methods.

the training and testing phases mainly depend on the number of generated rules. More rules
usually means more time to train the BRB and also more time to classify a pattern based
on the generated BRB. Thus, we can instead analyze how the factors affect the number
of rules. First, for each data set, the number of rules always increases with increases in
the partition number. However, the number of rules cannot increase indefinitely, as it
is constrained by the number of training instances. Second, by comparing different data
sets, we can see that a larger number of features usually results in a larger number of
rules (e.g., the data sets Letter and Satimage). However, this tendency is also constrained
by the number of training instances. For example, although the data set Vehicle has a
larger number of features than Magic, it has a relatively smaller number of rules under any
partition condition, mainly because its number of training instances is quite small. In brief,
with the growth in the numbers of partitions and features, the runtime of the proposed
BRBCS will increase, but this increase is constrained by the number of available training
instances.

5.4 Conclusion

In this chapter, we have extended the traditional FRBCS in the framework of belief
functions and developed a belief rule-based classification system (BRBCS) to address
uncertain information in complex classification problems. The two components of the
proposed BRBCS, i.e., the belief rule base and the belief reasoning method, have been
designed specifically by taking into account the possible pattern noise in many real-
world data sets. The experiments have shown that the proposed BRBCS achieves better
classification accuracy compared with other rule-based methods. Moreover, this method
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can effectively address the class or feature noise in the training data set. This allows us to
conclude that the introduction of belief functions improves the behavior of the rule-based
classification system.



Chapter 6

Hybrid belief rule-based

classification system

In some real-world pattern classification applications, both training data collected by
sensors and expert knowledge may be available. In this chapter, a hybrid belief rule-
based classification system (HBRBCS) is developed to make use of these two types of
information jointly. The belief rule structure, which is capable of capturing fuzzy, imprecise,
and incomplete causal relationships, is used as the common representation model. With
the belief rule structure, a data-driven belief rule base (DBRB) and a knowledge-driven
belief rule base (KBRB) are learnt from uncertain training data and expert knowledge,
respectively. A fusion algorithm is proposed to combine the DBRB and KBRB to obtain
an optimal hybrid belief rule base (HBRB), based on which a query pattern is classified
by taking into the uncertain information from both training data and expert knowledge.

In Section 6.1, we first describe the background and motivations. The details of the
proposed hybrid belief rule-based classification system are presented in Section 6.2. An
airborne target classification problem in the air surveillance system is studied in Section
6.3 to demonstrate the performance of the proposed method for combining both uncertain
training data and expert knowledge to make classification. Finally, Section 6.4 concludes
this chapter.

6.1 Introduction

In the previous chapter, we have developed a belief rule-based classification system to
learn from uncertain training data in complex classification problems. However, in some
real-world pattern classification applications, apart from the training data, some expert
knowledge from humans may also be available. As discussed in Section 2.4.3, these two
types of information are usually independent and complementary, and both are useful for
classification. Therefore, there is a need for an effective modeling method that can make
good use of both training data and expert knowledge, and integrate the best aspects of
these two types of information for classification.
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In order to combine training data and expert knowledge for classification, a common
representation model that can make use of both types of information is needed. The IF-
THEN rule is a good representation model because, on the one hand, the IF-THEN rules
can be learnt from training data and, on the other hand, expert knowledge is also easily
coded into IF-THEN rules. However, different types of uncertainty may coexist in real-
world applications, e.g., both training data and expert knowledge may be imprecise or
incomplete. In this chapter we use the belief rule as a common model to represent uncertain
training data and expert knowledge.

Based on the belief rule structure, a hybrid belief rule-based classification system
(HBRBCS) is developed to make good use of these two types of information. The proposed
HBRBCS is composed of two main components: a hybrid belief rule base that establishes
the association between the feature space and the class space, and a belief reasoning method
that provides a mechanism to classify a query pattern based on the constructed rule base.
With the belief rule structure, a data-driven belief rule base and a knowledge-driven belief
rule base are learnt from uncertain training data and expert knowledge, respectively. A
fusion algorithm is proposed to combine the data-driven and knowledge-driven belief rule
bases to obtain an optimal hybrid belief rule base. Then, the belief reasoning method is
applied to classify a query pattern in a robust way. Finally, we apply the proposed HBRBCS
to solve an airborne target classification problem based on uncertain sensor measurements
and the expert knowledge.

6.2 Hybrid belief rule-based classification system

Query 

Pattern
Class

Training 

Data

Hybrid Belief Rule Base

(HBRB)

Belief Reasoning Method

(BRM)

DBRB

Expert 

Knowledge

KBRB

HBRBCSInput Output

Figure 6.1: Hybrid belief rule-based classification system

As shown Figure 6.1, the proposed HBRBCS is composed of two components: a hybrid
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belief rule base and a belief reasoning method. Compared with the BRBCS developed
in Chapter 5, two modules are added, i.e., a knowledge-driven belief rule base (KBRB),
and a hybrid belief rule base (HBRB). As the construction of data-driven belief rule base
(DBRB) and the belief reasoning method have already been developed in Chapter 5, in
this section, we focus on how to learn a KBRB from expert knowledge with the belief rule
structure and how to obtain an optimal HBRB by combining the DBRB and KBRB.

6.2.1 Knowledge-driven belief rule base

In knowledge-based system development, knowledge representation is the task of encoding
expert knowledge into a knowledge base. Based on different types of applications, many
knowledge representation schemes have been proposed, such as logical representations,
production rules, semantic networks and structured frames [43]. For production rules, as
knowledge is represented in the form of condition/action pairs, they provide a natural
way to characterize the association between feature space and class space for classification
problems. Thus, in this section, we select the production rules (specially, the fuzzy IF-
THEN rules) to represent expert knowledge.

