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Introduction Motivations

Uncertain data

Uncertain data arise in many applications (but it is usually neglected).
Uncertainty may be due to:

Limitations of the underlying measuring equipment (unreliable sensors,
indirect measurements), e.g.: biological sensor for toxicity measurement in
water.
Use of imputation, interpolation or extrapolation techniques, e.g.: clustering
of moving objects whose position is measured asynchronously by a sensor
network,
Partial or uncertain responses in surveys or subjective data annotation, e.g.:
sensory analysis experiments, data labeling by experts, etc.

How to carry out statistical analysis of uncertain data?
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Introduction Motivations

Introductory example

Let us consider a population in which some disease is present in
proportion θ.
n patients have been selected at random from that population. Let xi = 1
if patient i has the disease, xi = 0 otherwise. Each xi is a realization of
Xi ∼ B(θ).
We assume that the xi ’s are not observed directly. For each patient i , a
physician gives a degree of plausibility pli (1) that patient i has the disease
and a degree of plausibility pli (0) that patient i does not have the disease.
The observations are uncertain data of the form pl1, . . . ,pln.
How to estimate θ?
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Introduction Motivations

Aleatory vs. epistemic uncertainty

In the previous example, uncertainty has two distinct origins:
1 Before a patient has been drawn at random from the population, uncertainty

is due to the variability of the variable of interest in the population. This is
aleatory uncertainty.

2 After the random experiment has been performed, uncertainty is due to lack
of knowledge of the state of each particular patient. This is epistemic
uncertainty.

Epistemic uncertainty can be reduced by carrying out further
investigations. Aleatory uncertainty cannot.
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Introduction Motivations

Approach

In this lecture, we will consider statistical estimation problems in which
both kinds of uncertainty are present: it will be assumed that each data
item x

has been generated at random from a population (aleatory uncertainty), but
it is ill-known because of imperfect measurement or perception (epistemic
uncertainty).

The proposed model treats these two kinds of uncertainty separately:
Aleatory uncertainty will be represented by a parametric statistical model;
Epistemic uncertainty will be represented using belief functions.

Application: partially supervised learning.
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Introduction Examples

Facial expressions

joy     surprise sadness 

disgust anger   fear    
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Introduction Examples

Recognition of facial expressions
Experiment

To achieve good performances in such tasks (object classification in
images or videos), we need a large number of labeled images.
However, ground truth is usually not available or difficult to determine with
high precision and reliability: it is necessary to have the images
subjectively annotated (labeled) by humans.
How to account for uncertainty in such subjective annotations?
Experiment:

Images were labeled by 5 subjects;
For each image, subjects were asked to give a degree of plausibility for each
of the 6 basic expressions.
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Introduction Examples

Example 1
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Introduction Examples
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Introduction Examples

Example 3
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Introduction Examples

Detection of K-complexes in EEG signals

K-complexes: EEG waveforms that occur during stage 2 of non-rapid eye
movement sleep . May aid sleep-based memory consolidation.
Goal: build a system that automatically detects K-complexes in EEG data.
We need a learning set of EEG signals labeled as positive and negative
instances.
Problem: no ground truth!
Solution: label data by experts.
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Introduction Examples

K-complex dataset
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Each learning instance is composed of a feature vector and an uncertain
class label.
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Introduction Examples

Partially supervised learning

Complete data: x = {(w i , zi )}n
i=1 with

w i : feature vector for image i (pixel gray levels)
zi : class of image i (one the six expressions).

