
Introductory example Learning a regression tree Classification trees Combining trees

Computational statistics
Lecture 6: Tree-based methods

Thierry Denœux

7 March, 2016

Introductory example Learning a regression tree Classification trees Combining trees

Tree-based methods

Here we describe tree-based methods for regression and classification.
These involve stratifying or segmenting the predictor space into a
number of simple regions.
Since the set of splitting rules used to segment the predictor space
can be summarized in a tree, these types of approaches are known as
decision-tree methods.

Introductory example Learning a regression tree Classification trees Combining trees

Tree-based methods

Tree-based methods are simple and useful for interpretation.
However they typically are not competitive with the best supervised
learning approaches in terms of prediction accuracy.
Hence we also discuss two methods for combining several trees:
bagging and random forests. These methods grow multiple trees
which are then combined to yield a single consensus prediction.
Combining a large number of trees can often result in dramatic
improvements in prediction accuracy, at the expense of some loss
interpretation.

Introductory example Learning a regression tree Classification trees Combining trees

The Basics of Decision Trees

Decision trees can be applied to both regression and classification
problems.
We first consider regression problems, and then move on to
classification.

Introductory example Learning a regression tree Classification trees Combining trees

Overview

Introductory example

Learning a regression tree
Tree building process
Pruning

Classification trees

Combining trees

Introductory example Learning a regression tree Classification trees Combining trees

Baseball salary data: how would you stratify it?

Salary is color-coded from low (blue, green) to high (yellow,red)

Introductory example Learning a regression tree Classification trees Combining trees

Decision tree for these data

Introductory example Learning a regression tree Classification trees Combining trees

Details of previous figure

For the Hitters data, a regression tree for predicting the log salary of
a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the
previous year.
At a given internal node, the label (of the form Xj < tk) indicates
the left-hand branch emanating from that split, and the right-hand
branch corresponds to Xj ≥ tk . For instance, the split at the top of
the tree results in two large branches. The left-hand branch
corresponds to Years < 4.5, and the right-hand branch corresponds
to Years ≥ 4.5.
The tree has two internal nodes and three terminal nodes, or leaves.
The number in each leaf is the mean of the response for the
observations that fall there.

Introductory example Learning a regression tree Classification trees Combining trees

Results

Overall, the tree stratifies or segments the players into three regions of predictor
space: R1 = {X |Years < 4.5}, R2 = {X |Years ≥ 4.5,Hits < 117.5}, and
R3 = {X |Years ≥ 4.5,Hits ≥ 117.5}.

Introductory example Learning a regression tree Classification trees Combining trees

Terminology for Trees

In keeping with the tree analogy, the regions R1, R2, and R3 are
known as terminal nodes
Decision trees are typically drawn upside down, in the sense that the
leaves are at the bottom of the tree.
The points along the tree where the predictor space is split are
referred to as internal nodes
In the hitters tree, the two internal nodes are indicated by the text
Years < 4.5 and Hits < 117.5.

Introductory example Learning a regression tree Classification trees Combining trees

Interpretation of Results

Years is the most important factor in determining Salary, and players
with less experience earn lower salaries than more experienced
players.
Given that a player is less experienced, the number of Hits that he
made in the previous year seems to play little role in his Salary.
But among players who have been in the major leagues for five or
more years, the number of Hits made in the previous year does affect
Salary, and players who made more Hits last year tend to have higher
salaries.
Surely an over-simplification, but compared to a regression model, it
is easy to display, interpret and explain

Introductory example Learning a regression tree Classification trees Combining trees

Predictions

We predict the response for a given test observation using the mean
of the training observations in the region to which that test
observation belongs.
A five-region example of this approach is shown in the next slide.

Introductory example Learning a regression tree Classification trees Combining trees

Example

Introductory example Learning a regression tree Classification trees Combining trees

Details of previous figure

Top Left: A partition of two-dimensional feature space that could not
result from recursive binary splitting.

Top Right: The output of recursive binary splitting on a
two-dimensional example.

Bottom Left: A tree corresponding to the partition in the top right panel.
Bottom Right: A perspective plot of the prediction surface corresponding

to that tree.