Based on the fuzzy IF-THEN rules representation, the expert knowledge is acquired
from experts using the structured interview technique [71]. That is, experts are asked to
assign fuzzy regions to each class and to give corresponding certainty grades. Accordingly,
for an M -class (denoted as Ω , {ω1, ω2, · · · , ωM}) pattern classification problem with P
features, each piece of expert knowledge ej can be represented as

Expert Knowledge ej :

If x1 is Aj
1 and x2 is Aj

2 and · · · and xP is Aj
P , then consequence is ωj ,

with certainty grade θj , j = 1, 2, · · · ,M,

(6.1)

where Aj
p is subset of fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np} associated with the p-th

feature, p = 1, 2, · · · , P .

With the above M pieces of expert knowledge ej , j = 1, 2, · · · ,M , the problem now
is how to generate a belief rule base with the belief rule structure as Eq. (5.1) from the
expert knowledge. The knowledge-driven belief rule base is constructed in the following
two stages: first, we expand the expert knowledge ej , j = 1, 2, · · · ,M , into belief rules by
enumerating all of the possible antecedent conditions; then, we combine expanded rules
having the same antecedent part.

6.2.1.1 Expansion of expert knowledge

For the belief rule as Eq. (5.1), each feature is associated with a single fuzzy partition,
whereas for the expert knowledge in Eq. (6.1), each feature is associated with a set of
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fuzzy partitions. Thus, one piece of expert knowledge ej can be expanded into some belief
rules with the same consequent part and rule weight by enumerating all of the possible
antecedent conditions as follows.

Belief Rule R1
j : If x1 is A1

1 and x2 is A1
2 and · · · and xP is A1

P , then consequence is
C1 = {(ωj , 1)} , with rule weight θj ,
...

Belief Rule Rqj : If x1 is Aq1 and x2 is Aq2 and · · · and xP is AqP , then consequence is
Cq = {(ωj , 1)} , with rule weight θj ,
...

Belief Rule RQj

j : If x1 is AQj

1 and x2 is AQj

2 and · · · and xP is AQj

P , then consequence is
CQj = {(ωj , 1)} , with rule weight θj ,

(6.2)
where the antecedent parts (Aq1, A

q
2, · · · , AqP ), q = 1, 2, · · · , Qj , are all the possible com-

binations of different partitions for Aj
1,A

j
2, · · · ,Aj

P , and Qj is the number of belief rules

generated from expert knowledge ej , with Qj =
∏P

p=1
|Aj

p|.

In the same way, theM pieces of expert knowledge ej , j = 1, 2, · · · ,M , can be expanded
to generate

∑M

j=1
Qj belief rules. However, as different classes may overlap in feature

space, the belief rules generated from different pieces of expert knowledge may have the
same antecedent part but different consequent parts. These rules are in conflict with each
other. In the following, we provide a method to combine these conflicting rules considering
their rule weights.

6.2.1.2 Combination of conflicting rules

Suppose Rq1j1 , · · · , R
qM′
jM′

(2 ≤ M ′ ≤ M) are M ′ generated rules with the same antecedent
part but different consequent parts {(ωj1 , 1)} , · · · ,

{
(ωjM′ , 1)

}
. In order to generate a

compact KBRB, these M ′ rules should be fused into a new rule. The antecedent part
of this new rule keeps the same, and its consequent part is obtained by combining those of
the M ′ conflicting rules.

Each conflicting rule Rqmjm provides a piece of evidence that supports the class ωjm as
the consequent part of the new fused rule. Considering that this rule has a certainty grade
θjm , this piece of evidence can be represented by a mass function mqm verifying:

mqm({ωjm}) = θjm

mqm(Ω) = 1− θjm
mqm(A) = 0, ∀A ∈ 2Ω \ {Ω, {ωjm}},

(6.3)

where Ω = {ω1, · · · , ωM} is the frame of discernment.

In a similar way, M ′ pieces of evidence mq1 , · · · ,mqM′ can be constructed from the M ′
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conflicting rules. These pieces of evidence are combined using Dempster’s rule as follows:
m({ωjm}) =

θjm
1−K

∏
r 6=m

(1− θjr), m = 1, · · · ,M ′

m(Ω) =
1

1−K
M ′∏
r=1

(1− θjr),

(6.4)

where K is the total conflicting belief mass,

K = 1−
M ′∏
r=1

(1− θjr)−
M ′∑
m=1

θjm
∏
r 6=m

(1− θjr). (6.5)

In addition, as the weights of the M ′ conflicting rules have already been considered in
the combination process, the weight of the new fused rule is set to 1. Consequently, theM ′

conflicting rules can be replaced by a new fused rule with the same antecedent part and
full weight but a different consequent part as

{
(ωj1 ,m({ωj1})), · · · , (ωjM′ ,m({ωjM′}))

}
. In

a similar way, all other sets of conflicting rules can be replaced by a series of new fused
rules and then a compact KBRB is obtained to encode the expert knowledge about the
classification problem.

6.2.2 Hybrid belief rule base

In the previous section, a KBRB, dependent from the DBRB, is constructed based on expert
knowledge. In this section, we aim to fuse these two different belief rule bases into a new
hybrid belief rule base for classification. In real-world classification problems, both training
data and expert knowledge may be uncertain. The uncertainty of training data comes from
measurement noise, data entry errors, or small size of samples. The uncertainty of expert
knowledge is mainly due to limited or uncorrect assessment for the considered problem.
Consequently, both the DBRB and KBRB only provide partially reliable information for
the classification problem. Thus, in order to get a more powerful hybrid belief rule base, we
should take into account the weights of these two rule bases, which reflect their different
roles in the fusion process.