The feature vectors w i are perfectly observed but class labels are only
partially known through subjective evaluations.
Observed data:

Lps = {(w i ,mi )}n
i=1,

where mi is a mass function representing partial information about the
class of object i .
How to learn a decision rule from such data?
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Introduction Examples

General approach

1 Postulate a parametric statistical model px (x ;θ) for the complete data;
2 Represent epistemic data uncertainty using belief functions (observed

data);
3 Estimate θ by minimizing the conflict between the model and the

observed data using an extension of the EM algorithm: the evidential EM
(E2M) algorithm.
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Evidential EM algorithm

Model

Let X be a (discrete) random vector taking values in ΩX , with probability
mass function pX (·;θ) depending on an unknown parameter θ ∈ Θ.
Let x be a realization of X (complete data).
We assume that x is only partially observed, and partial knowledge of x
is described by a mass function m on ΩX (“observed” data).
Problem: estimate θ.
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Evidential EM algorithm Evidential Likelihood

Likelihood function (reminder)

Given a parametric model pX (·;θ) and an observation x , the likelihood
function is the mapping from Θ to [0,1] defined as

θ → L(θ; x) = pX (x ;θ).

It measures the “likelihood” or plausibility of each possible value of the
parameter, after the data has been observed.
If we observe that x ∈ A, then the likelihood function is:

L(θ; A) = PX (A;θ) =
∑
x∈A

pX (x ;θ).
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Evidential EM algorithm Evidential Likelihood

Evidential Likelihood function
Definition

ΩX

A1

A2

A3

Assume that m has focal sets A1, . . . ,Ar .
If we knew that x ∈ Ai , the likelihood
would be

L(θ; Ai ) = PX (Ai ;θ) =
∑
x∈Ai

pX (x ;θ).

Taking the expectation with respect to m:

L(θ; m) =
r∑

i=1

m(Ai )L(θ; Ai )
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Evidential EM algorithm Evidential Likelihood

Interpretation

We have

L(θ; m) =
r∑

i=1

m(Ai )
∑
x∈Ai

pX (x ;θ)

=
∑

x∈ΩX

pX (x ;θ)
∑
Ai3x

m(Ai )

=
∑

x∈ΩX

pX (x ;θ)pl(x) = 1− κ,

where κ is the degree of conflict between pX (·;θ) and m.
Consequently, maximizing L(θ; m) with respect to θ amounts to
minimizing the conflict between the parametric model and the uncertain
observations
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Evidential EM algorithm Evidential Likelihood

Case of fuzzy data

We can also write L(θ; m) as:

L(θ; m) =
∑

x∈ΩX

pX (x ;θ)pl(x) = Eθ [pl(X )]

If m is consonant, pl may be interpreted as the membership function of a
fuzzy subset of ΩX : it can be seen as fuzzy data.
L(θ; m) is then the probability of the fuzzy data, according to the definition
given by Zadeh (1968).
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Evidential EM algorithm Evidential Likelihood

Independence assumptions

Let us assume that x = (x1, . . . ,xn) ∈ Rnp, where each x i is a realization
from a p-dimensional random vector X i .
Independence assumptions:

1 Stochastic independence of X 1, . . . ,X n:

pX (x ;θ) =
n∏

i=1

pX i (x i ;θ), ∀x = (x1, . . . , xn) ∈ ΩX

2 Cognitive independence of x1, . . . , xn with respect to m:

pl(x) =
n∏

i=1

pli (x i ), ∀x = (x1, . . . , xn) ∈ ΩX .

Under these assumptions:

log L(θ; m) =
n∑

i=1

logEθ [pli (X i )] .
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Evidential EM algorithm E2M algorithm

Evidential EM algorithm

The evidential log-likelihood function log L(θ; m) can be maximized using
an iterative algorithm composed of two steps:

E-step: Compute the expectation of log L(θ; X ) with respect to
m ⊕ pX (·;θ(q)):

Q(θ,θ(q)) =

∑
x∈ΩX

log(L(θ; x))pX (x ;θ(q))pl(x)∑
x∈ΩX

pX (x ;θ(q))pl(x)
.

M-step: Maximize Q(θ,θ(q)) with respect to θ.
E- and M-steps are iterated until the increase of log L(θ; m) becomes
smaller than some threshold.
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Evidential EM algorithm E2M algorithm

Properties

1 When m is categorical: m(A) = 1 for some A ⊆ Ω, then the previous
algorithm reduces to the EM algorithm→ evidential EM (E2M) algorithm.

