Classification and clustering using Belief functions

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) http://www.hds.utc.fr/~tdenoeux

> Tongji University Shanghai, China July 7, 2016

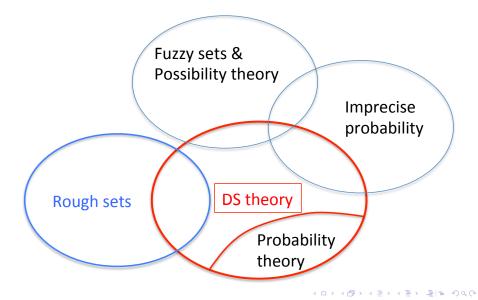
Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016 1 / 149

5 1 - A C

Theories of uncertainty



Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016 2 / 149

Focus of this talk

- Dempster-Shafer (DS) theory (evidence theory, theory of belief functions):
 - A formal framework for reasoning with partial (uncertain, imprecise) information.
 - Has been applied to statistical inference, expert systems, information fusion, classification, clustering, etc.
- Purpose of these talk:
 - Brief introduction or reminder on DS theory;
 - Review the application of belief functions to classification and clustering.

EL OQO

ヨトィヨト

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Dempster's rule
- Decision analysis

2 Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier
- Decision analysis

Application to clustering

- credal partition
- Evidential c-means
- EVCLUS
- EK-NNclus
- Handling a large number of clusters

= nar

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Decision analysis

- Evidential K-NN rule

- credal partition
- Evidential c-means
- **FK-NNclus**
- Handling a large number of clusters

3 3 9 9 9 9

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Decision analysis

- Evidential K-NN rule

- credal partition
- Evidential c-means
- **EK-NNclus**

5 1 - A C

Mass function

- Let Ω be a finite set called a frame of discernment.
- A mass function is a function $m: 2^{\Omega} \rightarrow [0, 1]$ such that

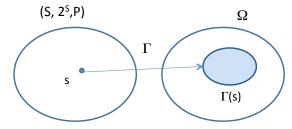
$$\sum_{A\subseteq\Omega}m(A)=1.$$

- The subsets A of Ω such that $m(A) \neq 0$ are called the focal sets of m.
- If $m(\emptyset) = 0$, *m* is said to be normalized (usually assumed).

A = A = A = A = A = A = A

Source

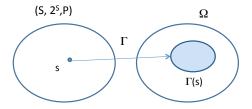
- A mass function is usually induced by a source, defined a 4-tuple (S, 2^S, P, Γ), where
 - S is a finite set;
 - *P* is a probability measure on $(S, 2^S)$;
 - Γ is a multi-valued-mapping from *S* to 2^{Ω} .



• Γ carries *P* from *S* to 2^{Ω} : for all $A \subseteq \Omega$,

$$m(A) = P(\{s \in S | \Gamma(s) = A\}).$$

Interpretation

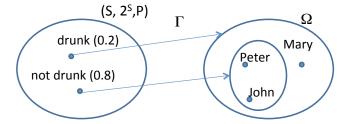


- Ω is a set of possible states of the world, about which we collect some evidence. Let ω be the true state.
- *S* is a set of interpretations of the evidence.
- If s ∈ S holds, we know that ω belongs to the subset Γ(s) of Ω, and nothing more.
- m(A) is then the probability of knowing only that $\omega \in A$.
- In particular, $m(\Omega)$ is the probability of knowing nothing.

3 3 9 9 9 9

Example

- A murder has been committed. There are three suspects: $\Omega = \{Peter, John, Mary\}.$
- A witness saw the murderer going away, but he is short-sighted and he only saw that it was a man. We know that the witness is drunk 20 % of the time.



• We have $\Gamma(\neg drunk) = \{Peter, John\}$ and $\Gamma(drunk) = \Omega$, hence

 $m(\{\text{Peter, John}\}) = 0.8, \quad m(\Omega) = 0.2$

ABA ABA BIE 9900

Special cases

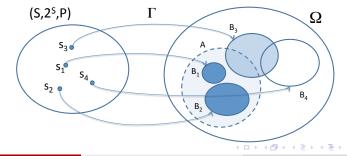
- A mass function m is said to be:
 - logical if it has only one focal set; it is then equivalent to a set.
 - Bayesian if all focal sets are singletons; it is equivalent to a probability distribution.
- A mass function can thus be seen as
 - a generalized set, or as
 - a generalized probability distribution.

5 1 - A C

Belief function

Degrees of support and consistency

- Let *m* be a normalized mass function on Ω induced by a source $(S, 2^S, P, \Gamma)$.
- Let A be a subset of Ω.
- One may ask:
 - **(**) To what extent does the evidence support the proposition $\omega \in A$?
 - 2 To what extent is the evidence consistent with this proposition?

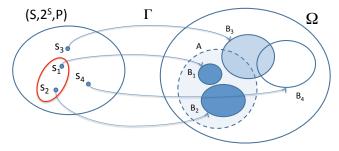


Belief function

Definition and interpretation

• For any $A \subseteq \Omega$, the probability that the evidence implies (supports) the proposition $\omega \in A$ is

$$Bel(A) = P(\{s \in S | \Gamma(s) \subseteq A\}) = \sum_{B \subseteq A} m(B).$$



• The function $Bel : A \rightarrow Bel(A)$ is called a belief function.

ELE NOR

Belief function

Characterization

• Function $Bel : 2^{\Omega} \rightarrow [0, 1]$ is a completely monotone capacity: it verifies $Bel(\emptyset) = 0$, $Bel(\Omega) = 1$ and

$$\textit{Bel}\left(\bigcup_{i=1}^{k} A_{i}\right) \geq \sum_{\emptyset \neq I \subseteq \{1, \dots, k\}} (-1)^{|I|+1} \textit{Bel}\left(\bigcap_{i \in I} A_{i}\right).$$

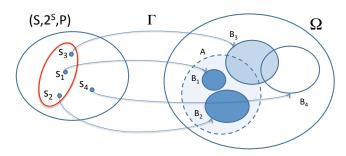
for any $k \ge 2$ and for any family A_1, \ldots, A_k in 2^{Ω} .

 Conversely, to any completely monotone capacity *Bel* corresponds a unique mass function *m* such that:

$$m(A) = \sum_{\emptyset
eq B \subseteq A} (-1)^{|A| - |B|} Bel(B), \quad \forall A \subseteq \Omega.$$

Plausibility function

 The probability that the evidence is consistent with (does not contradict) the proposition ω ∈ A



 $Pl(A) = P(\{s \in S | \Gamma(s) \cap A \neq \emptyset\}) = 1 - Bel(\overline{A})$

• The function $PI : A \rightarrow PI(A)$ is called a plausibility function.

< ロ > < 同 > < E > < E > E = < の < 0</p>

Special cases

- If m is Bayesian, then Bel = Pl and it is a probability measure.
- If the focal sets of *m* are nested (A₁ ⊂ A₂ ⊂ ... ⊂ A_n), *m* is said to be consonant. *Pl* is then a possibility measure:

$$PI(A \cup B) = \max(PI(A), PI(B))$$

for all $A, B \subseteq \Omega$ and *Bel* is the dual necessity measure.

• DS theory thus subsumes both probability theory and possibility theory.

▲ ∃ ▶ ∃ ∃ ▶ 𝔅 𝔅

Summary

- A probability measure is precise, in so far as it represents the uncertainty of the proposition $\omega \in A$ by a single number P(A).
- In contrast, a mass function is imprecise (it assigns probabilities to subsets).
- As a result, in DS theory, the uncertainty about a subset A is represented by two numbers (Bel(A), Pl(A)), with Bel(A) ≤ Pl(A).
- This model has some connections with rough set theory, in which a set is approximated by lower and upper approximations, due to coarseness of a knowledge base.

Demoster's rule

Outline

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Dempster's rule

- Evidential K-NN rule

- credal partition
- Evidential c-means
- **FK-NNclus**
- Handling a large number of clusters

3 3 9 9 9 9

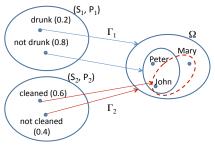
Murder example continued

- The first item of evidence gave us: $m_1(\{Peter, John\}) = 0.8$, $m_1(\Omega) = 0.2$.
- New piece of evidence: a blond hair has been found.
- There is a probability 0.6 that the room has been cleaned before the crime: m₂({John, Mary}) = 0.6, m₂(Ω) = 0.4.
- How to combine these two pieces of evidence?

ABA ABA BIE 9900

Dempster's rule

Justification



- If interpretations $s_1 \in S_1$ and $s_2 \in S_2$ both hold, then $X \in \Gamma_1(s_1) \cap \Gamma_2(s_2)$.
- If the two pieces of evidence are independent, then the probability that s_1 and s_2 both hold is $P_1(\{s_1\})P_2(\{s_2\})$.
- If $\Gamma_1(s_1) \cap \Gamma_2(s_2) = \emptyset$, we know that s_1 and s₂ cannot hold simultaneously.
- The joint probability distribution on $S_1 \times S_2$ must be conditioned to eliminate such pairs.