6.2.2.1 Fusion of DBRB and KBRB

Assuming the DBRB is β (β > 0) times as important as the KBRB, the weights of these
two BRBs are set to β/(1 + β) and 1/(1 + β), respectively. For notational convenience, we
write λ = β/(1+β). Accordingly, the weight of the DBRB is λ and the weight of the KBRB
is 1− λ with 0 < λ < 1. The adjustment factor λ plays an important role in adjusting the
hybrid decision boundaries. With a large value of λ, the hybrid boundaries tend toward
the DBRB boundaries. In contrast, with a small value of λ, the hybrid boundaries tend
toward the KBRB boundaries.
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With the above defined weights, we now fuse the QD data-driven belief rules (RiD,
i = 1, 2, · · · , QD) in the DBRB with the QK knowledge-driven belief rules (RjK , j =

1, 2, · · · , QK) in the KBRB. As illustrated in Figure 6.2, due to the partial information
provided by both training data and expert knowledge, the generated rules in both the
DBRB and KBRB may only cover partial fuzzy regions. Furthermore, because of the
independence between training data and expert knowledge, the fuzzy regions covered by
the DBRB and the KBRB may not fully overlap. Thus, the rules in the integrated HBRB
can be divided into the following three categories: rules with fuzzy regions only covered
by the DBRB, rules with fuzzy regions only covered by the KBRB, and rules with fuzzy
regions covered by both the DBRB and KBRB.

Let S = {(i, j) | RiD and RjK have the same antecedent part, i = 1, 2, · · · , QD, j =

1, 2, · · · , QK}, SD = {i | (i, j) ∈ S, j = 1, 2, · · · , QK} and SK = {j | (i, j) ∈ S, i =

1, 2, · · · , QD}. The rules in the integrated HBRB are generated as follows.

• The rules with fuzzy regions only covered by the DBRB are generated by assigning
the corresponding rules in the DBRB with new weights λθi, i ∈ {1, 2, · · · , QD} \ SD;

• The rules with fuzzy regions only covered by the KBRB are generated by assigning the
corresponding rules in the KBRB with new weights (1−λ)θj , j ∈ {1, 2, · · · , QK}\SK ;

• The rules with fuzzy regions covered by both the DBRB and KBRB are generated by
assigning the corresponding rules in both the DBRB and KBRB with new weights
λθi + (1− λ)θj and new consequences mij calculated by

mij = λmi ⊕ (1−λ)mj , (i, j) ∈ S, (6.6)

where λmi denotes the discounted mass function for the consequence of the cor-
responding rule in DBRB with reliability factor λ, (1−λ)mj denotes the discounted
mass function for the consequence of the corresponding rule in KBRB with reliability
factor (1− λ), and ⊕ is Dempster’s rule of combination.

Proposition 6.1. The generated HBRB reduces to DBRB and KBRB when the adjustment
factor λ takes 1 and 0, respectively.

Proof. Suppose the adjustment factor λ = 1. First, for those rules with fuzzy regions only
covered by the DBRB, the new assigned weights λθi = θi, i ∈ {1, 2, · · · , QD} \ SD. Thus,
this category of rules is kept unchanged.

Second, for those rules with fuzzy regions only covered by the KBRB, the new assigned
weights (1 − λ)θj = 0, j ∈ {1, 2, · · · , QK} \ SK . Thus, this category of rules are excluded
from the generated HBRB.
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Figure 6.2: An example of the fuzzy regions covered by the DBRB and KBRB for a two-dimensional
feature space

Third, for those rules with fuzzy regions covered by both the DBRB and KBRB, the
new assigned weights λθi + (1− λ)θj = θi and new consequences

mij = λmi ⊕ (1−λ)mj = 1mi ⊕ 0mj , (i, j) ∈ S. (6.7)

From the definition of Shafer’s discounting operation in Eq. (1.24), it is easy to see that
1mi = mi, and 0mj becomes to a vacuous mass function. Further, from the definition of
Dempster’s rule of combination in Eq. (1.10), the combination of any mass function with a
vacuous mass function is equal to itself. Therefore, the new consequences mij = mi, (i, j) ∈
S. Thus, those rules in overlapping fuzzy regions inherit directly from the corresponding
rules in the DBRB.

Consequently, it can be concluded that the generated HBRB reduces to DBRB when
the adjustment factor λ = 1. In a similar way, we can prove that the generated HBRB
reduces to KBRB when the adjustment factor λ = 0.

6.2.2.2 Optimization of the adjustment factor

In the above HBRB generation process, the rules from the DBRB and KBRB are combined
to get an integrated HBRB that can make use of the information from both training data
and expert knowledge. In this combination process, the adjustment factor λ is used to
adjust the weights of these two types of information. The adjustment factor λ can be
specified by the user by evaluating the relative reliability of these two types of information.
However, due to the ignorance about the quality of training data or expert knowledge, it
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may be difficult for the user to specify a proper value for λ. In the following, we propose
to search an optimal value for λ by optimizing the average leave-one-out test error.

Let us consider a training sample xi belonging to class ωm. Take xi as a test sample, and
Ti = T \ {(xi, ωm)} as the new training set. A HBRB can be generated based on the new
training set Ti and the expert knowledge. Using the belief reasoning method developed in
Chapter 5, one can get the leave-one-out test outputPi = (BetPi({ω1}), · · · , BetPi({ωM})).
Ideally, the classification output vector Pi should be as close as possible to the real class
vector ti = (ti1, · · · , tiM ) (each binary indicator variable tij is defined by tij = 1, if j = m

and tij = 0, otherwise), with closeness being defined according to the following squared
error:

Eλ(xi) = (Pi − ti)(Pi − ti)
T =

M∑
j=1

(BetPi({ωj})− tij)2. (6.8)

The mean squared error over the whole training set T of size N is finally equal to

Eλ =
1

N

N∑
i=1

Eλ(xi). (6.9)

Therefore, the optimal value for λ is chosen with minimum leave-one-out test error,
i.e.,

λ̂ = arg min
0≤λ≤1

Eλ. (6.10)

As the minimization of Eλ is performed with respect to a single parameter in a bounded
domain, a simple search procedure can be used.