Introductory example Learning a regression tree Classification trees Combining trees

Overview

Introductory example

Learning a regression tree
Tree building process
Pruning

Classification trees

Combining trees

Introductory example Learning a regression tree Classification trees Combining trees

Overview

Introductory example

Learning a regression tree
Tree building process
Pruning

Classification trees

Combining trees

Introductory example Learning a regression tree Classification trees Combining trees

Growing a regression tree

We now turn to the question of how to grow a regression tree.
Our data consists of p inputs and a response, for each of N
observations: that is, (xi , yi) for i = 1, 2, . . . ,N, with
xi = (xi1, xi2, . . . , xip).
The algorithm needs to automatically decide on the splitting
variables and split points, and also what topology (shape) the tree
should have.

Introductory example Learning a regression tree Classification trees Combining trees

Growing a regression tree

Suppose first that we have a partition into M regions R1,R2, . . . ,RM ,
and we model the response as a constant cm in each region:

f̂ (x) =
M∑

m=1

cmI{x ∈ Rm}

If we adopt as our criterion minimization of the sum of squares∑
(yi − f (xi))2, it is easy to see that the best cm is just the average

of yi in region Rm:

cm = ave(yi |xi ∈ Rm).

Introductory example Learning a regression tree Classification trees Combining trees

Growing a regression tree

Now, finding the best binary partition in terms of minimum sum of
squares is generally computationally infeasible. Hence we proceed
with a top-down, greedy approach.
The approach is top-down because it begins at the top of the tree
and then successively splits the predictor space; each split is
indicated via two new branches further down on the tree.
It is greedy because at each step of the tree-building process, the
best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.

Introductory example Learning a regression tree Classification trees Combining trees

Algorithm

Starting with all of the data, consider a splitting variable j and split
point s, and define the pair of half-planes

R1(j , s) = {X |Xj ≤ s} and R2(j , s) = {X |Xj > s}

Then we seek the splitting variable j and split point s that solve

min
j ,s

min
c1

∑
xi∈R1(j ,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j ,s)

(yi − c2)2

For any choice j and s, the inner minimization is solved by

c1 = ave(yi |xi ∈ R1(j , s)) and c2 = ave(yi |xi ∈ R2(j , s))

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j , s) is feasible.

Introductory example Learning a regression tree Classification trees Combining trees

Algorithm

Having found the best split, we partition the data into the two
resulting regions and repeat the splitting process on each of the two
regions.
Then this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might
overfit the data, while a small tree might not capture the important
structure.

Introductory example Learning a regression tree Classification trees Combining trees

Regression trees in R

library(tree)
baseball <- read.table("baseball.dat",header=TRUE)
N<-nrow(baseball)

train = sample(1:N, N/2)
tree.baseball=tree(salary˜.,baseball,subset=train)

Introductory example Learning a regression tree Classification trees Combining trees

Regression trees in R

summary(tree.baseball)

Regression tree:
tree(formula = salary ˜ ., data = baseball, subset = train)
Variables actually used in tree construction:
"runs" "freeagent" "arbitration" "homeruns" "rbis"
"hrspererror" "sbsobp" "hrsperso" "obppererror"
Number of terminal nodes: 11
Residual mean deviance: 305800 = 48010000 / 157
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1725.00 -146.80 -69.78 0.00 219.70 1766.00

Introductory example Learning a regression tree Classification trees Combining trees

Regression trees in R

plot(tree.baseball)
text(tree.baseball,pretty=0)

|runs < 53.5

freeagent < 0.5

arbitration < 0.5 homeruns < 9.5
rbis < 105.5

hrspererror < 0.49555

sbsobp < 0.642
hrsperso < 0.2699

obppererror < 0.04845hrspererror < 1.3583

 252.3 887.2 844.2 1834.0

 920.2
1408.0

2364.0 1126.0 2700.0 3510.0

4457.0

Introductory example Learning a regression tree Classification trees Combining trees

Overview

Introductory example

Learning a regression tree
Tree building process
Pruning

Classification trees

Combining trees

Introductory example Learning a regression tree Classification trees Combining trees

Tuning the model’s complexity

Tree size is a tuning parameter governing the model’s complexity,
and the optimal tree size should be adaptively chosen from the data.
One approach would be to split tree nodes only if the decrease in
sum-of-squares due to the split exceeds some threshold. This
strategy is too short-sighted, however, since a seemingly worthless
split might lead to a very good split below it.
The preferred strategy is to grow a large tree T0, stopping the
splitting process only when some minimum node size (say 5) is
reached. Then this large tree is pruned using cost-complexity
pruning.