EL OQO

Dempster's rule

• Let *m*₁ and *m*₂ be two mass functions and

$$\kappa = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$$

their degree of conflict.

• If K < 1, then m_1 and m_2 can be combined as

$$(m_1 \oplus m_2)(A) = \frac{1}{1-\kappa} \sum_{B \cap C=A} m_1(B)m_2(C), \quad \forall A \neq \emptyset,$$

and $(m_1 \oplus m_2)(\emptyset) = 0$.

B A B A B B B A A A

Dempster's rule

Dempster's rule

Properties

- Commutativity, associativity. Neutral element: m_Ω.
- Generalization of intersection: if m_A and m_B are categorical mass functions and $A \cap B \neq \emptyset$, then

 $m_A \oplus m_B = m_{A \cap B}$

- Generalization of probabilistic conditioning: if m is a Bayesian mass function and m_A is a logical mass function, then $m \oplus m_A$ is a Bayesian mass function corresponding to the conditioning of *m* by *A*.
- Notation for conditioning (special case):

$$m \oplus m_A = m(\cdot | A).$$

Decision analysis

Outline

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Decision analysis

- Evidential K-NN rule

- credal partition
- Evidential c-means
- **FK-NNclus**
- Handling a large number of clusters

3 3 9 9 9 9

Problem formulation

- A decision problem can be formalized by defining:
 - A set of acts $\mathcal{A} = \{a_1, \ldots, a_s\};$
 - A set of states of the world Ω;
 - A loss function L : A × Ω → ℝ, such that L(a, ω) is the loss incurred if we select act a and the true state is ω.
- Bayesian framework
 - Uncertainty on Ω is described by a probability measure *P*;
 - Define the risk of each act a as the expected loss if a is selected:

$$R_P(a) = \mathbb{E}_P[L(a, \cdot)] = \sum_{\omega \in \Omega} L(a, \omega) P(\{\omega\}).$$

24/149

- Select an act with minimal risk.
- Extension when uncertainty on Ω is described by a belief function?

Lower and upper expected risk

 Let *m* be a normalized mass function, and *P*(*m*) its credal set, defined as the set of probability measures on Ω such that

$$Bel(A) \leq P(A) \leq Pl(A), \quad \forall A \subseteq \Omega.$$

• The lower and upper risk of each act *a* are defined, respectively, as:

$$\underline{R}(a) = \underline{\mathbb{E}}_{m}[L(a,\cdot)] = \inf_{P \in \mathcal{P}(m)} R_{P}(a) = \sum_{A \subseteq \Omega} m(A) \min_{\omega \in A} L(a,\omega)$$
$$\overline{R}(a) = \overline{\mathbb{E}}_{m}[L(a,\cdot)] = \sup_{P \in \mathcal{P}(m)} R_{P}(a) = \sum_{A \subseteq \Omega} m(A) \max_{\omega \in A} L(a,\omega)$$

3 3 9 9 9 9

Decision strategies

- For each act *a* we have a risk interval $[\underline{R}(a), \overline{R}(a)]$. How to compare these intervals?
- Three strategies:
 - **()** *a* is preferred to *a'* iff $\underline{R}(a) \leq \underline{R}(a')$ (optimistic strategy)
 - 2 *a* is preferred to *a*' iff $\overline{R}(a) \leq \overline{R}(a')$ (pessimistic strategy)
 - **(a)** *a* is preferred to *a'* iff $\overline{R}(a) \leq \underline{R}(a')$ (interval dominance);
- The interval dominance strategy yields only a partial preorder:
 - *a* and *a*' are not comparable if $\overline{R}(a) > \underline{R}(a')$ and $\overline{R}(a') > \underline{R}(a)$
 - We can consider the set of non dominated acts (the set of acts *a* such that no act is strictly preferred to *a*)

ヨト イヨト ヨヨ わすべ

26/149

Other decision strategies

How to find a compromise between the pessimistic and optimistic strategies? Two approaches:

1 Hurwicz criterion: *a* is preferred to *a*' iff $R_{\rho}(a) \leq R_{\rho}(a')$ with

$$R_{\rho}(a) = (1 - \rho)\underline{R}(a) + \rho\overline{R}(a).$$

and $\rho \in [0, 1]$ is a pessimism index describing the attitude of the decision maker in the face of ambiguity.

Solution Minimize the risk with respect to the pignistic probability measure P_m , defined from *m* by the probability mass function

$$p_m(\omega) = \sum_{B \ni \omega} \frac{m(B)}{|B|}, \quad \forall \omega \in \Omega.$$

It can be shown that $P_m \in \mathcal{P}(m)$. Consequently,

$$\underline{R}(a) \leq R_{P_m}(a) \leq \overline{R}(a), \quad \forall a \in \mathcal{A}.$$

Decision making Example

 Let m({John}) = 0.48, m({John, Mary}) = 0.12, m({Peter, John}) = 0.32, m(Ω) = 0.08.

• We have

ķ

$$p_m(John) = 0.48 + rac{0.12}{2} + rac{0.32}{2} + rac{0.08}{3} pprox 0.73,$$

 $p_m(Peter) = rac{0.32}{2} + rac{0.08}{3} pprox 0.19$
 $p_m(Mary) = rac{0.12}{2} + rac{0.08}{3} pprox 0.09$

< A

> < = > = = < < <

Dempster-Shafer theory

- Mass, belief and plausibility functions
- Dempster's rule
- Decision analysis

Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier
- Decision analysis

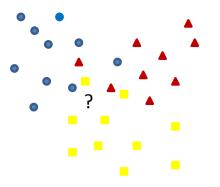
Application to clustering

- o credal partition
- Evidential *c*-means
- EVCLUS
- EK-NNclus
- Handling a large number of clusters

3 3 9 9 9 9

→ - - - = -

Classification problem



- A population is assumed to be partitioned in *c* groups or classes
- Let $\Omega = \{\omega_1, \dots, \omega_c\}$ denote the set of classes
- Each instance is described by
 - A feature vector $\boldsymbol{x} \in \mathbb{R}^{p}$
 - A class label $y \in \Omega$
- Problem: given a learning set $\mathcal{L} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, predict the class label of a new instance described by \mathbf{x}

- Mass, belief and plausibility functions
- Decision analysis

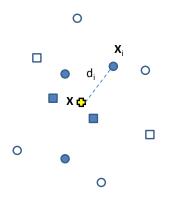
Evidential classification

- Evidential K-NN rule

- credal partition
- Evidential c-means
- **FK-NNclus**
- Handling a large number of clusters

3 3 9 9 9 9

Principle



- Let N_K(x) ⊂ L denote the set of the K nearest neighbors of x in L, based on some distance measure
- Each *x_i* ∈ *N_K*(*x*) can be considered as a piece of evidence regarding the class of *x*
- The strength of this evidence decreases with the distance *d_i* between *x* and *x_i*

= 200

Definition

• If $y_i = \omega_k$, the evidence of (\boldsymbol{x}_i, y_i) can be represented by

$$\begin{split} m_i(\{\omega_k\}) &= \varphi_k\left(d_i\right) \\ m_i(\{\omega_\ell\}) &= 0, \quad \forall \ell \neq k \\ m_i(\Omega) &= 1 - \varphi\left(d_i\right) \end{split}$$

where φ_k , k = 1, ..., c are decreasing functions from $[0, +\infty)$ to [0, 1] such that $\lim_{d \to +\infty} \varphi_k(d) = 0$

• The evidence of the *K* nearest neighbors of *x* is pooled using Dempster's rule of combination

$$m = \bigoplus_{\boldsymbol{x}_i \in \mathcal{N}_{\mathcal{K}}(\boldsymbol{x})} m_i$$

- Decision: any of the decision rules mentioned in the first part.
- With 0-1 losses and no rejection, the optimistic, pessimistic and pignistic rules yield the same decisions.

< □ > < 同 > < 目 > < 目 > < 目 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Learning

- Choice of functions φ_k : for instance, $\varphi_k(d) = \alpha \exp(-\gamma_k d^2)$.
- Parameters $\gamma_1, \ldots, \gamma_c$ can be optimized (see below).
- Parameter γ = (γ₁,..., γ_c) can be learnt from the data by minimizing the following cost function

$$\mathcal{C}(\boldsymbol{\gamma}) = \sum_{i=1}^n \sum_{k=1}^c (\mathcal{p}l_{(-i)}(\omega_k) - t_{ik})^2,$$

where

- *pl*_(-*i*) is the contour function obtained by classifying **x**_{*i*} using its *K* nearest neighbors in the learning set.
- $t_{ik} = 1$ is $y_i = k$, $t_{ik} = 0$ otherwise.
- Function C(γ) can be minimized by an iterative nonlinear optimization algorithm.