6.3 Numerical study

In order to present the implementation of the proposed HBRBCS and demonstrate its
capacity of combining both uncertain training data and expert knowledge for classification,
we provide a numerical study for an airborne target classification in the air surveillance
system.

6.3.1 Problem description

For air surveillance systems [87], one of the most important tasks is to correctly recognize
noncooperative flying objects within their surveillance volume. In general, target classifi-
cation is based on a set of features or attributes that distinguish targets according to their
shapes or kinematic behaviors. To fully exploit the feature space, a surveillance system
often consists of multiple sensors. For example, a radar can provide kinematic features
(e.g., speed, acceleration) and an infrared sensor can supply shape features such as the
length. In this study, we consider the classification of targets in predefined categories
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{Commercial plane,Bomber, F ighter}, based on their average speed (AveSpeed), max-
imum acceleration (MaxAcc) and average length (AveLength) measured by a multi-sensor
system composed of a land-based radar and an airborne infrared sensor.

In this numerical study, we simulated the feature measurements using the Gaussian-
distributed class-conditional probability functions. We used Gaussian densities, with the
parameters selected in such a way that P{smin < x < smax} = 0.95, where [smin, smax]

is the feature interval given in Table 6.1. Figure 6.3 shows the distributions of the three
features conditioned on the class.

Table 6.1: Feature intervals for three airborne target classes
Class AveSpeed (km/h) MaxAcc (g) AveLength (m)
Commercial (ω1) [600, 800] [0, 1] [25, 65]
Bomber (ω2) [400, 700] [0, 4] [15, 45]
Fighter (ω3) [500, 1000] [0, 6] [10, 30]
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Fig. 5. Distributions of the three features conditioned on the class

B. Implementation of the Hybrid Belief Rule Base

In this study, assume that 120 labeled training patterns xi = (xi1, xi2, xi3), i = 1, 2, · · · , 120, are collected by the

multi-sensor system according to the above class-conditioned probability distributions with equal prior probabilities

(1/3, 1/3, 1/3). Further, assume the available training patterns are not fully reliable, i.e., some of them are with

wrong class labels. We simulate this scenario by adding class noise with noise level of x% indicating x% of the

samples in the training set are mislabeled. The class labels of these samples are randomly changed to different

ones within the domain of the class. Apart from the uncertain training data, three pieces of partially reliable expert

knowledge ej , j = 1, 2, · · · , 3, are obtained with the structured interview. These two types of information are

used to construct the HBRB using the proposed method. The processes of constructing the HBRB concerning the

airborne target classification problem are implemented as follows.

Step 1: Preprocess: fuzzification of the feature space

The prerequisite step to generate a BRB is to fuzzify the feature space first. We use the fuzzy grid partition

method [13] to fuzzify the feature space. Suppose according to the a priori knowledge, it is known that the three

Figure 6.3: Distributions of the three features conditioned on the class
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6.3.2 Implementation of the hybrid belief rule base

In this study, assume that 120 labeled training samples xi = (xi1, xi2, xi3), i = 1, 2, · · · , 120,
were collected by the multi-sensor system according to the above class-conditional prob-
ability distributions with equal prior probabilities. Further, assume the available training
samples are not fully reliable, i.e., some of them have wrong class labels. We simulated
this scenario by adding class noise with noise level of x% indicating x% of the samples in
the training set are mislabeled. The class labels of these samples were randomly changed
to different ones within the domain of the class. Apart from the uncertain training data,
suppose three pieces of partially reliable expert knowledge ej , j = 1, 2, · · · , 3, were obtained
by structured interview. These two types of information were used to construct the HBRB
using the proposed method. The processes of constructing the HBRB concerning the
airborne target classification problem were implemented as follows.

Step 1: Preprocess: fuzzification of the feature space

The prerequisite step to generate a BRB is to fuzzify the feature space. We use the
fuzzy grid partition method [46] to fuzzify the feature space. Suppose according to the a
priori knowledge, it is known that the three features AveSpeed, MaxAcc, and AveLength,
change in the intervals [400, 1000], [0, 6] and [10, 70], respectively. The partition number for
each feature is set to three. As only a few training samples are available, a large partition
number may result in over-fitting. Moreover, a relatively small partition number makes it
easier for the experts to assign fuzzy regions to each class. Based on the fuzzy grid partition
method, the fuzzification of the three features is shown in Figure 6.4.
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Step 2: Construction of DBRB

In this step, 120 labeled training patterns xi = (xi1, xi2, xi3), i = 1, 2, · · · , 120, are used to construct the DBRB

based on the method described in Section III-A. Table III shows the DBRB containing 12 belief rules learned

from the uncertain training data with class noise level of 30%. Although the DBRB generation method can reduce

the adverse effects from class noises, the consequence of one rule may still be unreliable in small training set

and excessively noisy conditions. For example, in the constructed DBRB, the rule R3
D assigns most belief to

ω3, which is not consistent with the real class-conditioned distributions shown in Fig. 5 (from which, class ω2

should be assigned more belief). This is because only one training sample is assigned to the corresponding fuzzy

region {L ∧ M ∧ L}, and this only training sample is unrepresentative for the real class-conditioned distributions.

Fortunately, the developed rule weight generation method only assigns this rule a small weight, which decreases

its effect in the reasoning process.

