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Objectives of this tutorial

1 Provide an introduction to the Theory of Belief
Functions

2 Present some recent advances, with emphasis on
information modeling in view of practical applications.
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Uncertain reasoning

• In Information Technology, we often need to process
and reason with information coming from various
sources (sensors, experts, models, ...)

• Information is almost always tainted with various kinds
of imperfection: imprecision, uncertainty, ambiguity,...

• We need a theoretical framework general enough to
allow for the representation, propagation and
combination of all kinds of imperfect information.

• The theory of belief functions is one such framework.
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Imperfections of information
A typology (Dubois and Prade, 1988)

• Let X be a variable taking values in Ω (domain, frame
of discernment).

• An item of information about X may be represented as
a pair (value, confidence):
• The “value” component corresponds to a subset of Ω;
• The “confidence” component is an indication of the

reliability of the item of information.

• Imprecision is related to the content of an item of
information (the “value” component).

• Uncertainty is related to its conformity to a reality (the
“confidence” component).
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Imperfections of information
A simple example

• Let X = the temperature of this room
• “It is between 15 and 25 degrees” = ([15,25], certain):

certain but imprecise.
• “It is probably 20 degrees” = (20, probable): precise but

uncertain.
• “It is probably between 15 and 25 degrees” = ([15,25],

probable): both uncertain and imprecise.
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Classical frameworks

1 Set-membership approach
• Interval analysis, bounded error estimation
• Natural representation of information imprecision
• Cannot express uncertainty (unreliability)
• Lacks robustness, too conservative.

2 Probability theory
• Well-suited for modeling aleatory uncertainty (variability

in a population or across repetitions of a random
experiment).

• Does not express any notion of imprecision.
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Theory of belief functions

• Introduced by Dempster (1968) and Shafer (1976),
further developed by Smets (Transferable Belief Model)
in the 1980’s and 1990’s. Also known as
Dempster-Shafer theory or Evidence theory.

• A formal framework for representing and reasoning
from partial (uncertain, imprecise) information.

• Generalizes both the Set-membership approach and
Probability Theory:
• A belief function may be viewed both as a generalized

set and as a non additive measure.
• The theory includes extensions of probabilistic notions

(conditioning, marginalization) and set-theoretic notions
(intersection, union, inclusion, etc.)
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Mass function
Definition

• Let X be a variable taking values in a finite set Ω (frame
of discernment).

• Mass function: m : 2Ω → [0,1] such that∑
A⊆Ω

m(A) = 1.

• Every A of Ω such that m(A) > 0 is a focal set of m.
Let A1, . . . ,Ar be focal sets.

• Special cases:
• r = 1: categorical mass function (∼ set). We denote by

mA the categorical mass function with focal set A.
• |Ai | = 1, i = 1, . . . , r : Bayesian (probability) mass

function.



Theory of
belief

functions
11/ 138

Thierry
Denœux

Basics
Fundamental
concepts

Belief updating

Operations in
product frames

Decision making

Selected
advanced
topics

Methods for
building belief
functions

Mass function
Multi-valued mapping interpretation

• A mass function m on Ω may be viewed as arising from
• A set Θ = {θ1, . . . , θr} of interpretations of the available

evidence;
• A probability measure P on Θ;
• A multi-valued mapping Γ : Θ→ 2Ω.

• Meaning:
• Under interpretation θi , the evidence tells us that

X ∈ Γ(θi ), and nothing more.
• The probability P({θi}) is transferred to Ai = Γ(θi ):

m(Ai ) = P({θi})
• In this framework, m(A) may be then viewed as the

probability of knowing only that X ∈ A, given the
available evidence.

• In particular, m(Ω) is the probability of knowing nothing.
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Example

• A murder has been committed. There are three
suspects: Ω = {Peter , John,Mary}.

• A witness saw the murderer going away in the dark,
and he can only assert that it was man. How, we know
that the witness is drunk 20 % of the time.

• This piece of evidence can be represented by

m({Peter , John}) = 0.8,

m(Ω) = 0.2

• The mass 0.2 is not committed to {Mary}, because the
testimony does not accuse Mary at all!
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Belief, plausibility

• Belief function:

bel(A) =
∑
B⊆A
B 6⊆A

m(B) =
∑
∅6=B⊆A

m(B), ∀A ⊆ Ω

• Plausibility function:

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω

• Interpretations:
• bel(A) = degree to which the evidence supports A.
• pl(A) = upper bound on the degree of support that

could be assigned to A after taking into account new
information (≥ bel(A)).

• If m is Bayesian, bel = pl (probability measure).
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Example

A ∅ {P} {J} {P, J} {M} {P,M} {J,M} Ω
m(A) 0 0 0 0.8 0 0 0 0.2

bel(A) 0 0 0 0.8 0 0 0 1
pl(A) 0 1 1 1 0.2 1 1 1
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Relations between m, bel et pl

• Relations:

bel(A) = pl(Ω)− pl(A), ∀A ⊆ Ω

m(A) =

{∑
∅6=B⊆A(−1)|A|−|B|bel(B), A 6= ∅

1− bel(Ω) A = ∅

• m, bel et pl are thus three equivalent representations of

• a piece of evidence or, equivalently,
• a state of belief induced by this evidence.
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Relationship with Possibility
theory

• Assume that the focal sets of m are nested:
A1 ⊂ A2 ⊂ . . . ⊂ Ar → m is said to be consonant.

• The following relations hold:

pl(A ∪ B) = max (pl(A),pl(B)) , ∀A,B ⊆ Ω.

• pl is this a possibility measure, and bel is the dual
necessity measure.

• The possibility distribution is the contour function:

π(x) = pl({x}), ∀x ∈ Ω.

• The theory of belief function can thus be considered as
more expressive than possibility theory.
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Conditioning
Definitions

• Let m be a mass function on Ω representing some
evidence about X .

• Additional evidence tells us that X ∈ B for sure. How to
update m?

• Two basic rules:
1 Unnormalized conditioning:

m(A|B) =
∑

{C|C∩B=A}

m(C).

2 Normalized conditioning:

m∗(A|B) =

{
m(A|B)

1−m(∅|B) if A 6= ∅
0 if A = ∅
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Conditioning
Example

• We have m({Peter , John}) = 0.8, m(Ω) = 0.2.
• We learn that the murderer is blond. John and Mary are

blond. B = {John,Mary}.
• m({Peter , John})→ {John}, m(Ω)→ {John,Mary}.
• New conditional mass function given B.

m({John}|B) = 0.8

m({John,Mary}|B) = 0.2.
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Conditioning
Justification using the multi-valued mapping

interpretation

• Assume that m is induced by a probability measure on
Θ and a multi-valued mapping Γ : Θ→ 2Ω.