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

Computation of $pl_{(-i)}$

• Contour function from each neighbor $\boldsymbol{x}_j \in \mathcal{N}_{\mathcal{K}}(\boldsymbol{x}_i)$:

$$\mathcal{p}l_j(\omega_k) = egin{cases} 1 & ext{if } y_j = \omega_k \ 1 - arphi_k(d_{ij}) & ext{otherwise} \end{cases}, \quad k = 1, \dots, c$$

Contour function of the combined mass function

$$\mathcal{P}l_{(-i)}(\omega_k) \propto \prod_{oldsymbol{x}_j \in \mathcal{N}_{\mathcal{K}}(oldsymbol{x}_i)} \left(1 - arphi_k(oldsymbol{d}_{ij})
ight)^{1 - t_{jk}}$$

where $t_{jk} = 1$ if $y_j = \omega_k$ and $t_{jk} = 0$ otherwise

• It can be computed in time proportional to $K|\Omega|$

< ロ > < 同 > < E > < E > E = < の < 0</p>

Example 1: Vehicles dataset

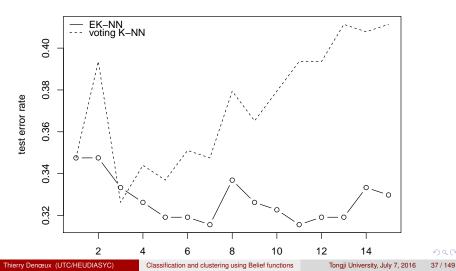
- The data were used to distinguish 3D objects within a 2-D silhouette of the objects.
- Four classes: bus, Chevrolet van, Saab 9000 and Opel Manta.
- 846 instances, 18 numeric attributes.
- The first 564 objects are training data, the rest are test data.

ヨトィヨト

3 3 4 4

Vehicles datasets: result

Vehicles data

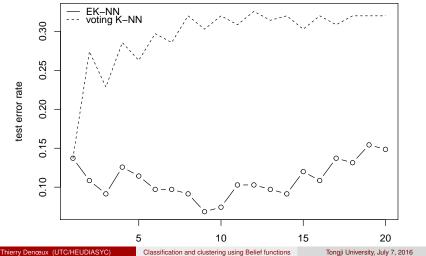


Example 2: Ionosphere dataset

- This dataset was collected by a radar system and consists of phased array of 16 high-frequency antennas with a total transmitted power of the order of 6.4 kilowatts.
- The targets were free electrons in the ionosphere. "Good" radar returns are those showing evidence of some type of structure in the ionosphere. "Bad" returns are those that do not.
- There are 351 instances and 34 numeric attributes. The first 175 instances are training data, the rest are test data.

lonosphere datasets: result

lonosphere data



39 / 149

Implementation in R

```
library("evclass")
```

```
data("ionosphere")
xapp<-ionosphere$x[1:176,]
yapp<-ionosphere$y[1:176]
xtst<-ionosphere$x[177:351,]
ytst<-ionosphere$y[177:351]</pre>
```

```
opt<-EkNNfit(xapp,yapp,K=10)
class<-EkNNval(xapp,yapp,xtst,K=10,ytst,opt$param)</pre>
```

```
> class$err
0.07428571
> table(ytst,class$ypred)
ytst 1 2
1 106 6
2 7 56
```

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

40/149

Partially supervised data

We now consider a learning set of the form

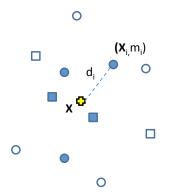
$$\mathcal{L} = \{(\boldsymbol{x}_i, m_i), i = 1, \ldots, n\}$$

where

- **x**_{*i*} is the attribute vector for instance *i*, and
- *m_i* is a mass function representing uncertain expert knowledge about the class *y_i* of instance *i*
- Special cases:
 - $m_i(\{\omega_k\}) = 1$ for all *i*: supervised learning
 - $m_i(\Omega) = 1$ for all *i*: unsupervised learning

3 3 9 9 9 9

Evidential k-NN rule for partially supervised data



• Each mass function *m_i* is discounted (weakened) with a rate depending on the distance *d_i*

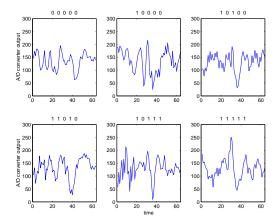
$$egin{aligned} m_i'(m{A}) &= arphi\left(m{d}_i
ight) m_i(m{A}), & orall m{A} \subset \Omega \ m_i'(\Omega) &= 1 - \sum_{m{A} \subset \Omega} m_i'(m{A}) \end{aligned}$$

• The *K* mass functions *m*[']_i are combined using Dempster's rule

$$m = \bigoplus_{\mathbf{x}_i \in \mathcal{N}_{\mathcal{K}}(\mathbf{x})} m'_i$$

Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes), 50 % negative (delta waves), 5 experts.



Results on EEG data

(Denoeux and Zouhal, 2001)

- *c* = 2 classes, *p* = 64
- For each learning instance **x**_i, the expert opinions were modeled as a mass function *m*_i.
- n = 200 learning patterns, 300 test patterns

K	<i>K</i> -NN	w K-NN	Ev. K-NN	Ev. K-NN
			(crisp labels)	(uncert. labels)
9	0.30	0.30	0.31	0.27
11	0.29	0.30	0.29	0.26
13	0.31	0.30	0.31	0.26

3 3 9 9 9 9

Outline

- - Mass, belief and plausibility functions

 - Decision analysis

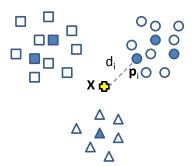
Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier
- - credal partition
 - Evidential c-means

 - **EK-NNclus**
 - Handling a large number of clusters

5 1 - A C

Principle



- The learning set is summarized by *r* prototypes.
- Each prototype p_i has membership degree u_{ik} to each class ω_k , with $\sum_{k=1}^{c} u_{ik} = 1$.
- Each prototype *p_i* is a piece of evidence about the class of *x*, whose reliability decreases with the distance *d_i* between *x* and *p_i*.

Propagation equations

Mass function induced by prototype *p_i*:

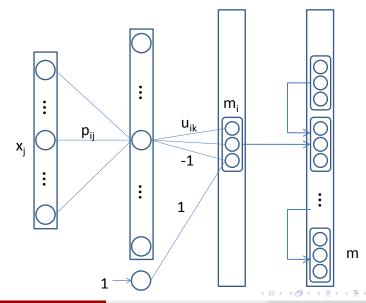
$$m_i(\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i d_i^2), \quad k = 1, \dots, c$$
$$m_i(\Omega) = 1 - \alpha_i \exp(-\gamma_i d_i^2)$$

Combination:

$$m=\bigoplus_{i=1}^r m_i$$

- The computation of m_i requires O(rp) arithmetic operations (where p denotes the number of inputs), and the combination can be performed in O(rc) operations. Hence, the overall complexity is O(r(p+c)) operations to compute the output for one input pattern.
- The combined mass function *m* has as focal sets the singletons {ω_k},
 k = 1,..., *c* and Ω.

Neural network implementation



Learning

- The parameters are the
 - The prototypes \boldsymbol{p}_i , i = 1, ..., r (*rp* parameters)
 - The membership degrees u_{ik} , i = 1, ..., r, k = 1, ..., c (*rc* parameters)
 - The α_i and γ_i , $i = 1 \dots, r$ (2*r* parameters).
- Let θ denote the vector of all parameters. It can be estimated by minimizing a cost function such as

$$\mathcal{C}(\boldsymbol{ heta}) = \sum_{i=1}^{n} (\mathcal{P}l_{ik} - t_{ik})^2 + \mu \sum_{i=1}^{r} lpha_{ik}$$

where pl_{ik} is the output plausibility for instance *i* and class *k*, $t_{ik} = 1$ if $y_i = k$ and $t_{ik} = 0$ otherwise, and μ is a regularization coefficient (hyperparameter).

• The hyperparameter μ can be optimized by cross-validation.