Introductory example Learning a regression tree Classification trees Combining trees

Cost-complexity pruning

We define a subtree T ⊂ T0 to be any tree that can be obtained by
pruning T0, that is, collapsing any number of its internal
(non-terminal) nodes.
We index terminal nodes by t, with node t representing region Rt .
Let T̃ denote the set of terminal nodes in T . Letting

Nt = #{xi ∈ Rm}, ĉt =
1
Nt

∑
xi∈Rt

yi ,

Qt =
1
Nt

∑
xi∈Rt

(yi − ĉt)
2, C (T) =

∑
t∈T̃

NtQt

We define the cost-complexity criterion

Cα(T) = C (T) + α|T̃ |.

Introductory example Learning a regression tree Classification trees Combining trees

Cost-complexity pruning

The idea is to find, for each α, the subtree T (α) ⊆ T0 to minimize
Cα(T).
The tuning parameter α ≥ 0 governs the tradeoff between tree size
and its goodness of fit to the data. Large values of α result in
smaller trees Tα, and conversely for smaller values of α.
For α = 0, the solution is the full tree T0.
For each α one can show that there is a unique smallest subtree
T (α) that minimizes Cα(T).
Questions:

1 For given α, how to find a tree that minimizes Cα(T)?
2 How to choose α?

Introductory example Learning a regression tree Classification trees Combining trees

Weakest link pruning

We start from the full tree T0.
For any internal node t, let Tt be the branch of T with root t.
If we prune Tt , the cost-complexity criterion becomes smaller if

C (t) + α < C (Tt) + α|T̃ | ⇔ α >
C (t)− C (Tt)

|T̃ | − 1
= g0(t)

The weakest link t0 in T0 is the node such that g0(t0) = mint g0(t).
Let α1 = g0(t0).
Meaning: if we increase α starting from 0, t0 is the first node t such
that pruning Tt improves the cost-complexity criterion.
Let T1 = T0 − Tt0 . We again find the weakest link t1 in T1, etc.

Introductory example Learning a regression tree Classification trees Combining trees

Weakest link pruning

By iterating the above process until the tree is reduced to the root
node troot , we get a decreasing sequence of tree

T0 � T1 � . . . � troot ,

and an increasing sequence of α values, 0 = α0 < α1 < α2 <
We can show that, for all k ≥ 0 and all αk ≤ α < αk+1, the
optimum tree T (α) is equal to Tk .

Introductory example Learning a regression tree Classification trees Combining trees

Choosing α

Estimation of α is achieved by five- or tenfold cross-validation: we
choose the value α̂ to minimize the cross-validated sum of squares.
Our final tree is T (α̂).
More precisely,

Using the whole training set, we get a sequence of trees,
T0 � T1 � . . . � troot , where Tk is the best tree for αk ≤ α < αk+1.
For k = 0, 1, 2, . . ., set α′

k =
√
αkαk+1 and compute the

cross-validated error for the trees T (r)(α′
k).

Select the tree Tk corresponding to the minimum cross-validated
error.

Introductory example Learning a regression tree Classification trees Combining trees

Pruning a regression tree in R

cv.baseball=cv.tree(tree.baseball)
plot(cv.baseball$size,cv.baseball$dev,type=’b’)

2 4 6 8 10

1.
6e

+
08

2.
0e

+
08

2.
4e

+
08

2.
8e

+
08

cv.baseball$size

cv
.b

as
eb

al
l$

de
v

Introductory example Learning a regression tree Classification trees Combining trees

Pruning a regression tree in R

prune.baseball=prune.tree(tree.baseball,best=5)
plot(prune.baseball)
text(prune.baseball,pretty=0)

|runs < 53.5

freeagent < 0.5 rbis < 105.5

hrspererror < 0.49555
 358.2 1187.0

 920.2 2369.0

4457.0

Introductory example Learning a regression tree Classification trees Combining trees

Prediction with a regression tree in R

yhat=predict(tree.baseball,newdata=baseball[-train,])
baseball.test=baseball[-train,"salary"]
plot(baseball.test,yhat)
abline(0,1)

0 1000 2000 3000 4000 5000 6000

10
00

20
00

30
00

40
00

baseball.test

yh
at

Introductory example Learning a regression tree Classification trees Combining trees

Overview

Introductory example

Learning a regression tree
Tree building process
Pruning

Classification trees

Combining trees

Introductory example Learning a regression tree Classification trees Combining trees

Classification trees

If the target is a classification outcome taking values 1, 2, . . . ,K , the
only changes needed in the tree-growing algorithm pertain to the
criteria for splitting nodes and pruning the tree.
For regression we used the squared-error node impurity measure Qt ,

Qt =
1
Nt

∑
xi∈Rt

(yi − ĉt)
2,

but this is not suitable for classification.