• After knowing that X ∈ B, each interpretation θi that
pointed to Ai = Γ(θi) now points to Ai ∩ B.

• New mapping ΓB : θi → Ai ∩ B.
• What to do with θis such that ΓB(θi) = ∅?

1 Discard them and condition P on the remaining one:
normalized rule of conditioning (Dempster’s rule of
conditioning).

2 Keep them to keep track of the conflict between pieces
of evidence. → unnormalized rule of conditioning.
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Conditioning
Properties

• Extension of set intersection:

mA(·|B) = mA∩B.

• Extension of Bayesian conditioning:
• Expression of normalized conditioning in terms of

plausibility:

pl∗(A|B) =
pl(A ∩ B)

pl(B)

• If m is Bayesian, pl is a probability measure:
probabilistic conditioning is recovered.
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Plausibility, communality

• Interpretation of pl(A):
• pl(A) = bel(A|A) = maxB bel(A|B)
• maximal degree of support that can be assigned to A

after conditioning.
• Commonality function: let q : 2Ω → [0,1] be defined as

q(A) = m(A|A):
• Mass attached to the largest possible subset of Ω

(degree of ignorance) after conditioning on A.
• Other expression:

q(A) =
∑
B⊇A

m(B).
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Conjunctive combination
Definitions

• Let m1 and m2 be two mass functions on Ω induced by
two distinct items of evidence. How should they be
combined?

• Two basic conjunctive operators:
1 TBM conjunctive rule

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C)

2 Dempster’s rule

(m1 ⊕m2)(A) =

{
(m1 ∩©m2)(A)

1−K12
if A 6= ∅

0 if A = ∅

with K12 = (m1 ∩©m2)(∅): degree of conflict.
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Conjunctive combination
Example

• We have m1({Peter , John}) = 0.8, m1(Ω) = 0.2.
• New piece of evidence: the murderer is blond,

confidence=0.6→ m2({John,Mary}) = 0.6,
m2(Ω) = 0.4.

{Peter , John} Ω
0.8 0.2

{John,Mary} {John} {John,Mary}
0.6 0.48 0.12
Ω {Peter , John} Ω

0.4 0.32 0.08
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Conjunctive rules
Justification using the multi-valued mapping

interpretation

• Let (Θ1,P1, Γ1) and (Θ2,P2, Γ2) be the multi-valued
mapping frameworks associated to the two pieces of
evidence.

• If interpretations θ1 ∈ Θ1 and θ2 ∈ Θ2 both hold, then
we can conclude that X ∈ Γ1(θ1) ∩ Γ2(θ2).

• If the two pieces of evidence are independent, then this
happens with probability P1({θ1})P2({θ2}).

• Two solutions:
1 Transfer the mass P1({θ1})P2({θ2}) to Γ1(θ1) ∩ Γ2(θ2):

TBM conjunctive rule;
2 First, discard inconsistent interpretations (θ1, θ2) such

that Γ1(θ1) ∩ Γ2(θ2) = ∅ and condition the probability on
Θ1 ×Θ2 on the remaining ones: Dempster’s rule.
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Dempster’s rules
Properties

• Generalization of conditioning:

m(·|B) = m ∩©mB, m∗(·|B) = m ⊕mB

• Both ∩© and ⊕ are commutative and associative
• Neutral element:

m ∩©mΩ = m ⊕mΩ = m.

• (q1 ∩©q2) = q1 · q2
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TBM disjunctive rule
Definition and justification

• Let (Θ1,P1, Γ1) and (Θ2,P2, Γ2) be the multi-valued
mapping frameworks associated to two pieces of
evidence.

• If interpretation θk ∈ Θk holds and piece of evidence k
is reliable, then we can conclude that X ∈ Γk (θk ).

• If interpretation θ1 ∈ Θ1 and θ2 ∈ Θ2 both hold and we
assume that at least one of the two pieces of evidence
is reliable, then we can conclude that
X ∈ Γ1(θ1) ∪ Γ2(θ2).

• This leads to the TBM disjunctive rule:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω
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TBM disjunctive rule
Properties

• commutativity, associativity.
• neutral element: m∅
• Let b = bel + m(∅) (implicability function). We have:

(b1 ∪©b2) = b1 · b2

• De Morgan laws for ∩© and ∪©:

m1 ∪©m2 = m1 ∩©m2,

m1 ∩©m2 = m1 ∪©m2,

where m denotes the complement of m defined by
m(A) = m(A) for all A ⊆ Ω.
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Selecting a combination rule
• All three rules ∩©, ⊕ and ∪© assume the pieces of

evidence to be independent.
• The conjunctive rules ∩© and ⊕ further assume that the

pieces of evidence are both reliable;
• The TBM disjunctive rule ∪© only assumes that at least

one of the items of evidence combined is reliable
(weaker assumption).

• ∩© vs. ⊕:
• ∩© keeps track of the conflict between items of

evidence: very useful in some applications.
• ∩© also makes sense under the open-world assumption.
• The conflict increases with the number of combined

mass functions: normalization is often necessary at
some point.

• What to do with dependent items of evidence? →
Cautious rule
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Operations in product frames
Notations

• In many applications, we need to express uncertain
information about several variables taking values in
different domains.

• Let X and Y be two variables defined on frames ΩX
and ΩY .

• Let ΩXY = ΩX × ΩY be the product frame.
• A mass function mΩXY on ΩXY can be seen as an

uncertain relation between variables X and Y .
• Two basic operations on product frames:

1 Express a joint mass function mΩXY in the coarser frame
ΩX or ΩY (marginalization);

2 Express a marginal mass function mΩX on ΩX in the
finer frame ΩXY (vacuous extension).
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Operations in product frames
Marginalization

• Problem: express mΩXY in ΩX .
• Solution: transfer each mass mΩXY (A) to the projection

of A on ΩX :

• Marginal mass function

mΩXY ↓ΩX (B) =
∑

{A⊆ΩXY ,A↓ΩX =B}

mΩXY (A) ∀B ⊆ ΩX .