TABLE III. DBRB CONSTRUCTED BASED ON THE UNCERTAIN TRAINING DATA

Rule number Rule weight Antecedent Consequent

1 0.45 L ∧ L ∧ L {(ω1, 0), (ω2, 0.3257), (ω3, 0.4812)}
2 0.69 L ∧ L ∧ M {(ω1, 0.0041), (ω2, 0.8833), (ω3, 0.1126)}
3 0.36 L ∧ M ∧ L {(ω1, 0), (ω2, 0), (ω3, 0.3581)}
4 0.56 L ∧ M ∧ M {(ω1, 0), (ω2, 0.6687), (ω3, 0)}
5 0.90 M ∧ L ∧ L {(ω1, 0), (ω2, 0.1011), (ω3, 0.8879)}
6 1.00 M ∧ L ∧ M {(ω1, 0.8632), (ω2, 0.1245), (ω3, 0)}
7 0.54 M ∧ L ∧ H {(ω1, 0.7906), (ω2, 0.1047), (ω3, 0.1035)}
8 0.44 M ∧ M ∧ L {(ω1, 0), (ω2, 0.7084), (ω3, 0.2119)}
9 0.69 M ∧ M ∧ M {(ω1, 0), (ω2, 0.8998), (ω3, 0)}
10 0.63 H ∧ L ∧ L {(ω1, 0.2007), (ω2, 0), (ω3, 0.7591)}
11 0.43 H ∧ M ∧ L {(ω1, 0.1171), (ω2, 0), (ω3, 0.8295)}
12 0.36 H ∧ M ∧ M {(ω1, 0), (ω2, 0), (ω3, 0.6657)}

Figure 6.4: Fuzzification of the feature space

Step 2: Construction of DBRB

In this step, 120 labeled training samples xi = (xi1, xi2, xi3), i = 1, 2, · · · , 120, were
used to construct the DBRB using the method described in Chapter 5. Table 6.2 shows
the DBRB containing 12 belief rules learnt from the uncertain training data with class
noise level of 30%. Although the DBRB generation method can reduce the adverse effects
of class noise, the consequence of one rule may still be unreliable in small training set and
excessive noise conditions. For example, in the constructed DBRB, the rule R3

D assigns
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most belief to ω3, which is not consistent with the real class-conditional distributions
shown in Figure 6.3 (from which, class ω2 should be assigned more belief). This is because
only one training sample is assigned to the corresponding fuzzy region {L ∧M ∧ L}, and
this only training sample is not representative of the real class-conditional distributions.
Fortunately, the developed rule weight generation method only assigns this rule a small
weight, which decreases its effect in the reasoning process.

Table 6.2: DBRB constructed based on the uncertain training data
Rule number Rule weight Antecedent Consequent
1 0.45 L ∧ L ∧ L {(ω1, 0), (ω2, 0.3257), (ω3, 0.4812)}
2 0.69 L ∧ L ∧M {(ω1, 0.0041), (ω2, 0.8833), (ω3, 0.1126)}
3 0.36 L ∧M ∧ L {(ω1, 0), (ω2, 0), (ω3, 0.3581)}
4 0.56 L ∧M ∧M {(ω1, 0), (ω2, 0.6687), (ω3, 0)}
5 0.90 M ∧ L ∧ L {(ω1, 0), (ω2, 0.1011), (ω3, 0.8879)}
6 1.00 M ∧ L ∧M {(ω1, 0.8632), (ω2, 0.1245), (ω3, 0)}
7 0.54 M ∧ L ∧H {(ω1, 0.7906), (ω2, 0.1047), (ω3, 0.1035)}
8 0.44 M ∧M ∧ L {(ω1, 0), (ω2, 0.7084), (ω3, 0.2119)}
9 0.69 M ∧M ∧M {(ω1, 0), (ω2, 0.8998), (ω3, 0)}
10 0.63 H ∧ L ∧ L {(ω1, 0.2007), (ω2, 0), (ω3, 0.7591)}
11 0.43 H ∧M ∧ L {(ω1, 0.1171), (ω2, 0), (ω3, 0.8295)}
12 0.36 H ∧M ∧M {(ω1, 0), (ω2, 0), (ω3, 0.6657)}

Step 3: Construction of KBRB

Suppose the following three pieces of expert knowledge ej , j = 1, 2, · · · , 3, were obtained
by asking the experts to assign the fuzzy regions to each target class and to give the
corresponding certainty grades:

e1 : If x1 is {M} and x2 is {L} and x3 is {M,H}, then consequence is ω1,

with certainty grade 0.9;

e2 : If x1 is {L,M} and x2 is {L,M} and x3 is {L,M}, then consequence is ω2,

with certainty grade 0.7;

e3 : If x1 is {M,H} and x2 is {L,M,H} and x3 is {L}, then consequence is ω3,

with certainty grade 0.8.

As shown in Table 6.3, each piece of expert knowledge covers several fuzzy regions. We
can further see that one fuzzy region {M ∧L∧M} is covered by both the expert knowledge
e1 and e2, and two fuzzy regions {M∧L∧L} and {M∧M∧L} are covered by both the expert
knowledge e2 and e3. For these three regions, the consequences are obtained by combing
the conflicting pieces of expert knowledge considering their certainty grades with Eqs.(6.3-
6.5). For those non-overlapping regions, the consequences are kept unchanged. Table 6.4
shows the KBRB containing 13 belief rules constructed from the expert knowledge. In the
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constructed KBRB, rule R6
K is obtained by combining the conflicting items e1 and e2, and

rules R5
K and R8

K are obtained by combining the conflicting items e2 and e3. We can see
that for the three new fused rules, the consequences are not complete (i.e., the sum of the
belief for all of the three classes is less than one), with the left belief characterizing the
ignorance induced by the partially reliable expert knowledge. Due to partially available
expert knowledge, the generated KBRB only covers part of the fuzzy regions of the feature
space. In addition, due to the insufficiency of the expert knowledge, the consequence of some
rule may be unreliable. For example, in the constructed KBRB, the rule R1

K assigns full
belief to ω2. However, according to the real class-conditional distributions shown in Figure
6.3, the samples from class ω3 also have a large possibility to fall into the corresponding
fuzzy region {L ∧ L ∧ L}.