Introductory example Learning a regression tree Classification trees Combining trees

Impurity measures

In a node t, representing a region Rt with Nt observations, let

p̂tk =
1
Nt

∑
xi∈Rt

I (yi = k)

the proportion of class k observations in node t.
We classify the observations in node t to class k(t) = argmaxk p̂tk ,
the majority class in node m.
Different measures Qt of node impurity include the following:
Misclassification error: 1

Nt

∑
xi∈Rt

I (yi 6= k(t)) = 1− p̂tk(t)

Gini index:
∑

k 6=k ′ p̂tk p̂tk ′ =
∑K

k=1 p̂tk(1− p̂tk)

Cross-entropy or deviance: −
∑K

k=1 p̂tk log p̂tk

Introductory example Learning a regression tree Classification trees Combining trees

Comparison between impurity measures
Case where k = 2

For two classes, if p is the proportion in the second class, these three
measures are 1−max(p, 1− p), 2p(1− p) and
−p log p − (1− p) log(1− p), respectively. All three are similar, but
crossentropy and the Gini index are differentiable, and hence more
amenable to numerical optimization.

Introductory example Learning a regression tree Classification trees Combining trees

Comparison between impurity measures

In addition, cross-entropy and the Gini index are more sensitive to
changes in the node probabilities than the misclassification rate.
For example, in a two-class problem with 400 observations in each
class (denote this by (400, 400)), suppose one split created nodes
(300, 100) and (100, 300), while the other created nodes (200, 400)
and (200, 0).
Both splits produce a misclassification rate of 0.25, but the second
split produces a pure node and is probably preferable.
Both the Gini index and cross-entropy are lower for the second split.
For this reason, either the Gini index or cross-entropy should be used
when growing the tree.
To guide cost-complexity pruning, any of the three measures can be
used, but typically it is the misclassification rate.

Introductory example Learning a regression tree Classification trees Combining trees

Interpretation of the Gini index

The Gini index can be interpreted in two interesting ways.
Rather than classify observations to the majority class in the node,
we could classify them to class k with probability p̂tk . Then the
training error rate of this rule in the node is

∑
k 6=k ′ p̂tk p̂tk ′ – the Gini

index.
Similarly, if we code each observation as 1 for class k and zero
otherwise, the variance over the node of this 0-1 response is
p̂tk(1-p̂tk). Summing over classes k again gives the Gini index.

Introductory example Learning a regression tree Classification trees Combining trees

Selecting the best split

Consider a node t with size Nt with impurity Qt

For some variable j and split point s, we split t in two nodes, tL and
tr , with sizes NtL and NtR , and with impurities QtL and QtR

The average decrease of impurity is

∆(j , s) = Qt −
(
NtL

Nt
QtL +

NtR

Nt
QtR

)
If Qt is the Shannon entropy, then ∆(j , s) is interpreted as an
information gain.
We select at each step the splitting variable j and the split point s
that maximizes ∆(j , s) or, equivalently, that minimizes the average
impurity

NtL

Nt
QtL +

NtR

Nt
QtR

Introductory example Learning a regression tree Classification trees Combining trees

Categorical predictors

When splitting a predictor having q possible unordered values, there
are 2q−1 − 1 possible partitions of the q values into two groups.
All the dichotomies can be explored for small q, but the
computations become prohibitive for large q.
In the 2-class case, this computation simplifies. We order the
predictor classes according to the proportion falling in outcome class
1. Then we split this predictor as if it were an ordered predictor. One
can show this gives the optimal split, in terms of cross-entropy or
Gini index, among all possible 2q−1 − 1 splits.
The partitioning algorithm tends to favor categorical predictors with
many levels q; the number of partitions grows exponentially in q, and
the more choices we have, the more likely we can find a good one for
the data at hand. This can lead to severe overfitting if q is large,
and such variables should be avoided.