• Generalizes both set projection and probabilistic
marginalization.
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Operations in product frames
Vacuous extension

• Problem: express mΩX in ΩXY .
• Solution: transfer each mass mΩX (B) to the cylindrical

extension of B: B × ΩY .

• Vacuous extension:

mΩX↑ΩXY (A) =

{
mΩX (B) if A = B × ΩY

0 otherwise.
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Operations in product frames
Application to approximate reasoning

• Assume that we have:
• Partial knowledge of X formalized as a mass function

mΩX ;
• A joint joint mass function mΩXY representing an

uncertain relation between X and Y .

• What can we say about Y ?
• Solution:

1 Vacuously extend mΩX to ΩXY ;
2 Combine mΩX↑ΩXY with mΩXY ;
3 Marginalize the result on ΩY .

• Formally:

mΩY =
(

mΩX↑ΩXY ∩©mΩXY
)↓ΩX

.
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Decision making
Problem formulation

• A decision problem can be formalized by defining:
• A set of acts A = {a1, . . . ,as};
• A set of states of the world Ω;
• A loss function L : A× Ω→ R, such that L(a, ω) is the

loss incurred if we select act a and the true state of the
world is ω.

• Bayesian framework
• Uncertainty on Ω is described by a probability measure

P;
• Define the risk of each act a as the expected loss if a is

selected: R(a) = EP [L(a, ·)].
• Select an act with minimal risk.

• Extension to the belief function framework?
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Decision making
TBM solution

• In order to avoid Dutch books (sequences of bets
resulting in sure loss), we have to base our decisions
on a probability distribution on Ω.

• The TBM postulates that uncertain reasoning and
decision making are two fundamentally different
operations occurring at two different levels:
• Uncertain reasoning is performed at the credal level

using the formalism of belief functions.
• Decision making is performed at the pignistic level, after

the m on Ω has been transformed into a probability
measure.

• The pignistic transformation from m to a probability
mass function Betp can be justified axiomatically:

Betp(ω) =
∑
A⊆Ω

m(A)

1−m(∅)
1A(ω)

|A|
, ∀ω ∈ Ω.
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Decision making
Example

• Let m({John}) = 0.48, m({John,Mary}) = 0.12,
m({Peter , John}) = 0.32, m(Ω) = 0.08.

• We have

Betp({John}) = 0.48 +
0.12

2
+

0.32
2

+
0.08

3
≈ 0.73,

Betp({Peter}) =
0.32

2
+

0.08
3
≈ 0.19

Betp({Mary}) =
0.12

2
+

0.08
3
≈ 0.09
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Informational comparison of
belief functions

• Let m1 et m2 be two mass functions on Ω.
• In what sense can we say that m1 is more informative

(committed) than m2?
• Special case:

• Let mA and mB be two categorical mass functions.
• mA is more committed than mB iff A ⊆ B.

• Extension to arbitrary mass functions?
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Plausibility and commonality
orderings

• m1 is pl-more committed than m2 (noted m1 vpl m2) if

pl1(A) ≤ pl2(A), ∀A ⊆ Ω.

• m1 is q-more committed than m2 (noted m1 vq m2) if

q1(A) ≤ q2(A), ∀A ⊆ Ω.

• Properties:
• Extension of set inclusion:

mA vpl mB ⇔ mA vq mB ⇔ A ⊆ B.

• Greatest element: mΩ t.q. mΩ(Ω) = 1 (vacuous mass
function).
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Strong (specialization) ordering

• m1 is a specialization of m2 (noted m1 vs m2) if m1 can
be obtained from m2 by distributing each mass m2(B)
to subsets of B:

m1(A) =
∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω,

where S(A,B) = proportion of m2(B) transferred to
A ⊆ B.

• S: specialization matrix.
• Properties:

• Extension of set inclusion;
• Greatest element: mΩ;
• m1 vs m2 ⇒ m1 vpl m2 and m1 vq m2.
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Least Commitment Principle
Definition

Definition (Least Commitment Principle)
When several belief functions are compatible with a set of
constraints, the least informative according to some
informational ordering (if it exists) should be selected.
A very powerful method for constructing belief functions!
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Cautious rule
Motivations

• The standard rules ∩©, ⊕ and ∪© assume the sources of
information to be independent, e.g.
• experts with non overlapping experience/knowledge;
• non overlapping datasets.

• What to do in case of non independent evidence?
• Describe the nature of the interaction between sources

(difficult, requires a lot of information);
• Use a combination rule that tolerates redundancy in the

combined information.

• Such rules can be derived from the LCP using suitable
informational orderings.
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Cautious rule
Principle

• Two sources provide mass functions m1 and m2, and
the sources are both considered to be reliable.

• After receiving these m1 and m2, the agent’s state of
belief should be represented by a mass function m12
more committed than m1, and more committed than m2.

• Let Sx (m) be the set of mass functions m′ such that
m′ vx m, for some x ∈ {pl ,q, s, · · · }. We thus impose
that m12 ∈ Sx (m1) ∩ Sx (m2).

• According to the LCP, we should select the x-least
committed element in Sx (m1) ∩ Sx (m2), if it exists.
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Cautious rule
Problem

• The above approach works for special cases.
• Example (Dubois, Prade, Smets 2001): if m1 and m2

are consonant, then the q-least committed element in
Sq(m1) ∩ Sq(m2) exists and it is unique: it is the
consonant mass function with commonality function
q12 = q1 ∧ q2.

• In general, neither existence nor uniqueness of a
solution can be guaranteed with any of the x-orderings,
x ∈ {pl ,q, s}.

• We need to define a new ordering relation.
• This ordering will be based on the (conjunctive)

canonical decomposition of belief functions.
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Canonical decomposition
Simple and separable mass functions

• Definition: m is simple mass function if it has the
following form

m(A) = 1− wA

m(Ω) = wA,

with A ⊂ Ω and wA ∈ [0,1].
• Notation: AwA .
• Property: Aw1 ∩©Aw2 = Aw1w2 .
• A mass function is separable if it can be written as the

combinaison of simple mass functions:

m = ∩©A⊂ΩAw(A)

with 0 ≤ w(A) ≤ 1 for all A ⊂ Ω.
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Canonical decomposition
Subtracting evidence

• Let m12 = m1 ∩©m2. We have q12 = q1 · q2.
• Assume we no longer trust m2 and we wish to subtract

it from m12.
• If m2 is non dogmatic (i.e. m2(Ω) > 0 or, equivalently,

q2(A) > 0,∀A), m1 can be retrieved as

q1 = q12/q2.