Table 6.3: Fuzzy regions covered by each piece of expert knowledge

Expert knowledge Covered fuzzy regions
e1 {M ∧ L ∧M}, {M ∧ L ∧H}
e2 {L ∧ L ∧ L}, {L ∧M ∧ L}, {L ∧ L ∧M}, {L ∧M ∧M},

{M ∧ L ∧ L}, {M ∧M ∧ L}, {M ∧ L ∧M}, {M ∧M ∧M}
e3 {M ∧ L ∧ L}, {M ∧M ∧ L}, {M ∧H ∧ L}, {H ∧ L ∧ L},

{H ∧M ∧ L}, {H ∧H ∧ L}

Table 6.4: KBRB constructed based on the expert knowledge
Rule number Rule weight Antecedent Consequent
1 0.70 L ∧ L ∧ L {(ω1, 0), (ω2, 1), (ω3, 0)}
2 0.70 L ∧ L ∧M {(ω1, 0), (ω2, 1), (ω3, 0)}
3 0.70 L ∧M ∧ L {(ω1, 0), (ω2, 1), (ω3, 0)}
4 0.70 L ∧M ∧M {(ω1, 0), (ω2, 1), (ω3, 0)}
5 1.00 M ∧ L ∧ L {(ω1, 0), (ω2, 0.3182), (ω3, 0.5455)}
6 1.00 M ∧ L ∧M {(ω1, 0.7297), (ω2, 0.1892), (ω3, 0)}
7 0.90 M ∧ L ∧H {(ω1, 1), (ω2, 0), (ω3, 0)}
8 1.00 M ∧M ∧ L {(ω1, 0), (ω2, 0.3182), (ω3, 0.5455)}
9 0.70 M ∧M ∧M {(ω1, 0), (ω2, 1), (ω3, 0)}
10 0.80 M ∧H ∧ L {(ω1, 0), (ω2, 0), (ω3, 1)}
11 0.80 H ∧ L ∧ L {(ω1, 0), (ω2, 0), (ω3, 1)}
12 0.80 H ∧M ∧ L {(ω1, 0), (ω2, 0), (ω3, 1)}
13 0.80 H ∧H ∧ L {(ω1, 0), (ω2, 0), (ω3, 1)}

Step 4: Construction of HBRB

In this stage, the rules from the DBRB (Table 6.2) and the KBRB (Table 6.4) are
combined based on the fusion algorithm developed in Section 6.2.2. Table 6.5 shows the
optimal HBRB containing 14 belief rules by optimizing the average leave-one-out test
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error. Compared to the previous generated DBRB and KBRB, the integrated HBRB has
the following two main advantages:

1. It covers more fuzzy regions than both the DBRB and the KBRB, so that it is more
powerful to classify those patterns uncovered by either the DBRB or the KBRB.

2. In the overlapping fuzzy regions of the DBRB and the KBRB, through combination,
the rules in HBRB reduced the potential unreliability existing in the corresponding
rules of DBRB or KBRB. For example, as indicated in Step 2, the rule R3

D generated
from the uncertain training data is unreliable, but after combination with the corre-
sponding rule R3

K , the consequence of the combined rule R3
H has better representation

for the real class distributions in the fuzzy region {L∧M ∧L}. Similarly, as indicated
in Step 3, the rule R1

K generated from the uncertain expert knowledge is unreliable,
but after combination with the corresponding rule R1

D, a better rule R1
H is generated

for the fuzzy region {L ∧ L ∧ L}.

Table 6.5: HBRB constructed based on the uncertain training data and expert knowledge

Rule number Rule weight Antecedent Consequent
1 (R1

D,R1
K)a 0.52 L ∧ L ∧ L {(ω1, 0), (ω2, 0.3853), (ω3, 0.2833)}

2 (R2
D,R2

K) 0.69 L ∧ L ∧M {(ω1, 0.0022), (ω2, 0.7346), (ω3, 0.0614)}
3 (R3

D,R3
K) 0.45 L ∧M ∧ L {(ω1, 0), (ω2, 0.2146), (ω3, 0.2053)}

4 (R4
D,R4

K) 0.60 L ∧M ∧M {(ω1, 0), (ω2, 0.6263), (ω3, 0)}
5 (R5

D,R5
K) 0.93 M ∧ L ∧ L {(ω1, 0), (ω2, 0.0930), (ω3, 0.6786)}

6 (R6
D,R6

K) 1.00 M ∧ L ∧M {(ω1, 0.6873), (ω2, 0.0918), (ω3, 0)}
7 (R7

D,R7
K) 0.63 M ∧ L ∧H {(ω1, 0.7976), (ω2, 0.0025), (ω3, 0.0018)}

8 (R8
D,R8

K) 0.59 M ∧M ∧ L {(ω1, 0), (ω2, 0.5153), (ω3, 0.2084)}
9 (R9

D,R9
K) 0.69 M ∧M ∧M {(ω1, 0), (ω2, 0.8028), (ω3, 0)}

10 (−−,R10
K ) 0.22 M ∧H ∧ L {(ω1, 0), (ω2, 0), (ω3, 1)}

11 (R10
D ,R11

K ) 0.68 H ∧ L ∧ L {(ω1, 0.0004), (ω2, 0), (ω3, 0.8024)}
12 (R11

D ,R12
K ) 0.53 H ∧M ∧ L {(ω1, 0.6039), (ω2, 0), (ω3, 0.7052)}

13 (R12
D ,−−) 0.26 H ∧M ∧M {(ω1, 0), (ω2, 0), (ω3, 0.6657)}

14 (−−,R13
K ) 0.22 H ∧H ∧ L {(ω1, 0), (ω2, 0), (ω3, 1)}

aThe corresponding rules in DBRB and KBRB with the same antecedent parts are shown in brackets.