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > <

Implementation in R

```
library("evclass")
```

```
data(glass)
xtr<-glass$x[1:89,]
ytr<-glass$y[1:89]
xtst<-glass$x[90:185,]
vtst<-glass$v[90:185]</pre>
```

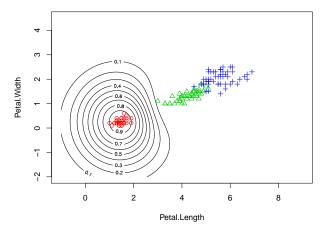
```
param0<-proDSinit(xtr,ytr,nproto=7)
fit<-proDSfit(x=xtr,y=ytr,param=param0)
val<-proDSval(xtst,fit$param,ytst)</pre>
```

```
> print(val$err)
0.3333333 > table(ytst,val$ypred)
ytst 1 2 3 4
1 30 6 4 0
2 6 27 1 3
3 4 3 1 0
4 0 5 0 6
```

★ E ▶ ★ E ▶ E E → O Q O

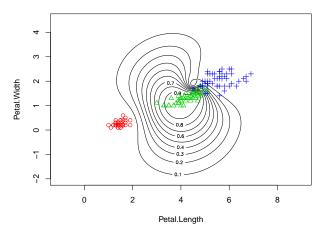
Image: A matrix

Mass on $\{\omega_1\}$



m({ω₁})

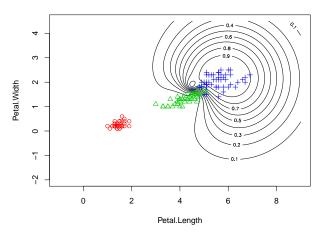
Mass on $\{\omega_2\}$



 $m(\{\omega_2\})$

= 200

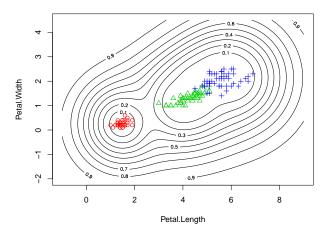
Mass on $\{\omega_3\}$



m({ω₃})

= 200

Mass on Ω

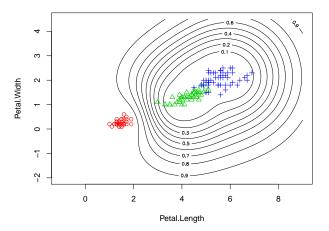


 $m(\Omega)$

三日 のへの

イロト イヨト イヨト イヨト

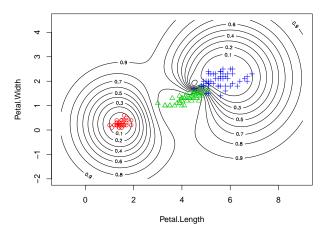
Plausibility of $\{\omega_1\}$



 $PI(\{\omega_1\})$

= nac

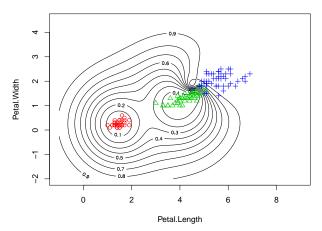
Plausibility of $\{\omega_2\}$



 $PI(\{\omega_2\})$

= nac

Plausibility of $\{\omega_3\}$



 $PI(\{\omega_3\})$

3

< A

= nac

Outline

- Mass, belief and plausibility functions
- Decision analysis

Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier
- Decision analysis

- credal partition
- Evidential c-means
- **EK-NNclus**
- Handling a large number of clusters

3 3 9 9 9 9

Simple decision setting

• To formalize the decision problem, we need to define:

- The acts
- The loss matrix
- For instance, let the acts be
 - a_k = assignment to class ω_k , $k = 1, \ldots, c$
- And the loss matrix (for *c* = 3)

	<i>a</i> 1	a_2	a_3
ω_1	0	1	1
ω_2	1	0	1
ω_3	1	1	0

- $\underline{R}(a_i) = 1 Pl(\{\omega_i\})$ and $\overline{R}(a_i) = 1 Bel(\{\omega_i\})$.
- The optimistic, pessimistic and pignistic decision rules yield the same result

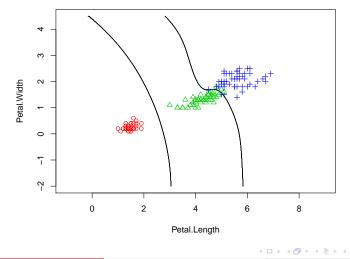
59/149

Implementation in R

```
param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)</pre>
```

```
val<-proDSval(xtst,fit$param)
L<-1-diag(c)
D<-decision(val$m,L=L,rule='upper')</pre>
```

B A B A B B B A A A



Decision with rejection

Let the acts now be

- a_k = assignment to class ω_k , $k = 1, \ldots, c$
- a_0 = rejection

• And the loss matrix (for *c* = 3)

	a_1	a_2	a_3	a_0
ω_1	0	1	1	λ_0
ω_2	1	0	1	λ_0
ω_3	1	1	0	λ_0

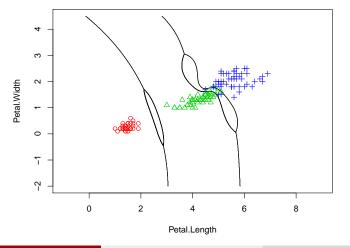
Implementation in R

```
param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)</pre>
```

```
val<-proDSval(xtst,fit$param)
L<-cbind(1-diag(c),rep(0.3,c))
D1<-decision(val$m,L=L,rule='upper')
D2<-decision(val$m,L=L,rule='lower')
D3<-decision(val$m,L=L,rule='pignistic')
D4<-decision(val$m,L=L,rule='hurwicz',rho=0.5)</pre>
```

B A B A B B B A A A

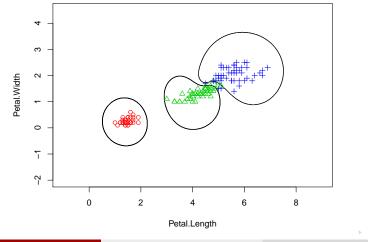
Lower risk



Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

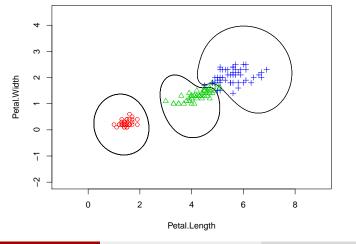
Upper risk



Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

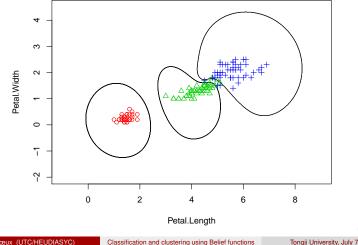
Pignistic risk



-

Classification and clustering using Belief functions

Hurwicz strategy ($\rho = 0.5$)



Tongji University, July 7, 2016 67/149

Decision with rejection and novelty detection

- Assume that there exists an unknown class ω_u, not represented in the learning set
- Let the acts now be
 - a_k = assignment to class ω_k , $k = 1, \ldots, c$
 - a_u = assignment to class ω_u
 - $a_0 = rejection$
- And the loss matrix

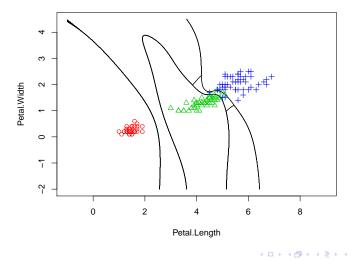
	a ₁	a_2	a_3	a_0	a_u
ω_1	0	1	1	λ_0	λ_u
ω_2	1	0	1	λ_0	λ_{u}
ω_3	1	1	0	λ_0	λ_{u}
ω_{u}	1	1	1	λ_0	0

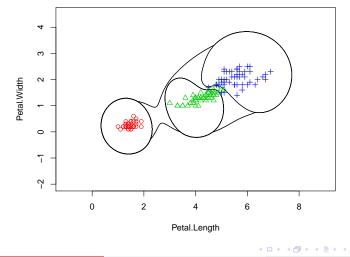
Implementation in R

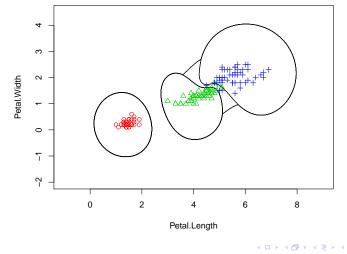
```
param0<-proDSinit(x,y,6)
fit<-proDSfit(x,y,param0)</pre>
```

```
val<-proDSval(xtst,fit$param)
L<-cbind(1-diag(c),rep(0.3,c),rep(0.32,c))
L<-rbind(L,c(1,1,1,0.3,0))
D1<-decision(val$m,L=L,rule='lower')
D2<-decision(val$m,L=L,rule='pignistic')
D3<-decision(val$m,L=L,rule='hurwicz',rho=0.5)</pre>
```

A = A = A = A = A = A = A







References on classification I

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux.

A k-nearest neighbor classification rule based on Dempster-Shafer theory.

IEEE Transactions on SMC, 25(05):804-813, 1995.

🔋 T. Denœux.

A neural network classifier based on Dempster-Shafer theory. *IEEE transactions on SMC A*, 30(2):131–150, 2000.

T. Denœux.

Analysis of evidence-theoretic decision rules for pattern classification. *Pattern Recognition*, 30(7):1095–1107, 1997.

🔋 C. Lian, S. Ruan and T. Denœux.

An evidential classifier based on feature selection and two-step classification strategy.

Pattern Recognition, 48:2318–2327, 2015.

ヨト イヨト ヨヨ わすべ

References on classification II

cf. https://www.hds.utc.fr/~tdenoeux

C. Lian, S. Ruan and T. Denœux.
 Dissimilarity metric learning in the belief function framework.
 IEEE Transactions on Fuzzy Systems (to appear), 2016.

I= nan

Outline

- Dempster-Shafer theory
 - Mass, belief and plausibility functions
 - Dempster's rule
 - Decision analysis
- Evidential classification
 - Evidential K-NN rule
 - Evidential neural network classifier
 - Decision analysis

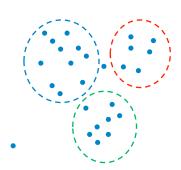
Application to clustering

- credal partition
- Evidential *c*-means
- EVCLUS
- EK-NNclus
- Handling a large number of clusters

3 3 9 9 9 9

크 에 크 어

Clustering



- n objects described by
 - Attribute vectors *x*₁,..., *x_n* (attribute data) or
 - Dissimilarities (proximity data).
- Goal: find a meaningful structure in the data set, usually a partition into *c* crisp or fuzzy subsets.
- Belief functions may allow us to express richer information about the data structure.