• We note m1 = m12 6∩©m2.
• Remark: m1 6∩©m2 may not be a valid mass function!
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Canonical decomposition

Theorem (Smets, 1995)
Any non dogmatic mass function (m(Ω) > 0) can be
canonically decomposed as:

m =
(
∩©A⊂ΩAwC(A)

)
6∩©
(
∩©A⊂ΩAwD(A)

)
with wC(A) ∈ (0,1], wD(A) ∈ (0,1] and
max(wC(A),wD(A)) = 1 for all A ⊂ Ω.

• Let w = wC/wD.
• Function w : 2Ω \ Ω→ R∗+ is called the (conjunctive)

weight function.
• It is a new equivalent representation of a non dogmatic

mass function (together with bel , pl , q, b).



Theory of
belief

functions
51/ 138

Thierry
Denœux

Basics

Selected
advanced
topics
Informational
orderings

Cautious rule

Belief functions on
real numbers

Methods for
building belief
functions

Properties of w

• Function w is directly available when m is built by
accumulating simple mass function (common situation).

• Calculation of w from q:

ln w(A) = −
∑
B⊇A

(−1)|B|−|A| ln q(B), ∀A ⊂ Ω.

• Conversely,

ln q(A) = −
∑

Ω⊃B 6⊇A

ln w(B), ∀A ⊆ Ω

• TBM conjunctive rule:

w1 ∩©w2 = w1 · w2.
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w-ordering

• Let m1 and m2 be two non dogmatic mass functions.
We say that m1 is w-more committed than m2 (denoted
as m1 vw m2) if w1 ≤ w2.

• Interpretation: m1 = m2 ∩©m with m separable.
• Properties:

• m1 vw m2 ⇒ m1 vs m2 ⇒
{

m1 vpl m2
m1 vq m2,

• mΩ is the only maximal element of vw :

mΩ vw m⇒ m = mΩ.
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Cautious rule
Definition

Theorem
Let m1 and m2 be two nondogmatic BBAs. The w-least
committed element in Sw (m1) ∩ Sw (m2) exists and is
unique. It is defined by the following weight function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω.

Definition (cautious conjunctive rule)

m1 ∧©m2 = ∩©A⊂ΩAw1(A)∧w2(A).
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Cautious rule
Definition

Theorem
Let m1 and m2 be two nondogmatic BBAs. The w-least
committed element in Sw (m1) ∩ Sw (m2) exists and is
unique. It is defined by the following weight function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω.

Definition (cautious conjunctive rule)

m1 ∧©m2 = ∩©A⊂ΩAw1(A)∧w2(A).
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Cautious rule
Computation

Cautious rule computation

m-space w-space
m1 −→ w1
m2 −→ w2

m1 ∧©m2 ←− w1 ∧ w2
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Cautious rule
Properties

• Commutative, associative
• Idempotent : ∀m, m ∧©m = m
• Distributivity of ∩© with respect to ∧©:

(m1 ∩©m2) ∧©(m1 ∩©m3) = m1 ∩©(m2 ∧©m3), ∀m1,m2,m3.

The same item of evidence m1 is not counted twice!
• No neutral element, but mΩ ∧©m = m iff m is separable.
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Related rules

• Normalized cautious rule:

(m1 ∧©∗m2)(A) =

{
(m1 ∧©m2)(A)

1−(m1 ∧©m2)(∅) if A 6= ∅
0 if A = ∅.

• Bold disjunctive rule:

m1 ∨©m2 = m1 ∧©m2.

• Both ∧©∗ and ∨© are commutative, associative and
idempotent.
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Global picture

• Six basic rules:

Sources independent dependent

All reliable
open world ∩© ∧©

closed world ⊕ ∧©∗
At least one reliable ∪© ∨©
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Belief functions on real numbers
Definitions

• Belief functions can be defined on continuous frames
such as R.

• Simplest model: masses are assigned to (closed)
intervals (Dempster, 1968).

• Two basic cases:
• Discrete case: masses are assigned to a finite set of

focal intervals;
• Continuous case: masses are assigned to intervals

using a mass density function.
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Discrete mass functions
Definitions

• A function m from the set I of real intervals to [0,1] is a
discrete mass function if there exist
• r intervals I1, . . . , Ir
• r positive numbers m1, . . . ,mr verifying

∑r
i=1 mi = 1

such that m(Ii) = mi for all i ∈ {1, . . . , r} and m(I) = 0
for all other I ∈ I.

• Belief, commonality and plausibility functions:

bel(A) =
∑
∅6=Ii⊆A

mi , pl(A) =
∑

Ii∩A6=∅

mi ,

q(A) =
∑
Ii⊇A

mi ,

for all A ⊆ R.
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Discrete mass functions
Combination and pignistic probability

• Combination using the TBM conjunctive rule:

(m ∩©m′)(I) =
∑

{i,j|Ii∩I′j =I}

mi ·m′j .

• Assuming 0 < |Ii | < +∞ for all i , the pignistic
probability density associated to m is:

Betp(x) =
r∑

i=1

mi
1Ii (x)

|Ii |
, ∀x ∈ R.

(Betp is a finite mixture of continuous uniform
distributions.)
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Discrete mass functions
Extension of interval arithmetics

• Interval arithmetics is a powerful tool for propagating
imprecision in numerical equations.

• If ∗ is a continuous binary operator (e.g., an arithmetic
operation) the set

[x ] ∗ [y ] = {x ∗ y ∈ R|x ∈ [x ], y ∈ [y ]}.

is an interval.
• Arithmetic operations (and other elementary functions)

can thus be extended to intervals.
• Examples:

[x ] + [y ] = [x + y , x + y ]

[x ]− [y ] = [x − y , x − y ]

[x ] · [y ] = [min(xy , xy , xy , xy),max(xy , xy , xy , xy)].
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Discrete mass functions
Extension of interval arithmetics

• Let us consider three variables X , Y and Z linked by
the relation: Z = X ∗ Y .

• Assume that the evidence on X and Y is modeled by
discrete mass functions mX and mY with closed focal
intervals.

• If the items of evidence regarding X and Y are
independent, then uncertainty on X is represented by
the following mass function:

mZ ([z]) =
∑

{i,j|[xi ]∗[yj ]=[z]}

mx ([xi ])my ([yj ]), ∀[z].