6.3.3 Comparative study

The HBRBCS was compared to the DBRBCS (λ = 1, which only considers the uncertain
training data) and the KBRBCS (λ = 0, which only considers the uncertain expert
knowledge) under different noise levels for the training data. A test set of 3000 samples
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drawn from the original class-conditional probability distributions were used for error
estimation. For the HBRBCS, the optimal adjustment factor λ by optimizing the average
leave-one-out test error was used to get the integrated HBRB. In addition, two well-known
robust data-based classifiers, C4.5 [83] and FRBCS [17], as well as a representative hybrid
classifier AFRBCS [107] reviewed in Section 2.4.3 were also considered in the comparison.

Table 6.6 shows the classification error rates for different methods with different noise
levels. With the increase of the class noise in the training data set, the performance of
all of the three data-based classifiers C4.5, FRBCS, and DBRBCS, decrease, whereas the
DBRBCS shows more robust to class noise due to the utilized belief rule structure and belief
reasoning method. The KBRBCS, which classifies query patterns only based on the expert
knowledge, always yields a moderate performance. Interestingly, the HBRBCS outperforms
both the DBRBCS and the KBRBCS with any noise level. The reason is that, on the one
hand, the fused HBRB covers more fuzzy regions than do the partial DBRB and KBRB
and, on the other hand, for the overlapping fuzzy regions, thanks to combination, the rules
in HBRB reduced the potential unreliability existing in the corresponding rules of DBRB
or KBRB. Besides, by comparing the two hybrid classifiers AFRBCS and HBRBCS, it
can be seen that the proposed HBRBCS yields better performance, especially for cases
with high data noise levels. It is because in HBRBCS the weights of training data and
expert knowledge are adjusted adaptively according to the qualities of these two types of
information. Whereas, the AFRBCS always uses training data to update the knowledge-
based model, no matter the available training data set is reliable or not.

Table 6.6: Classification error rates (in %) for considered methods with different noise levels

NL C4.5 FRBCS DBRBCS KBRBCS AFRBCS HBRBCS CIa

0% 19.30 18.13 17.87 23.37 18.23 17.30b [15.97,18.71]
10% 20.60 21.33 18.83 23.37 20.10 17.83 [16.48,19.24]
20% 23.87 24.37 20.47 23.37 22.20 18.47 [17.10,19.92]
30% 26.63 28.43 24.03 23.37 23.93 18.83 [17.44,20.28]
40% 34.77 35.60 30.70 23.37 26.67 19.47 [18.07,20.92]
50% 40.40 41.57 38.13 23.37 30.47 20.40 [18.97,21.91]

aThe last column is the 95% confidence interval of the best method.
bResults in boldface correspond to the lowest error rate.

In order to find out whether significant differences exist among different methods, error
estimation confidence intervals (with confidence level A = 95%) 1 for the best method

1Computed by numerically solving the equations:
∑

k≥K
P (k,N, p) = (1 − A)/2 and∑

k≤K
P (k,N, p) = (1 − A)/2, where P (k,N, p) is the binomial distribution, N is the number of test

patterns, K is the number of patterns misclassified, A is the confidence level, and [p, p] is the confidence
interval.
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(i.e., HBRBCS) are shown in the last column. It is interesting to note that only when
the noise level is quite low (0% and 10%), the error rate of the second best method is
within the corresponding confidence interval. When the class noise increases, the best
HBRBCS method shows a statistically significant advantage. Therefore, the classification
performance can improve greatly by making use of the complementary information from
uncertain training data and expert knowledge based on belief function theory, especially
when both sources of information have high uncertainty.

6.3.4 Parameter analysis

The adjustment factor λ plays an important role in determining the classification perfor-
mance of the HBRBCS. In this section, we take an analysis for the effect of the adjustment
factor λ and evaluate whether the optimization method developed in Section 6.2.2 works
well.
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Fig. 7. Classification error rate of the HBRBCS with the adjustment factor ranging from 0 to 1

Table VIII compares the estimated optimal value of λ by optimizing the average LOO test error with the tested

optimal value of λ as well as their corresponding classification error rates. It can be seen that the utilized parameter

optimization method provides a good estimation for the optimal value of λ. Accordingly, the classification error

rate with the estimated optimal value of λ is very close to the tested optimal error rate. In addition, the estimation

is more accurate under low noise levels, which is because in these cases the training data has a good representation

of the real class-conditioned distributions.

TABLE VIII. COMPARISON OF THE ESTIMATED AND TESTED OPTIMAL λ AS WELL AS THEIR CORRESPONDING CLASSIFICATION

ERROR RATES (IN %) UNDER DIFFERENT NOISE LEVELS

Noise Level 0% 10% 20% 30% 40% 50%

Est. λ 0.80 0.77 0.78 0.73 0.68 0.56

Tes. λ 0.82 0.79 0.75 0.71 0.64 0.51

Error rate with est. λ 17.30 17.84 18.45 18.82 19.47 20.40

Error rate with tes. λ 17.27 17.80 18.40 18.73 19.16 19.69

Figure 6.5: Classification error rate of the HBRBCS with the adjustment factor ranging from 0 to
1

Figure 6.5 shows the classification error rate of the HBRBCS with the adjustment factor
ranging from 0 to 1 under different noise levels. It can be seen that the optimal values of
the adjustment factor λ are different under different noise levels. With the increase of
the noise level, the optimal value of λ tends to be smaller. Because in these cases, the
DBRB generated from the noisy training data becomes less reliable, and the KBRB which
is not affected by the noisy training data takes more important role in determining the
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classification.