Outline

- - Mass, belief and plausibility functions
- - Evidential K-NN rule

Application to clustering credal partition

- Evidential c-means
- **FK-NNclus**

3 3 9 9 9 9

Clustering concepts

Hard and fuzzy clustering

- Hard clustering: each object belongs to one and only one group. Group membership is expressed by binary variables u_{ik} such that $u_{ik} = 1$ if object *i* belongs to group *k* and $u_{ik} = 0$ otherwise
- Fuzzy clustering: each object has a degree of membership $u_{ik} \in [0, 1]$ to each group, with $\sum_{k=1}^{c} u_{ik} = 1$
- Fuzzy clustering with noise cluster: each object has a degree of membership $u_{ik} \in [0, 1]$ to each group and a degree of membership $u_{i*} \in [0, 1]$ to a noise cluster, with $\sum_{k=1}^{c} u_{ik} + u_{i*} = 1$

< □ > < 同 > < 目 > < 目 > < 目 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Clustering concepts

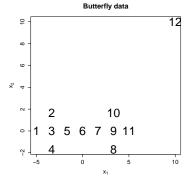
Possibilistic, rough, credal clustering

- Possibilistic clustering: the condition $\sum_{k=1}^{c} u_{ik} = 1$ is relaxed. Each number u_{ik} can be interpreted as a degree of possibility that object i belonas to cluster k
- Rough clustering: the membership of object i to cluster k is described by a pair $(u_{ik}, \overline{u}_{ik}) \in \{0, 1\}^2$, with $u_{ik} \leq \overline{u}_{ik}$, indicating its membership to the lower and upper approximations of cluster k
- Evidential clustering: based on Dempster-Shafer (DS) theory (the topic of this talk)

79/149

Evidential clustering

- In evidential clustering, the cluster membership of each object is considered to be uncertain and is described by a (not necessarily normalized) mass function m_i over Ω
- The *n*-tuple $\mathcal{M} = (m_1, \ldots, m_n)$ is called a credal partition
- Example: ۲

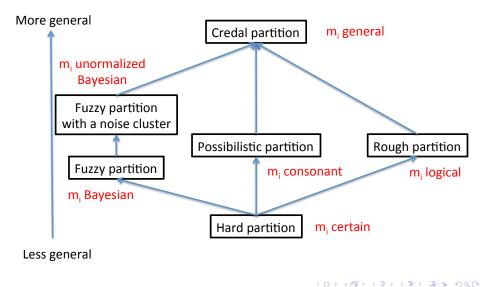


Credal partition Ø $\{\omega_1\}$ $\{\omega_2\}$ $\{\omega_1, \omega_2\}$ 0 0 0 m_3 0.5 m_5 0 0.5 0 0 0 0 m_{6} 0.9 0 0.1 0 m_{12}

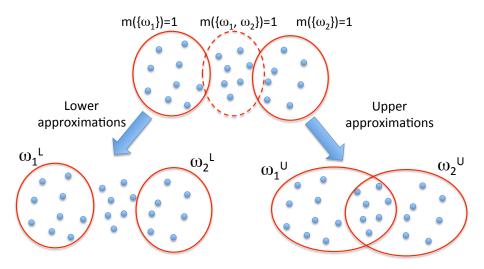
5 1 - A C

80 / 149

Relationship with other clustering structures



Rough clustering as a special case



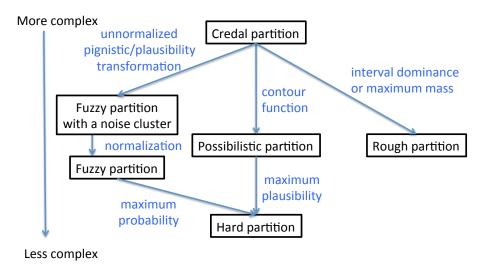
Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016 82 / 149

ELE NOR

Summarization of a credal partition



< E

ELE NOR

Algorithms

Evidential c-means (ECM): (Masson and Denoeux, 2008):

- Attribute data,
- HCM, FCM family (alternate optimization of a cost function).
- EVCLUS (Denoeux and Masson, 2004; Denoeux et al., 2016):
 - Proximity (possibly non metric) data,
 - Multidimensional scaling approach.

EK-NNclus (Denoeux et al, 2015)

- Attribute or proximity data
- Decision-directed clustering algorithm based on the evidential K-NN classifier

EL OQO

Outline

- - Mass, belief and plausibility functions
- - Evidential K-NN rule

Application to clustering

- credal partition
- Evidential c-means
- **FK-NNclus**

3 3 9 9 9 9

Principle

- Problem: generate a credal partition *M* = (*m*₁,..., *m_n*) from attribute data *X* = (*x*₁,..., *x_n*), *x_i* ∈ ℝ^p.
- Generalization of hard and fuzzy *c*-means algorithms:
 - Each cluster is represented by a prototype;
 - Cyclic coordinate descent algorithm: optimization of a cost function with respect to the prototypes and to the credal partition.

86 / 149

Fuzzy c-means (FCM)

Minimize

$$J_{ ext{FCM}}(U,V) = \sum_{i=1}^n \sum_{k=1}^c u_{ik}^eta d_{ik}^2$$

with $d_{ik} = ||\boldsymbol{x}_i - \boldsymbol{v}_k||$ under the constraints $\sum_k u_{ik} = 1, \forall i$.

Alternate optimization algorithm:

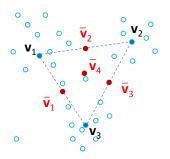
$$\mathbf{v}_{k} = \frac{\sum_{i=1}^{n} u_{ik}^{\beta} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ik}^{\beta}} \quad \forall k = 1, \dots, c,$$
$$u_{ik} = \frac{d_{ik}^{-2/(\beta-1)}}{\sum_{\ell=1}^{c} d_{i\ell}^{-2/(\beta-1)}}.$$

Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

ECM algorithm



- Each cluster ω_k represented by a prototype \boldsymbol{v}_k .
- Basic ideas:

 - The distance to the empty set is defined as a fixed value δ .

ECM algorithm: objective criterion

• Criterion to be minimized:

$$J_{\text{ECM}}(M, V) = \sum_{i=1}^{n} \sum_{\{j/A_j \neq \emptyset, A_j \subseteq \Omega\}} |A_j|^{\alpha} m_{ij}^{\beta} d_{ij}^2 + \sum_{i=1}^{n} \delta^2 m_{i\emptyset}^{\beta}$$

subject to

$$\sum_{\{j/A_j\subseteq\Omega,A_j\neq\emptyset\}}m_{ij}+m_{i\emptyset}=1,\quad\forall i\in\{1,\ldots,n\}$$

- Parameters:
 - α controls the specificity of mass functions (default: 1)
 - β controls the hardness of the credal partition (default: 2)
 - δ controls the proportion of data considered as outliers
- $J_{ECM}(M, V)$ can be iteratively minimized with respect to M and V using a cyclic coordinate descent algorithm.

3 3 9 9 9 9

ECM algorithm: update equations

Optimization of J_{ECM}(M, V) w.r.t. M for fixed V:

$$m_{ij} = \frac{c_j^{-\alpha/(\beta-1)}d_{ij}^{-2/(\beta-1)}}{\sum_{A_k \neq \emptyset} c_k^{-\alpha/(\beta-1)}d_{ik}^{-2/(\beta-1)} + \delta^{-2/(\beta-1)}},$$

for i = 1, ..., n and for all j such that $A_j \neq \emptyset$, and

$$m_{i\emptyset} = 1 - \sum_{A_j \neq \emptyset} m_{ij}, \quad i = 1, \dots, n$$

 Optimization of J_{ECM}(M, V) w.r.t. V for fixed M: solving a system of the form

$$HV = B$$
,

where *B* is the matrix of size $c \times p$ and *H* the matrix of size $c \times c$

Implementation in R

```
library(evclust)
data('butterfly')
n<-nrow(butterfly)</pre>
```

```
clus<-ecm(butterfly[,1:2],c=2,delta=sqrt(20))</pre>
```

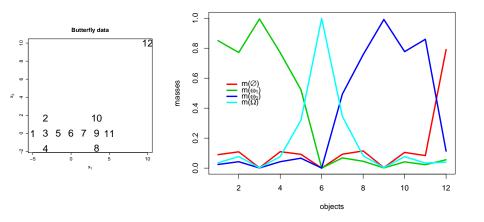
Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016 91 / 149