• Discrete mass functions can be propagated in more
complex numerical equations using Interval Analysis
techniques.
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Extension of interval arithmetics
Example

• Assume that:
• mX ([1,2]) = 0.8, mX ([0,3]) = 0.2;
• mY ([4,5]) = 0.6, mY ([0,10]) = 0.4;
• Z = X + Y .

• A mass function on Z can be computed as:

[1,2] [0,3]
0.8 0.2

[4,5] [5,7] [4,8]
0.6 0.48 0.12

[0,10] [1,12] [0,13]
0.4 0.32 0.08
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Belief functions on real numbers
Continuous case

• A (normalized) mass density function m on R is defined
as

m([u, v ]) = f (u, v), ∀u ≤ v ,

where f is a pdf with support in {(u, v) ∈ R2|u ≤ v}.
• For all A ∈ B(R):

bel(A) =

∫∫
[u,v ]⊆A

f (u, v) dudv ,

pl(A) =

∫∫
[u,v ]∩A6=∅

f (u, v)dudv ,

q(A) =

∫∫
[u,v ]⊇A

f (u, v)dudv ,
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Belief functions on real numbers
Continuous case

a b

a

b

from

to

x

y

a b

a

b

from

to

x

y

a b

a

b
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to

x
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bel([x,y] pl([x,y])

q([x,y])
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Belief functions on real numbers
Continuous case (continued)

• m can be recovered from bel or q as

m([u, v ]) = −∂
2bel([u, v ])

∂u∂v
= −∂

2q([u, v ])

∂u∂v

• TBM conjunctive rule:

(q1 ∩©q2)([u, v ]) = q1([u, v ]) · q2([u, v ]), ∀u ≤ v

• Pignistic probability density:

Betp(x) = lim
ε→0

∫ x

−∞

∫ +∞

x+ε

f (u, v)

v − u
dvdu.
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Continuous mass functions on
real numbers

Example

• Continuous mass functions naturally arise in statistical
inference (Dempster, 1966-1968).

• Let us consider a piece of equipment that fails
according to a Bernoulli process with probability p.

• Let X denote the r.v. taking the value 1 if the piece of
equipment fails, and 0 otherwise.

• We have made n independent observations X1, . . . ,Xn
of X , in which the piece of equipment has been found
to fail r times out of n.

• Opinion about p?
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Continuous mass functions on
real numbers
Example (continued)

Solution (Dempster, 1966):
• If 0 < r < n:

m([u, v ]) =
n!

(r − 1)!(n − r − 1)!
ur−1(1− v)n−r−1

• If r = 0:
m([0, v ]) = n(1− v)n−1

• If r = n:
m([u,1]) = nun−1
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Building belief functions

• The basic theory tells us how to reason and compute
with belief functions, but it does not tell us where belief
functions come from.

• We need formalized methods for modeling expert
opinions and statistical information using belief
functions.

• Four general approaches:
• Least Commitment Principle
• Using meta-knowledge about information sources

(discounting)
• Predictive belief functions
• Optimizing a criterion (e.g., clustering)
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Least Commitment Principle
General approach

• General approach:
1 Express the available information as a set of constraints

on an unknown mass function;
2 Find the least-committed mass function (according to

some ordering), compatible with the constraints.
• Three applications:

• Inverse pignistic transformation
• Credal ordering constraint
• Deconditioning
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Inverse pignistic transformation
Problem statement

• Assume we want to elicit a mass function m on
Ω = {ω1, . . . , ωK} from an expert.

• It is easier to elicit the corresponding pignistic
probability:
• For each ωk ∈ Ω ask for the fair price pk the expert is

willing to pay for a ticket that will allow him to receive 1
euro if X = ωk , and to receive nothing otherwise.

• The pignistic probability mass function is p(ωk ) = pk ,
k = 1, . . . ,K .

• How to compute a mass function m on Ω compatible
with p?
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Inverse pignistic transformation
Discrete case

• There are infinitely many mass functions m such that
Bet(m) = p.

• The q-least committed solution is a consonant mass
function defined by the following possibility distribution:

π(ωk ) =
K∑
`=1

min(pk ,p`).
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Inverse pignistic transformation
Example

• Let us consider a frame Ω = {ω1, ω2, ω3} and the
pignistic probability mass function

p(ω1) = 0.7, p(ω2) = 0.2, p(ω3) = 0.1

• We have

π(ω1) = 0.7 + 0.2 + 0.1 = 1
π(ω2) = 0.2 + 0.2 + 0.1 = 0.5
π(ω3) = 0.1 + 0.1 + 0.1 = 0.3.

• The corresponding mass function is

m({ω1}) = 0.5, m({ω1, ω2}) = 0.2, m(Ω) = 0.3.
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Inverse pignistic transformation
Continuous case

If Ω = R and f is a pignistic density, we have

π(x) =

∫ +∞

−∞
min(f (x), f (t))dt .

−3 −2 −1 0 1 2 3
0

0.05
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Inverse pignistic transformation
Example: normal distribution
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Credal ordering constraint
Problem

• Consider the following problems:
1 Let X and X ′ be two variables. Our beliefs on X are

represented by m. Additionally, we believe that X ′ tends
to take greater values than X . How to quantify our
beliefs on X ′ using a mass function?

2 We consider one variable X and two different contexts
C and C′. When C holds, our beliefs on X are
represented by m. When C′ holds, we cannot precisely
assess our beliefs on X , but we believe that X tends to
take higher values than it does when C holds. How to
quantify our beliefs on X in context C′?

• Approach: formalize the notion of “tending to take
higher values" as a constraint on a mass function, and
find the least-committed solution compatible with that
constraint.
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Credal ordering constraint
Definitions

• Given two probability distributions P and P ′ on R, we
say that P is stochastically less than or equal to P ′ if

P((x ,+∞)) ≤ P ′((x ,+∞)), ∀x ∈ R

• How to extend this notion to compare two mass
functions m and m′ on R?

• Four definitions (credal orderings):
1 m . m′ iff bel((x ,+∞)) ≤ pl ′((x ,+∞)), ∀x ∈ R ;
2 m 6 m′ iff bel((x ,+∞)) ≤ bel ′((x ,+∞)), ∀x ∈ R ;
3 m 0 m′ iff pl((x ,+∞)) ≤ pl ′((x ,+∞)), ∀x ∈ R;
4 m� m′ iff pl((x ,+∞)) ≤ bel ′((x ,+∞)), ∀x ∈ R.
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Credal ordering constraint
Example of result

Theorem
The pl-least committed element mass function m′ such that
m′ > m exists and is unique. It is the consonant mass
function m> with possibility distribution π> given by

π>(x) = pl((−∞, x ])

where pl is the plausibility function associated to m.
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Credal ordering constraint
Example

• Assume that m represents the available information
regarding the failure probability p of a component in
standard operating condition, after observing r failures
out of n trials.