Introductory example Learning a regression tree Classification trees Combining trees

German credit scoring data

1000 cases of credit application, 300 refused.
20 predictors, mix of quantitative, qualitative (unordered) and
qualitative (ordered)
Examples of quantitative predictor: credit amount, age in years,
number of existing credits at this bank, etc.
Examples of unordered qualitative predictors: purpose (car,
furniture/equipment, education, etc.), credit history (no credits
taken/ all credits paid back duly, delay in paying off in the past, etc.)
Example of ordered qualitative predictors: Present employment since
(unemployed, less than 1 year, 1-4 years, 4-7 years, more than 7
years), etc.

Introductory example Learning a regression tree Classification trees Combining trees

Data preprocessing in R

credit <- read.table("german.data")
credit$V7<-ordered(credit$V7)
credit$V17<-ordered(credit$V17)
credit$V21<-factor(credit$V21)

N<-nrow(credit)
train = sample(1:N, 700)

Introductory example Learning a regression tree Classification trees Combining trees

Tree growing in R

tree.credit=tree(as.factor(V21) .,credit,subset=train)
plot(tree.credit)
text(tree.credit,pretty=0)

|V1: A14

V14: A143

V3: A30,A34

V16 < 1.5

V4: A40,A41,A43,A44,A48,A49V7: A74

V4: A41,A410,A42,A43

V2 < 22.5

V3: A32,A33,A34

V10: A103
V5 < 1373

V12: A121,A122
V13 < 36.5

V4: A40,A410,A44,A45,A49

V4: A41,A42,A43,A48,A49

V4: A41,A410,A44

V5 < 8046.5 V6: A63,A64,A65

V11 < 2.5

V1: A13V7: A71,A74,A75

1

1 1 1 1

1 2

1

1
2 1

1 1

1 2 1 2 1

1 2 2 2

Introductory example Learning a regression tree Classification trees Combining trees

Cross-validation

Size<-cv.tree(tree.credit)$size
DEV<-rep(0,length(Size))
for(i in (1:10)){
cv.credit=cv.tree(tree.credit)
DEV<-DEV+cv.credit$dev
}
DEV<-DEV/10
plot(cv.credit$size,DEV,type=’b’)

Introductory example Learning a regression tree Classification trees Combining trees

Cross-validation
Result

5 10 15 20

80
0

85
0

90
0

95
0

10
00

cv.credit$size

D
E

V

Introductory example Learning a regression tree Classification trees Combining trees

Pruning

prune.credit=prune.tree(tree.credit,best=3)
plot(prune.credit)
text(prune.credit,pretty=0)

|V1: A13,A14

V2 < 11.5
1

1 2

Introductory example Learning a regression tree Classification trees Combining trees

Test error rate estimation

yhat=predict(prune.credit,newdata=credit[-train,],type=’class’)
y.test=credit[-train,"V21"]
table(y.test,yhat)
err<-1-mean(y.test==yhat)

Confusion matrix:

prediction
true class 1 2

1 172 41
2 50 37

Test error rate: (41+50)/300=0.303

Introductory example Learning a regression tree Classification trees Combining trees

Advantages and Disadvantages of Trees

Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!
Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).
Trees can easily handle qualitative predictors without the need to
create dummy variables.
Unfortunately, trees generally do not have the same level of
predictive accuracy as some of the other modern regression and
classification approaches.
However, by aggregating many decision trees, the predictive
performance of trees can be substantially improved. We introduce
these concepts next.

Introductory example Learning a regression tree Classification trees Combining trees

Overview

Introductory example

Learning a regression tree
Tree building process
Pruning

Classification trees

Combining trees

Introductory example Learning a regression tree Classification trees Combining trees

Bagging

Bootstrap aggregation, or bagging, is a general-purpose procedure
for reducing the variance of a statistical learning method; we
introduce it here because it is particularly useful and frequently used
in the context of decision trees.
Recall that given a set of n independent observations Z1, . . . ,Zn,
each with variance σ2, the variance of the mean Z of the
observations is given by σ2/n.
In other words, averaging a set of observations reduces variance. Of
course, this is not practical because we generally do not have access
to multiple training sets.

Introductory example Learning a regression tree Classification trees Combining trees

Bagging – continued

Instead, we can bootstrap, by taking repeated samples from the
(single) training data set.
In this approach we generate B different bootstrapped training data
sets. We then train our method on the b-th bootstrapped training
set in order to get f̂ ∗b(x), the prediction at a point x . We then
average all the predictions to obtain

f̂bag (x) =
1
B

B∑
b=1

f̂ ∗b(x)

This is called bagging.