B A B A B B B A A A

Butterfly dataset



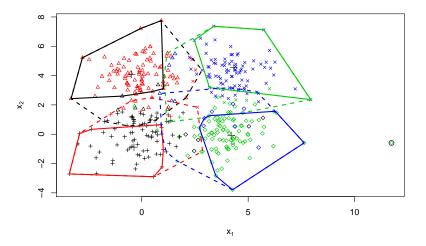
1 = 990

Four-class dataset

```
data("fourclass")
clus<-ecm(fourclass[,1:2],c=4,type='pairs',delta=5)</pre>
```

plot(clus,X=fourclass[,1:2],ytrue=fourclass[,3],Outliers = TRUE,
approx=2)

4-class data set



-

Determining the number of groups

- If a proper number of groups is chosen, the prototypes will cover the clusters and most of the mass will be allocated to singletons of Ω.
- On the contrary, if *c* is too small or too high, the mass will be distributed to subsets with higher cardinality or to Ø.
- Nonspecificity of a mass function:

$$\mathcal{N}(m) riangleq \sum_{A \in 2^\Omega \setminus \emptyset} m(A) \log_2 |A| + m(\emptyset) \log_2 |\Omega|$$

• Proposed validity index of a credal partition:

$$N^*(c) \triangleq \frac{1}{n \log_2(c)} \sum_{i=1}^n \left[\sum_{A \in 2^{\Omega} \setminus \emptyset} m_i(A) \log_2 |A| + m_i(\emptyset) \log_2(c) \right]$$

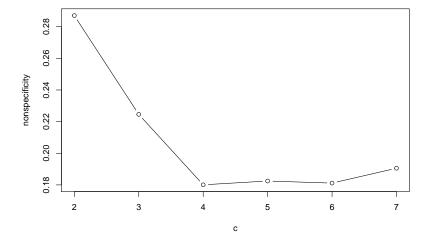
3 3 9 9 9 9

Example (Four-class dataset)

```
C<-2:7
N<-rep(0,length(C))
for(k in 1:length(C)){
clus<-ecm(fourclass[,1:2],c=C[k],type='pairs',alpha=2,
delta=5,disp=FALSE)
N[k]<-clus$N
}
plot(C,N,type='b',xlab='c',ylab='nonspecificity')
```

< ロ > < 同 > < E > < E > E = < の < 0</p>

Results



Application to clustering

Evidential c-means

Thierry Denœux (UTC/HEUDIASYC)

< E Tongji University, July 7, 2016 97 / 149

★ ∃ >

3 = 990

A B +
 A B +
 A

EVCLUS

Outline

- - Mass, belief and plausibility functions

 - Decision analysis
- - Evidential K-NN rule

Application to clustering

- o credal partition
- Evidential c-means
- EVCLUS
- **FK-NNclus**

3 3 9 9 9 9

Learning a Credal Partition from proximity data

- Problem: given the dissimilarity matrix $D = (d_{ij})$, how to build a "reasonable" credal partition ?
- We need a model that relates cluster membership to dissimilarities.
- Basic idea: "The more similar two objects, the more plausible it is that they belong to the same group".
- How to formalize this idea?

Formalization

- Let m_i and m_j be mass functions regarding the group membership of objects o_i and o_j.
- The plausibility of the proposition *S_{ij}*: "objects *o_i* and *o_j* belong to the same group" can be shown to be equal to:

$$pl(S_{ij}) = \sum_{A \cap B \neq \emptyset} m_i(A)m_j(B) = 1 - \kappa_{ij}$$

where $\kappa_{ij} = \text{degree of conflict}$ between m_i and m_j .

• Problem: find a credal partition $\mathcal{M} = (m_1, \ldots, m_n)$ such that larger degrees of conflict κ_{ij} correspond to larger dissimilarities d_{ij} .

EVCLUS

Cost function

- Approach: minimize the discrepancy between the dissimilarities d_{ii} and the degrees of conflict κ_{ii} .
- Example of a cost (stress) function:

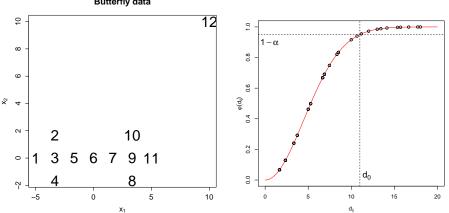
$$J(\mathcal{M}) = \eta \sum_{i < j} (\kappa_{ij} - \varphi(\mathbf{d}_{ij}))^2$$

where

- $\eta = \left(\sum_{i < j} \varphi(d_{ij})^2\right)^{-1}$ is a normalizing constant, and
- φ is an increasing function from $[0, +\infty)$ to [0, 1].
- For instance: $\varphi(d) = 1 \exp(-\gamma d^2)$

Butterfly example

Data and dissimilarities

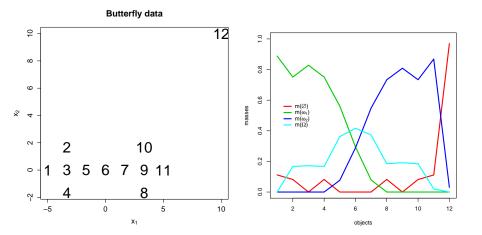


Butterfly data

= 990 102 / 149

Butterfly example

Credal partition



Thierry Denœux (UTC/HEUDIASYC)

Tongji University, July 7, 2016

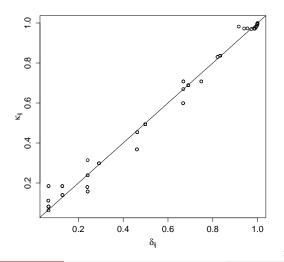
-

103 / 149

E 9900

Butterfly example

Shepard diagram



Classification and clustering using Belief functions

< E Tongji University, July 7, 2016 104 / 149

1 = 990

Optimization algorithm

- How to minimize $J(\mathcal{M})$? Two methods:
 - Using a gradient or quasi-Newton algorithm (slow).
 - Using a cyclic coordinate descent algorithm minimizing J(M) with respect to each m_i at a time.
- The latter approach exploits the particular approach of the problem (a quadratic programming problem is solved at each step), and it is thus much more efficient.
- This algorithm is called Iterative Row-wise Quadratic Programming (IRQP).

A = A = A = A = A = A = A

IRQP algorithm

Vector representation of the cost function

The stress function can be written as

$$J(\mathcal{M}) = \eta \sum_{i < j} (\boldsymbol{m}_i^T \boldsymbol{C} \boldsymbol{m}_j - \delta_{ij})^2.$$

where

- $\delta_{ij} = \varphi(d_{ij})$ are the scaled dissimilarities
- **m**_i and **m**_j are vectors encoding mass functions m_i and m_j
- **C** is a square matrix, with general term $C_{k\ell} = 1$ if $F_k \cap F_\ell = \emptyset$ and $C_{k\ell} = 0$ otherwise.
- Fixing all mass functions except *m_i*, the stress function becomes quadratic. Minimizing *J* w.r.t. *m_i* is a linearly constrained positive least-squares problem, which can be solved using efficient algorithms.
- By iteratively updating each *m_i*, the algorithm converges to a local minimum of the cost function.

Reducing the number of parameters

- If the mass functions have a general form, the number of parameters to estimate of n(2^c - 1). It grows exponentially with c.
- To reduce the complexity, focal sets can be reduced to $\{\omega_k\}_{k=1}^c$, \emptyset , and Ω .
- A more sophisticated strategy will be described later.

ABA ABA BIE 9900

Proteins example

- Dissimilarity matrix derived from the structural comparison of 213 protein sequences.
- Each of these proteins is known to belong to one of four classes of globins: hemoglobin-α (HA), hemoglobin-β (HB), myoglobin (M) and heterogeneous globins (G).
- The next figure displays a two-dimensional MDS configuration of the data with the true partition, as well as the clustering result obtained by EVCLUS, with c = 4 and $d_0 = \max_{i,j} d_{ij}$.

A = A = A = A = A = A = A

Implementation in R

```
library(evclust)
data(protein)
```

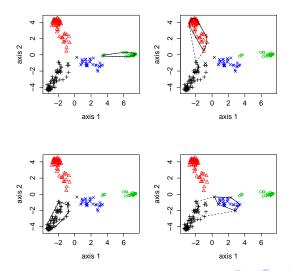
```
clus <- kevclus(D=protein$D,c=4,type='simple',d0=max(protein$D))</pre>
```

```
z<- cmdscale(protein$D,k=2)</pre>
```

```
plot(clus,X=z,mfrow=c(2,2),ytrue=protein$y,
Outliers=FALSE,approx=1)
```

▲ ■ ▶ ▲ ■ ▶ ■ ■ ● ● ● ●

Proteins example: partition



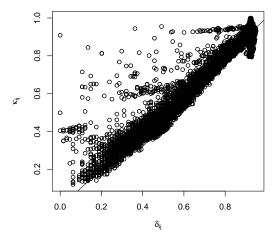
Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016 110/149

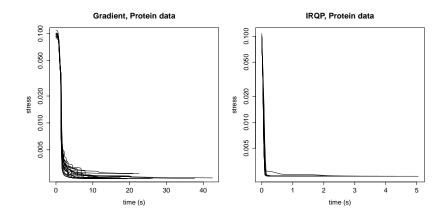
-

Proteins example: Shepard diagram



Shepard diagram

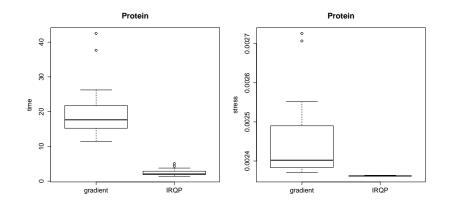
Proteins example: learning curves



Stress vs. time (in seconds) for 20 runs of the Gradient (a) and IRQP (b) algorithms on the Protein data. Note the different scales on the *x*-axes.