• We want to assess our beliefs regarding the failure
probability p′ of the same component in a more
stringent environment, for which we have no data.

• We only know that the failure probability in this new
environment tends to be higher than the failure
probability in standard operating condition.

• If r > 0, we get

m>([u,1]) =
n!

(r − 1)!(n − r)!
ur−1(1−u)n−r , ∀u ∈ [0,1].
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Deconditioning

• Let m0 be a mass function on Ω expressing our beliefs
about X in a context where we know that X ∈ B.

• We want to build a mass function m on Ω verifying the
constraint

m(·|B) = m0

• Any mass function m built from m0 by transferring each
mass m0(A) to A ∪ C for some C ⊆ B satisfies the
constraint. The largest such set is A ∪ B.

• s-least committed solution: transfer m0(A) to A ∪ B.

m(D) =

{
m0(A) if D = A ∪ B for some A ⊆ B,
0 otherwise
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Deconditioning
Ballooning extension

• More complex situation: two frames ΩX and ΩY .
• Let mΩX

0 be a mass function on ΩX expressing our
beliefs about X in a context where we know that Y ∈ B
for some B ⊆ ΩY .

• We want to find mΩXY such that(
mΩXY ∩©(mΩY

B )↑ΩXY
)↓ΩX

= mΩX
0
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Deconditioning
Ballooning extension (continued)

• s-least committed solution:

mΩXY (D) =


mΩX

0 (A) if D = (A× ΩY ) ∪ (ΩX × B)

for some A ⊆ ΩX ,

0 otherwise

• Notation mΩXY = (mΩX
0 )⇑ΩXY (ballooning extension).
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Discounting
Problem statement

• A source of information provides:
• a value;
• a set of values;
• a probability distribution, etc..

• The information is:
• not fully reliable or
• not fully relevant.

• Examples:
• Possibly faulty sensor;
• Measurement performed in unfavorable experimental

conditions;
• Information is related to a situation or an object that

only has some similarity with the situation or the object
considered (case-based reasoning).
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Discounting
Formalization

• A source S provides a mass function mΩ
S .

• S may be reliable or not. Let R = {R,NR}.
• Assumptions:

• If S is reliable, we accept mΩ
S as a representation of our

beliefs:
mΩ(·|R) = mΩ

S

• If S is not reliable, we know nothing:

mΩ(·|NR) = mΩ
Ω

• The source has a probability 1− α of being reliable:

mR({NR}) = α, mR({R}) = 1− α
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Discounting
Solution

• To exploit this information, we need to
1 Vacuously extend mR to Ω×R ;
2 Compute the ballooning extension of mΩ(·|R) and

mΩ(·|NR) in Ω×R;
3 Combine the three mass functions using the TBM

conjunctive rule;
4 Marginalize the combined mass function on Ω.

• Result:
αmΩ = (1− α)mΩ

S + αmΩ
Ω

• Other expression:

αmΩ = mΩ
S ∪©mΩ

0 .

with mΩ
0 (Ω) = α and mΩ

0 (∅) = 1− α.
• αmΩ is a s-less committed than (a generalization of)

mΩ
S : αmΩ ws mΩ

S .
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Application to classification
Problem statement

• Let Ω be a set of classes, and

L = {(xi ,mΩ
i ), i = 1, . . . ,n}

a learning set, where xi is a feature vector for object oi ,
and mΩ

i a mass function concerning the class of that
object.

• Let x be the feature vector describing a new object o to
be classified.

• Problem: Construct a mass function mΩ relative to the
class of o.
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Application to classification
Solution

• Assumption: let αi be the plausibility that objects o and
oi do not belong to the same class. We assume that
αi = φ(d(x,xi)), where d is a distance, and φ is an
increasing function from R+ to [0,1].

• Each learning instance (xi ,mΩ
i ) is a source of

information, which must be discounted with discount
rate αi .

• Assuming independence, the n discounted mass
functions should be combined using Dempster’s rule:

mΩ = α1mΩ
1 ⊕ . . .⊕ αnmΩ

n

• Alternatively, we may only take into account the k
nearest neighbors of x (evidential k -NN rule).
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Sonar data (UCI database)

0 5 10 15 20 25 30 35 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

k

er
ro

r 
ra

te

Test error rates as a function of k for the voting (-), evidential (:),
fuzzy (–) and distance-weighted (-.) k -NN rules.
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Ionosphere data (UCI database)
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Vehicle data (UCI database)
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Generalization: Contextual
Discounting

Formalization

• A more general model allowing us to take into account
richer meta-information about the source.

• Let Θ = {θ1, . . . , θL} be a partition of Ω, representing
different contexts.

• Let mR(·|θk ) denote the mass function on R quantifying
our belief in the reliability of source S, when we know
that the actual value of X is in θk .

• We assume that:

mR({R}|θk ) = 1− αk , mR({NR}|θk ) = αk .

for eack k ∈ {1, . . . ,L}.
• Let α = (α1, . . . , αL).
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Contextual Discounting
Example

• Let us consider a simplified aerial target recognition
problem, in which we have three classes: airplane
(ω1 ≡ a), helicopter (ω2 ≡ h) and rocket (ω3 ≡ r ).

• Let Ω = {a,h, r}.
• The sensor provides the following mass function:

mΩ
S ({a}) = 0.5, mΩ

S ({r}) = 0.5.
• We assume that

• The probability that the source is reliable when the
target is an airplane is equal to 1− α1 = 0.4;

• The probability that the source is reliable when the
target is either a helicopter, or a rocket is equal to
1− α2 = 0.9.

• We have Θ = {θ1, θ2}, with θ1 = {a}, θ2 = {h, r}, and
α = (0.6,0.1).
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Contextual Discounting
Solution

• To exploit this information, we need to
1 Compute the ballooning extension of mΩ(·|R) and

mR(·|θk , k = 1, . . . ,L in Ω×R;
2 Combine the L + 1 mass functions conjunctively;
3 Marginalize the combined mass function on Ω.