Table 6.7 compares the estimated value of λ by optimizing the average leave-one-out
test error with the tested optimal value of λ indicated in Figure 6.5. It can be seen that
the parameter optimization method provides a good estimation for the optimal value of
λ. Accordingly, the classification error rate with the estimated optimal value of λ is very
close to the tested optimal error rate. In addition, the estimation is more accurate with
low noise levels, because in these cases the training data has a good representation of the
real class-conditional distributions.

Table 6.7: Comparison of the estimated and tested optimal λ as well as their corresponding
classification error rates (in %) with different noise levels
Noise Level 0% 10% 20% 30% 40% 50%
Est. λ 0.80 0.77 0.78 0.73 0.68 0.56
Tes. λ 0.82 0.79 0.75 0.71 0.64 0.51
Error rate with Est. λ 17.30 17.83 18.47 18.83 19.47 20.40
Error rate with Tes. λ 17.27 17.80 18.40 18.73 19.16 19.69

6.4 Conclusion

In order to make use of the information from both uncertain training data and expert
knowledge for classification, a hybrid belief rule-based classification system (HBRBCS)
has been developed based on the belief rule structure. The proposed HBRBCS offers
complementary advantages from data-driven models and knowledge-driven models. This
system can be useful for many real-world applications where both uncertain training data
and expert knowledge are available. An airborne target classification in the air surveillance
system has been studied to present the implementation of the proposed HBRBCS and to
demonstrate its capacity of combining both uncertain training data and expert knowledge
for classification. The experiment results show that the HBRBCS can make good use
of these two types of independent and complementary information and achieve better
performance.



Conclusions and future research

directions

Conclusions

This thesis has tackled uncertain data classification problems in nearest-neighbor-based
and rule-based approaches, by introducing belief functions to model the uncertainty in
training data or expert knowledge. The following four main contributions were exposed in
this thesis.

First, in order to model the imprecise information in class overlapping regions, an
evidential editing procedure was designed to reassign the original training samples with
new labels represented by an evidential membership structure. Based on the evidential
editing procedure, we have developed an evidential editing version of the k-nearest neighbor
rule (EEkNN). Experiments have shown that the proposed EEkNN classifier can achieve
better performance than other considered nearest-neighbor-based methods, especially for
data sets with high overlapping ratios. In addition, the proposed EEkNN classifier is not too
sensitive to the value of k, which is very useful for those time or space-critical applications
in which only a small value of k is permitted in the classification process.

Second, in order to improve the performance of the kNN-based classifier based on
incomplete training data set, we have designed an evidential fusion scheme for combining
a group of pairwise kNN classifiers in the framework of belief functions (PkNN-BF). Each
pairwise kNN classifier was locally learned based on a pairwise distance metric, which
provides greater flexibility to design the feature weights so that the local specificities in
feature space can be well characterized. From the reported experiment results, we can
conclude that the proposed PkNN-BF classifier can successfully improve the performance
for those tasks with high dimension and small sample size, in which cases the training
data set is not rich enough to well characterize the real class-conditional probability
distributions.

Third, we have extended the traditional fuzzy rule-based classification system in the
framework of belief functions and developed a belief rule-based classification system (BR-
BCS) to address uncertain information in complex classification problems. The two com-
ponents of the proposed BRBCS, i.e., the belief rule base and the belief reasoning method,
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have been designed specifically by taking into account the possible pattern noise in many
real-world data sets. The delivered experiments have shown that the proposed BRBCS can
get better classification accuracy and robustness than other rule-based methods for a vari-
ety of real-world classification problems. This allows us to conclude that the introduction
of belief functions have improved the behavior of the rule-based classification system.

Fourth, a hybrid belief rule-based classification system (HBRBCS) has been developed
based on the belief rule structure in order to make use of the information from both
uncertain training data and expert knowledge jointly for classification. The proposed HBR-
BCS can inherit the complementary advantages from data-driven models and knowledge-
driven models, and so it is quite useful for many real-world applications where both
uncertain training data and expert knowledge are available. We have studied an airborne
target classification problem, in which both training data collected by sensors and expert
knowledge are available. The experiment results have shown that the HBRBCS can make
good use of these two types of independent and complementary information and achieve
better performance.

Future research directions

The work presented in this thesis can be continued in many directions. In the following
paragraphs, we sketch a few of them.

For short-term perspectives, some of the methods developed in this thesis can be further
extended. Our first concern is the distance metric leaning problem in kNN rule. In Chapter
4, we have proposed a pairwise distance metric related to pairs of class labels. However,
as reviewed in Section 2.3.3, there is another way to learn local distance metric, which
is based on the geometric location of patterns. Both the geometric location and class
label are important local information for the available patterns. Therefore, if we further
consider the location information of patterns in our proposed pairwise distance metric, the
behavior of kNN rule may be further improved. Another concern is the membership func-
tion in rule-based classification systems. For our proposed belief rule-based classification
system in Chapter 5, we have used the traditional triangular membership function for the
antecedent fuzzy partitions of each rule. As reviewed in Section 2.4.2, recently, there were
some proposals to learn optimized membership functions with genetic algorithms. These
optimized membership functions may further improve the performance of our proposed
belief rule-based classification system.

In the long term, we will focus on some other important uncertain data classification
problems. One such challenging problem emerging in machine learning field is sequence
labeling. For the classification problems considered in this thesis, the samples are assumed
to be collected independently. However, for some real-world applications, such as speech
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recognition and handwriting recognition, the samples are collected sequentially and there
exist potential relations between nearby observations. It is expected that these uncertain
constraints are helpful for classification. We plan to build hidden Markov models in the
framework of belief functions to model the uncertain relationship for the labels of nearby
observations.
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