Introductory example Learning a regression tree Classification trees Combining trees

Bagging classification trees

The above prescription applied to regression trees
For classification trees: for each test observation, we record the class
predicted by each of the B trees, and take a majority vote: the
overall prediction is the most commonly occurring class among the B
predictions.
If we are interested in the posterior probabilities, we can rather
average the class proportions in the terminal nodes.

Introductory example Learning a regression tree Classification trees Combining trees

Example

We generated a sample of size N = 30, with two classes and p = 5
features, each having a standard Gaussian distribution with pairwise
correlation 0.95.
The response Y was generated according to
Pr(Y = 1|x1?0.5) = 0.2, Pr(Y = 1|x1 > 0.5) = 0.8. The Bayes
error is 0.2.
A test sample of size 2000 was also generated from the same
population.
We fit classification trees to the training sample and to each of 200
bootstrap samples. No pruning was used.

Introductory example Learning a regression tree Classification trees Combining trees

Bagged decision trees

Introductory example Learning a regression tree Classification trees Combining trees

Error curves

Introductory example Learning a regression tree Classification trees Combining trees

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the
test error of a bagged model.
Recall that the key to bagging is that trees are repeatedly fit to
bootstrapped subsets of the observations. One can show that on
average, each bagged tree makes use of around two-thirds of the
observations.
The remaining one-third of the observations not used to fit a given
bagged tree are referred to as the out-of-bag (OOB) observations.
We can predict the response for the ith observation using each of the
trees in which that observation was OOB. This will yield around B/3
predictions for the ith observation, which we average.
This estimate is essentially the LOO cross-validation error for
bagging, if B is large.

Introductory example Learning a regression tree Classification trees Combining trees

Random Forests

Random forests provide an improvement over bagged trees by way of
a small tweak that decorrelates the trees. This reduces the variance
when we average the trees.
As in bagging, we build a number of decision trees on bootstrapped
training samples.
But when building these decision trees, each time a split in a tree is
considered, a random selection of m predictors is chosen as split
candidates from the full set of p predictors. The split is allowed to
use only one of those m predictors.
A fresh selection of m predictors is taken at each split, and typically
we choose m ≈ √p – that is, the number of predictors considered at
each split is approximately equal to the square root of the total
number of predictors.

Introductory example Learning a regression tree Classification trees Combining trees

Example: gene expression data

We applied random forests to a high-dimensional biological data set
consisting of expression measurements of 4,718 genes measured on
tissue samples from 349 patients.
There are around 20,000 genes in humans, and individual genes have
different levels of activity, or expression, in particular cells, tissues,
and biological conditions.
Each of the patient samples has a qualitative label with 15 different
levels: either normal or one of 14 different types of cancer.
We use random forests to predict cancer type based on the 500
genes that have the largest variance in the training set.
We randomly divided the observations into a training and a test set,
and applied random forests to the training set for three different
values of the number of splitting variables m.

Introductory example Learning a regression tree Classification trees Combining trees

Results: gene expression data

Introductory example Learning a regression tree Classification trees Combining trees

Details of previous figure

Results from random forests for the fifteen-class gene expression data
set with p = 500 predictors.
The test error is displayed as a function of the number of trees. Each
colored line corresponds to a different value of m, the number of
predictors available for splitting at each interior tree node.
Random forests (m < p) lead to a slight improvement over bagging
(m = p). A single classification tree has an error rate of 45.7%.

Introductory example Learning a regression tree Classification trees Combining trees

Bagging in R

library(randomForest)
bag.credit=randomForest(V21 .,data=credit,subset=train,mtry=20)

yhat1=predict(bag.credit,newdata=credit[-train,],type=’response’)
table(y.test,yhat1)
1-mean(y.test==yhat1)

Confusion matrix:

prediction
true class 1 2

1 193 20
2 48 39

Test error rate: (20+48)/300=0.227

Introductory example Learning a regression tree Classification trees Combining trees

Random forests in R

library(randomForest)
bag.credit=randomForest(V21 .,data=credit,subset=train,mtry=5)

yhat2=predict(bag.credit,newdata=credit[-train,],type=’response’)
table(y.test,yhat2)
1-mean(y.test==yhat2)

Confusion matrix:

prediction
true class 1 2

1 202 11
2 60 27

Test error rate: (11+60)/300=0.237

	Introductory example
	Learning a regression tree
	Tree building process
	Pruning

	Classification trees
	Combining trees