• Result:
αmΩ = mΩ

S ∪©mΩ
1 ∪© . . . ∪©mΩ

L .

with mΩ
k (θk ) = αk and mΩ

k (∅) = 1− αk .
• Standard discounting is recovered as a special case

when Θ = {Ω}.
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Contextual Discounting
Example (continued)

• The discounted mass function can be obtained by
combining disjunctively 3 mass functions:
• mΩ

S ({a}) = 0.5, mΩ
S ({r}) = 0.5;

• mΩ
1 ({a}) = 0.6, mΩ

1 (∅) = 0.4;
• mΩ

1 ({h, r}) = 0.1, mΩ
1 (∅) = 0.9.

• Result:

αmΩ({a}) = 0.45, αmΩ(Ω) = 0.08,

αmΩ({r}) = 0.18, αmΩ({a, r}) = 0.27,
αmΩ({h, r}) = 0.02.
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Generalized Bayes Theorem
(Smets, 1978)

Problem statement

• Two variables X ∈ ΩX et θ ∈ Θ = {θ1, . . . , θK}.
• Typically:

• X is observed (sensor measurement),
• θ is not observed (class, unknown parameter).

• We know plΩX ({x}|θk ) = plk (x), ∀x , k .
• We have no prior information about θ: mΘ(Θ) = 1.
• We observe X = x . Belief function on Θ?
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Generalized Bayes Theorem
Solution and properties

• Solution (derived from the LCP):

mΘ(·|x) = ∩©K
k=1{θk}

plk (x)
.

• Property 1: Bayes’ theorem is recovered as a special
case when plk (x) = P(x |θk ) (probabilistic information)
and mΘ(·|x) is combined with a prior Bayesian mass
function .

• Property 2: If X and Y are cognitively independent
conditionally on θ:

plk (x , y) = plk (x)plk (y), ∀k

then

mΘ(·|x , y) = ∩©K
k=1{θk}

plk (x ,y)
= mΘ(·|x) ∩©mΘ(·|y).
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Generalized Bayes Theorem
Application

• Example: Let Xj be a vector of attributes from sensor j ,
and fk (xj) its estimated pdf in class θk .

• Definition of plk (xj) (Appriou, 1991):

plk (xj) = αjk + (1− αjk )ρj f (xj |θk ),

where
• ρj : normalization coefficient;
• αjk : discount rate expressing our partial knowledge of

the distribution of Xj in class θk , in a given operational
context.
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Generalized Bayes Theorem
Sensor fusion

• Independent sensors:

mΘ(·|x1, . . . , xJ) = ∩©J
j=1mΘ(·|xj) = ∩©K

k=1{θk}
∏J

j=1 plk (xj )
.

• Dependent sensors:

mΘ(·|x1, . . . , xJ) = ∧©J
j=1mΘ(·|xj) = ∩©K

k=1{θk}
∧J

j=1 plk (xj )
.
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Predictive belief functions
Motivation

• Let X be random variable (defined from a repeatable
random experiment), with unknown probability PX .

• We have observed an independent, identically
distributed random sample from X : X = (X1, . . . ,Xn).

• Problem: quantify our beliefs regarding a future
realization from X using a belief function belΩ(·; X):
predictive belief function.
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Predictive belief functions
Examples

1 Example 1:
• We have drawn r black balls in n drawings from an urn

with replacement:
• What is our belief that the next ball to be drawn from the

urn will be black?
2 Example 2:

• The lifetimes of 20 bearings have been observed:
2398, 2812, 3113, 3212, 3523, 5236, 6215,
6278, 7725, 8604, 9003, 9350, 9460, 11584,
11825, 12628, 12888, 13431, 14266, 17809.

• Let X be the lifetime of a bearing taken at random from
the same population. Belief function on X?
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Predictive belief functions
Requirements

• Requirement 1 (Hacking’s frequency principle):
• If PX were known, we would equate our beliefs with

probabilities: belΩ(·; PX ) = PX .
• Weaker version when PX is unknown:

∀A ⊂ Ω, belΩ(A; X)
P−→ PX (A), as n→∞,

• Requirement 2 (LCP):
• As n is finite, belΩ(·; X) should be less committed than

P. However, the condition belΩ(·; X) ≤ PX is too
restrictive

• Weaker requirement:

P
(
belΩ(A; X) ≤ PX (A),∀A ⊂ Ω

)
≥ 1− α.
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Predictive belief functions
Meaning of Requirement 2

x = (x1, . . . , xn)→ belΩ(·,x)

x′ = (x ′1, . . . , x
′
n)→ belΩ(·; x′)

x′′ = (x ′′1 , . . . , x
′′
n )→ belΩ(·; x′′)

...

• As the number of realizations of the random sample
tends to∞, the proportion of belief functions less
committed than PX should tend to 1− α.
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Predictive belief functions
Solutions

• If X is discrete, Ω = {ω1, . . . , ωK}: a solution can be
obtained using a confidence region on probabilities
pk = P(X = ωk ):

P
(
P−k ≤ pk ≤ P+

k , k = 1, . . . ,K
)

= 1− α

(T. Denoeux. International Journal of Approximate
Reasoning, 2006).

• If X is absolutely continuous, Ω = R: a solution can be
obtained using a confidence band on the cumulative
distribution function FX of X .
(A. Aregui et T. Denoeux. Proceedings of ISIPTA ’07,
2007).
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Predictive belief functions
Confidence band

• Let X = (X1, . . . ,Xn) be an iid sample from X with cdf
FX .

• A pair of functions (F (·; X),F (·; X)) computed from X
and such that F (·; X) ≤ F (·; X) is a confidence band at
level α ∈ (0,1) if

P
{

F (x ; X) ≤ FX (x) ≤ F (x ; X), ∀x ∈ R
}

= 1− α,
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Predictive belief functions
Kolmogorov Confidence band

• A non parametric confidence band can be computed
using the Kolmogorov statistic:

Dn = sup
x
|Sn(x ; X)− FX (x)|,

where Sn(·; X) is the sample cdf.
• The probability distribution of Dn can be computed

exactly. Let dn,α by the α-critical value of Dn, i.e.,
P(Dn ≥ dn,α) = α.