1.2

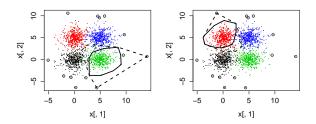
Proteins example: learning curves

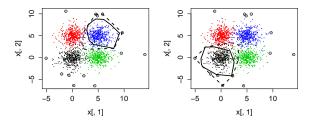


Boxplots of computing time (a) and stress value at convergence (b) for 20 runs of the Gradient and IRQP algorithms on the Protein data.

Thierry Denœux (UTC/HEUDIASYC) Classification and clustering using Belief functions Tongji University, July 7, 2016 113 / 149

Example with a four-class dataset (2000 objects)





Classification and clustering using Belief functions

Handling large datasets

- EVCLUS requires to store the whole dissimilarity matrix: it inapplicable to large dissimilarity data.
- Idea: compute the differences between degrees of conflict and dissimilarities, for only a subset of randomly sampled dissimilarities.
- Let $j_1(i), \ldots, j_k(i)$ be *k* integers sampled at random from the set $\{1, \ldots, i-1, i+1, \ldots, n\}$, for $i = 1, \ldots, n$. Let J_k the following stress criterion,

$$J_k(\mathcal{M}) = \eta \sum_{i=1}^n \sum_{r=1}^k (\kappa_{i,j_r(i)} - \delta_{i,j_r(i)})^2,$$

- The calculation of $J_k(\mathcal{M})$ requires only O(nk) operations.
- If *k* can be kept constant as *n* increases, or, at least, if *k* increases slower than linearly with *n*, then significant gains in computing time and storage requirement could be achieved.

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > <

Zongker Digit dissimilarity data

- Similarities between 2000 handwritten digits in 10 classes, based on deformable template matching.
- As the dissimilarity matrix was initially non symmetric, we symmetrized it by the transformation d_{ij} ← (d_{ij} + d_{ji})/2.
- The *k*-EVCLUS algorithm was run with c = 10 and the following values of k: 30, 50,100, 200, 300, 400, 500, 1000 and 1999. Parameter d_0 was fixed to the 0.3-quantile of the dissimilarities. For each value of k, k-EVCLUS was run 10 times with random initializations.

ABA ABA BIE 9900

Implementation in R

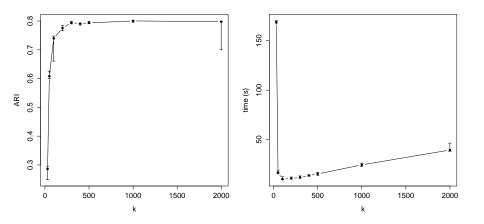
```
load('zongker.RData')
```

```
n<-nrow(zongker$D)
k=200
D<-matrix(0,n,k)
J<-matrix(0,n,k)
for(i in 1:n){
ii<-sample((1:n)[-i],k)
J[i,]<-ii
D[i,]<-zongker$D[i,ii]
}</pre>
```

clus<-kevclus(D=D,J=J,c=10,type='simple',d0=quantile(D,0.3))</pre>

```
library(mclust)
adjustedRandIndex(zongker$y,clus$y.pl)
```

Zongker Digit dissimilarity data



Thierry Denœux (UTC/HEUDIASYC)

Tongji University, July 7, 2016

EK-NNclus

Outline

- - Mass, belief and plausibility functions

 - Decision analysis
- - Evidential K-NN rule

Application to clustering

- o credal partition
- Evidential c-means
- EVCLUS
- EK-NNclus
- Handling a large number of clusters

EL OQO

BAR A BAR

Decision-directed clustering

Decision-directed approach to clustering:

- Prior knowledge is used to design a classifier, which is used to label the samples
- The classifier is then updated, and the process is repeated until no changes occur in the labels
- The *c*-means algorithm is based on this principle: here, the nearest-prototype classifier is used to label the samples, and it is updated by taking as prototypes the centers of each cluster
- Idea: apply this principle using the evidential *K*-NN rule as the base classifier

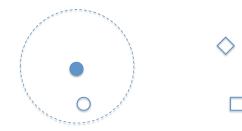
1 3 1 1 3 1 3 1 3 1 3 0 0 0

Example Toy dataset

Tongji University, July 7, 2016

Example Iteration 1

Example Iteration 1 (continued)



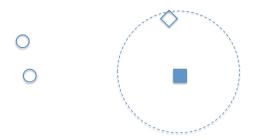
Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Example Iteration 2



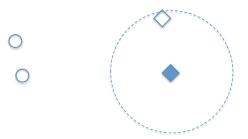
Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Example Iteration 2 (continued)



Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016

・ロン ・回 と ・ ヨ と ・ ヨ と

125 / 149

1 = 9 Q (P

Example Result

○
 ○
 ○
 ○

Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016

EK-NNclus algorithm

Step 1: preparation

- Let $D = (d_{ii})$ be a symmetric $n \times n$ matrix of distances or dissimilarities between the *n* objects
- Given K, compute the set $N_{\kappa}(i)$ of indices of the K nearest neighbors of each object i.
- If computing time is not an issue, K can be chosen very large, even equal ۰ to *n* – 1

ABA ABA BIE 9900

EK-NNclus algorithm Step 2: initialization

- To initialize the algorithm, the objects are labeled randomly (or using some prior knowledge if available)
- As the number of clusters is usually unknown, it can be set to c = n, i.e., we initially assume that there are as many clusters as objects and each cluster contains exactly one object
- If *n* is very large, we can give *c* a large value, but smaller than *n*, and initialize the object labels randomly
- We define cluster-membership binary variables u_{ik} as u_{ik} = 1 is object o_i belongs to cluster k, and u_{ik} = 0 otherwise

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > <

EK-NNclus algorithm

Step 3: iteration

- An iteration of the algorithm consists in updating the object labels in some random order, using the EKNN rule
- We classify each object o_i it using the EK-NN rule. The plausibility that object o_i belongs to class k is

$${{oldsymbol{
ho}}} l_{ik} \propto \prod_{j \in {oldsymbol{N}_{\mathcal{K}}}(i)} \left(1 - arphi(oldsymbol{d}_{ij})
ight)^{1 - u_{jk}}$$

with $\varphi(d_{ij}) = \exp(-\gamma d_{ij}^{p}), p = 1 \text{ or } p = 2.$

Its logarithm is (up to an additive constant) ٥

$$egin{aligned} m{s}_{ik} &= -\sum_{j\in N_{\mathcal{K}}(i)} \ln(1-arphi(d_{ij})) m{u}_{jk} \ &= \sum_{j\in N_{\mathcal{K}}(i)} m{w}_{ij} m{u}_{jk} \end{aligned}$$

with $w_{ii} = -\ln(1 - \varphi(d_{ii}))$.

Tongji University, July 7, 2016

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

EK-NNclus algorithm

Step 3: iteration (continued)

• We then assign object *o_i* to the cluster with the highest plausibility, i.e., we update the variables *u_{ik}* as

$$u_{ik} = \begin{cases} 1 & \text{if } s_{ik} = \max_{k'} s_{ik'} \\ 0 & \text{otherwise} \end{cases}$$

 If the label of at least one object has been changed during the last iteration, the objects are randomly re-ordered and a new iteration is started. Otherwise, we move to the last step described next, and the algorithm is stopped

ABA ABA BIE 9900

EK-NNclus algorithm Step 4: Computation of the credal partition

After the algorithm has converged, we can compute the final mass functions

$$m_i = \bigoplus_{j \in N_{\mathcal{K}}(i)} m_{ij}$$

for i = 1, ..., n, where each m_{ii} is the following mass function,

$$egin{aligned} m_{ij}(\{\omega_k\}) &= u_{jk}arphi(d_{ij}), \quad k = 1, \dots, c \ m_{ij}(\Omega) &= 1 - arphi(d_{ij}) \end{aligned}$$

Thierry Denœux (UTC/HEUDIASYC)

EK-NNclus algorithm

Parameter tuning

- Number K of neighbors: two to three times \sqrt{n}
- γ: fixed to the inverse of the *q*-quantile of the distances d^p_{ij} between an object and its K NN
- Typically, with $q \ge 0.5$