• The two step functions

F (x ; X) = max(0,Sn(x ; X)− dn,α),

F (x ; X) = min(1,Sn(x ; X) + dn,α)

form a confidence band at level 1− α.
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Kolmogorov Confidence band
Bearing data (1− α = 0.95)
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Predictive belief functions
p-boxes and belief functions

• A Kolmogorov confidence band defines a p-box (a set
of probability measures with cdf constrained by 2 step
functions).

• A p-box can be shown to be equivalent to a discrete
mass function.

• The mass function constructed from a Kolmogorov
confidence band at level 1− α can be shown to be a
predictive belief function at level 1− α.
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Construction of a mass function
from a p-box
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Construction of a mass function
from a p-box

Bearing data
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Contour and pignistic density
functions

Bearing data

0 0.5 1 1.5 2 2.5 3

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Plausibility contour function

x

pl
(x

)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

1

2

3

4

5

6

7

8
x 10

−5 Pignistic density function

x

B
et

p(
x)



Theory of
belief

functions
116/ 138

Thierry
Denœux

Basics

Selected
advanced
topics

Methods for
building belief
functions
Least Commitment
Principle

Discounting

Generalized Bayes
Theorem (GBT)

Predictive belief
functions

Evidential clustering

Belief and plausibility functions
Bearing data
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Predictive belief functions
Continuous confidence bands

• Narrower confidence bands can be constructed using
parametric methods.

• These methods lead to continuous bounding functions,
which can be shown to induce continuous predictive
belief functions.
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Continuous confidence bands
Bearing data

• Parametric confidence band for the Bearing data at
level 1− α = 0.95, using the Cheng and Yles method,
assuming a log-normal distribution:
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Contour function
Bearing data
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Continuous belief and
plausibility functions

Bearing data
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1 Basics

Fundamental concepts
Belief updating
Operations in product frames
Decision making
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Informational orderings
Cautious rule
Belief functions on real numbers
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Predictive belief functions
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Evidential clustering
Problem statement

• A typical application where mass functions can be
determined by the solutions of an optimization problem.

• We consider
• a collection of n objects;
• a matrix D = (dij ) of pairwise dissimilarities between the

objects (dissimilarities may or may not correspond to
distances in some space of attributes).

• Assumption: each object belongs to one of c classes in
Ω = {ω1, ..., ωc}.

• What can we say about the class membership of the
objects, knowing only their dissimilarities?
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Evidential clustering
Credal partition

• In the belief function framework, uncertain information
about the class membership of objects may be
represented in the form of mass functions m1, . . . ,mn
on Ω.

• Resulting structure M = (m1, . . . ,mn) is called a credal
partition.
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Example

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 0 0 0 0 0
{ω1} 0 0 0 0.2 0
{ω2} 0 1 0 0.4 0
{ω1, ω2} 0.7 0 0 0 0
{ω3} 0 0 0.2 0.4 0
{ω1, ω3} 0 0 0.5 0 0
{ω2, ω3} 0 0 0 0 0

Ω 0.3 0 0.3 0 1
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Special cases

• Each mi is a certain mass function:

mi({ωk}) = 1 for some k ∈ {1, . . . , c}

→ crisp partition of Ω.
• Each mi is a Bayesian mass function (focal sets are

singletons)→ fuzzy partition of Ω

uik = mi({ωk}), ∀i , k

c∑
k=1

uik = 1.
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Learning a Credal Partition from
proximity data

• Problem: given the dissimilarity matrix D = (dij), how to
build a “reasonable” credal partition ?

• We need a model that relates class membership to
dissimilarities.

• Basic idea: “The more similar two objects, the more
plausible it is that they belong to the same class”.

• How to formalize this idea?
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EVCLUS algorithm
Formalization

• Let Sij be the event “objects oi and oj belong to the
same class”.

• Let mi and mj be mass functions regarding the class
membership of objects oi and oj .

• It can be shown that

pl(Sij) =
∑

A∩B 6=∅

mi(A)mj(B) = 1− Kij

where Kij = degree of conflict between mi and mj .
• Problem: find M = (m1, . . . ,mn) such that larger

degrees of conflict Kij correspond to larger
dissimilarities dij .
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EVCLUS algorithm
Cost function

• Approach: minimize the discrepancy between the
dissimilarities dij and the degrees of conflict Kij .

• Example of a cost function:

J(M) =
∑
i<j

(
Kij − dij

)2

• M can be determined by minimizing J using a non
linear optimization procedure.

• To reduce the complexity, focal sets can be reduced to
{ωk}ck=1, ∅, and Ω
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Butterfly example
Data
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Butterfly example
Results
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Experiments: Cat cortex dataset
Data

• Objects: 65 cortical areas
• Dissimilarities: connection strength between the

cortical areas measured on an ordinal scale
(0=self-connection,1=dense connection,
2=intermediate connection, 3=weak connection,
4=absence of connection)

• “True” partition: four functional regions of the cortex
(A=auditory, V=visual, S=somatosensory,
F=frontolimbic)

• Results:
• only 3 misclassified regions out 64
• similar to supervised kernel-based classification

algorithms,
• better than relational fuzzy clustering algorithms.
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Cat cortex dataset
Results
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Advantages and drawbacks

• Advantages
• Applicable to proximity data (not necessarily Euclidean).
• Robust against atypical observations (similar or

dissimilar to all other objects).
• Usually performs better than relational fuzzy clustering

procedures.
• Drawback: computational complexity

• One iteration of a gradient-based optimization
procedure: O(f 3n2) where f = number of focal sets
(usually c + 2).

• Limited to datasets of a few hundred objects and less
than 20 classes.

• More computationally efficient procedures: ECM
(Masson and Denoeux, 2008) and RECM (Masson and
Denoeux, 2009).
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Conclusion

• Belief functions can be seen both as generalized sets
and as generalized probability measures:
• A very general framework for representing imprecision

and uncertainty.
• Reasoning mechanisms extend both set-theoretic

operations (intersection, union, cylindrical extension,
etc.) and probabilistic operations (conditioning,
marginalization, stochastic ordering, etc.).

• Extension of set-membership approaches (e.g., interval
analysis) and probabilistic methods (e.g., classification
using the GBT).
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Conclusion (continued)

• Developing engineering applications using the belief
function framework is still often more art than science
BUT ...

• Systematic and principled methods now exist for
modeling expert knowledge and statistical information
in the belief function framework:
• Least-commitment principle
• Discounting
• GBT
• Predictive belief functions
• Optimization of a cost function,
• etc.

• More research on expert knowledge elicitation and
statistical inference is needed.
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