B A B A B B B A A A

EK-NNclus

Ek-NNclus in R

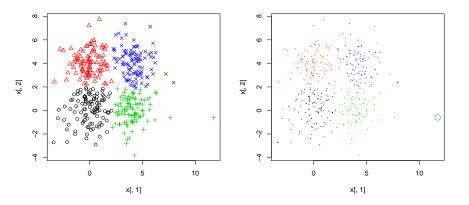
```
data(fourclass)
x<-fourclass[,1:2]
n<-nrow(x)
v0<-1:n
clus < -EkNNclus(x, D, K=50, y0, ntrials = 1, q = 0.5, p = 1)
```

```
plot(x[,1],x[,2],pch=clus$y.pl,col=clus$y.pl)
```

```
c<-ncol(clus$mass)-1
plot(x[,1],x[,2],pch=clus$y,col=clus$y.pl,
cex=0.1+2*clus$mass[,c+1])
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example



• E • Tongji University, July 7, 2016

< E

3

< A

= 990 134 / 149

Properties

- The EK-NNclus algorithm can be implemented exactly in a competitive Hopfield neural network model
- The neural network converges a stable state corresponding to a local minimum of the following energy function

$$E(U) = -\frac{1}{2}\sum_{k=1}^{c}\sum_{i=1}^{n}\sum_{j\neq i}w_{ij}u_{ik}u_{jk}$$

where $U = (u_{ik})$ denotes the $n \times c$ matrix of 0s and 1s encoding the neuron states

• The following relation holds

$$pl(R) = -E(U) + C$$

135 / 149

where pI(R) is the plausibility of the partition encoded by U

 The EK-NNclus algorithm thus searches for the most plausible partition, in the (huge) space of all partitions of the dataset!

EK-NNclus

Experiments

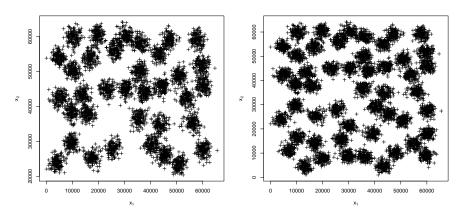
Settings:

- $\varphi(d_{ii}) = \exp(-\gamma d_{ii}^2)$, where d_{ii} is the Euclidean distance between objects *i* and *i*
- q = 0.9
- Number K of neighbors: two to three times \sqrt{n}
- Initialization methods: $c_0 = n$ initial clusters, or $c_0 = 1000$ random initial clusters
- Datasets¹
 - A-sets: Two-dimensional datasets with $n \in \{3000, 5250, 7000\}$ objects and $c \in \{20, 35, 50\}$ clusters
 - 2 DIM-sets: n = 1024 objects and 16 Gaussian clusters in 256, 512 and 1024 dimensions

¹From http://cs.joensuu.fi/sipu/datasets

ELE SOG

A-sets



Tongji University, July 7, 2016

・ロン ・回 と ・ 回 と ・ 回 と

137 / 149

1 = 990

Results with the A-sets

- Number of neighbors: K = 150 for dataset A1, and K = 200 for datasets A2 and A3
- The EK-NNclus algorithm was run 10 times

Dataset	Result	EK-NNclus	EK-NNclus	pdfCluster	model-based	model-based
		$(c_0 = n)$	$(c_0 = 1000)$			(constrained)
A1	С	20 (0)	20 (0)	17	24	24
<i>n</i> = 3000	time	32.9 (3.14)	9.8 (0.2)	84.5	31.8	7.88
A2	С	35 (0)	34 (1)	26	39	39
n = 5250	time	193 (9.81)	23.8 (0.6)	298	138	36.2
A3	С	49 (1)	49 (2.5)	34	50	51
<i>n</i> = 7500	time	358 (8.23)	35.1 (1.09)	629	412	99.4

ELE NOR

Results with the DIM-sets

- Number of neighbors: K = 50
- The EK-NNclus algorithm was run 10 times with $c_0 = n$

Dataset	Result	EK-NNclus	c-means	pdfCluster	model-based (constrained)
dim256	С	16 (0)	16 (fixed)	5	16
	ARI	1.0 (0)	0.94	0.23	1
	time	1.4 (0.058)	2.76	11.30	116
dim512	С	16 (0)	16(fixed)	9	16
	ARI	1 (0)	0.94	0.5	1
	time	1.4 (0.11)	13.27	10.9	467
dim1024	С	16 (0)	16 (fixed)	8	18
	ARI	1 (0)	0.94	0.28	0.998
	time	1.4 (0.14)	36.38	11.13	23

- (E) (E)

ELE NOR

Outline

- - Mass, belief and plausibility functions
 - •
- - Evidential K-NN rule

Application to clustering

- credal partition
- Evidential c-means
- **FK-NNclus**
- Handling a large number of clusters

3 3 9 9 9 9

Need to limit the number of focal sets

- If no restriction is imposed on the focal sets, the number of parameters to be estimated in evidential clustering grows exponentially with the number *c* of clusters, which makes it intractable unless *c* is small.
- If we allow masses to be assigned to all pairs of clusters, the number of focal sets becomes proportional to c^2 , which is manageable for moderate values of c (say, until 10), but still impractical for larger n.
- Idea: assign masses only to pairs of contiguous clusters.

B A B A B B B A A A

Method

- In the first step, a clustering algorithm (ECM, EVCLUS, EK-NNclus) is run in the basic configuration, with focal sets of cardinalities 0, 1 and (optionally) c. A credal partition M₀ is obtained.
- 2 The similarity between each pair of clusters (ω_j, ω_ℓ) is computed as

$$S(j,\ell) = \sum_{i=1}^{n} pl_{ij}pl_{i\ell},$$

where $p_{l_{j_i}}$ and $p_{l_{\ell_\ell}}$ are the normalized plausibilities that object *i* belongs, respectively, to clusters *j* and ℓ . We then determine the set P_K of pairs $\{\omega_j, \omega_\ell\}$ that are mutual *K* nearest neighbors.

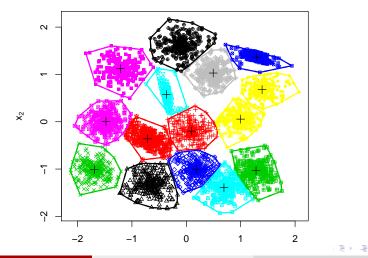
Solution The clustering algorithm is run again, starting from the previous credal partition \mathcal{M}_0 , and adding as focal sets the pairs in P_K .

< ロ > < 同 > < E > < E > E = < の < 0</p>

Example in R: step 1

data(s2)
clus<-ecm(x=s2,c=15,type='simple',Omega=FALSE,delta=1,disp=FALSE)
plot(x=clus,X=s2,Outliers = TRUE)</pre>

Result after Step 1



Classification and clustering using Belief functions

= 200

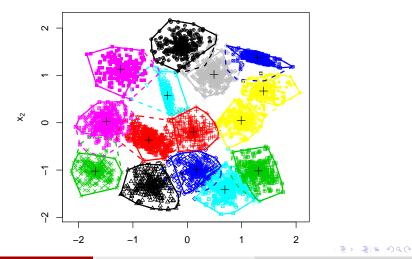
Example in R: steps 2 and 3

```
P<-createPairs(clus,k=2)
```

```
clus1<-ecm(x=s2,c=15,type='pairs',Omega=FALSE,pairs=P$pairs,
g0=clus$g,delta=1,disp=FALSE)
```

```
plot(x=clus1, X=s2, Outliers = TRUE, approx=2)
```

Final result



Thierry Denœux (UTC/HEUDIASYC)

Classification and clustering using Belief functions

Tongji University, July 7, 2016 146 / 149

Summary

- The theory of belief function has great potential in data analysis and challenging machine learning:
 - Classification (supervised learning)
 - Clustering (unsupervised learning) problems
- Belief functions allow us to:
 - Learn from weak information (partially supervised learning, imprecise and uncertain data)
 - Express uncertainty on the outputs of a learning system (e.g., credal partition)
 - Combine the outputs from several learning systems (ensemble classification and clustering), or combine data with expert knowledge (constrained clustering)
- R packages evclass and evclust available from CRAN at https://cran.r-project.org/web/packages

References on clustering I

cf. https://www.hds.utc.fr/~tdenoeux

M.-H. Masson and T. Denœux.

ECM: An evidential version of the fuzzy c-means algorithm. *Pattern Recognition*, 41(4):1384-1397, 2008.

M.-H. Masson and T. Denœux.

RECM: Relational Evidential c-means algorithm. *Pattern Recognition Letters*, 30:1015-1026, 2009.

B. Lelandais, S. Ruan, T. Denoeux, P. Vera, I. Gardin. Fusion of multi-tracer PET images for Dose Painting. *Medical Image Analysis*, 18(7):1247-1259, 2014.

T. Denœux and M.-H. Masson. EVCLUS: Evidential Clustering of Proximity Data. IEEE Transactions on SMC B, 34(1):95-109, 2004.

ヨト イヨト ヨヨ わすべ

References on clustering II

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux, S. Sriboonchitta and O. Kanjanatarakul Evidential clustering of large dissimilarity data. *Knowledge-Based Systems*, 106:179–195, 2016.

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta. EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor rule. *Knowledge-Based Systems*, Vol. 88, pages 57-69, 2015.

3 3 9 9 9 9