2 Monotonicity: any sequence L(θ(q); m) for q = 0,1,2, . . . of evidential
likelihood values obtained using the E2M algorithm is non decreasing,
i.e., it verifies

L(θ(q+1); m) ≥ L(θ(q); m), ∀q.
3 The algorithm only uses the contour function pl , which drastically reduces

the complexity of calculations.
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Evidential EM algorithm E2M algorithm

Example: uncertain Bernoulli sample
Model and data

Let us assume that the complete data x = (x1, . . . , xn) is a realization
from an i.i.d. sample X1, . . . ,Xn from B(θ) with θ ∈ [0,1].
We only have partial information about the xi ’s in the form: pl1, . . . ,pln,
where pli (x) is the plausibility that xi = x , x ∈ {0,1}.
Under the cognitive independence assumption:

log L(θ; pl1, . . . ,pln) =
n∑

i=1

logEθ [pli (Xi )]

=
n∑

i=1

log [(1− θ)pli (0) + θpli (1)]
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Evidential EM algorithm E2M algorithm

E- and M-steps

Complete data log-likelihood:

log L(θ, x) = n log(1− θ) + log
(

θ

1− θ

) n∑
i=1

xi .

E-step: compute

Q(θ, θ(q)) = n log(1− θ) + log
(

θ

1− θ

) n∑
i=1

ξ
(q)
i , with

ξ
(q)
i = Eθ(q) [Xi |pli ] =

θ(q)pli (1)

(1− θ(q))pli (0) + θ(q)pli (1)
.

M-step:

θ(q+1) =
1
n

n∑
i=1

ξ
(q)
i .
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Evidential EM algorithm E2M algorithm

Numerical example

i 1 2 3 4 5 6
pli (0) 1 1 1 α 0 0
pli (1) 0 0 0 1− α 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

θ

L
(θ

;m
) α=0

α=1

α=0.5

α = 0.5

q θ(q) L(θ(q); pl)
0 0.3000 6.6150
1 0.5500 16.8455
2 0.5917 17.2676
3 0.5986 17.2797
4 0.5998 17.2800
5 0.6000 17.2800

θ̂ = 0.6
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Partially supervised classification

Classification

We consider a population of objects partitioned in g classes.
Each object is described by d continuous features W = (W 1, . . . ,W d )
and a class variable Z .
The goal of classification is to learn a decision rule that classifies any
object from its feature vector, based on a learning set.
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Partially supervised classification

Partially supervised learning

Classically, different learning tasks are considered:
Supervised learning: Ls = {(w i , zi )}n

i=1;
Unsupervised learning: Lns = {w i}n

i=1;
Semi-supervised learning: Lss = {(w i , zi )}ns

i=1 ∪ {w i}n
i=ns

Here, we consider partially supervised learning:

Lps = {(w i ,mi )}n
i=1,

where mi is a mass function representing partial information about the
class of object i .
This problem can be solved using the E2M algorithm using a suitable
parametric model.
In this lecture, I will present two models:

1 Linear discriminant analysis
2 Logistic regression
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Partially supervised classification Linear discriminant analysis
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Partially supervised classification Linear discriminant analysis

Model

Generative model:
Complete data: x = {(w i , zi )}n

i=1, assumed to be a realization of an iid
random sample X = {(W i ,Zi )}n

i=1;
Given Zi = k , W i is multivariate normal with mean µk and common variance
matrix Σ.
The proportion of class k in the population is πk .
Parameter vector: θ =

(
{πk}g

k=1, {µk}
g
k=1,Σ

)
.

The Bayes rule is approximated by assigning each object to the class k∗

that maximizes the estimated posterior probability

p(Z = k |w ; θ̂) =
φ(w ; µ̂k , Σ̂)π̂k∑
` φ(w ; µ̂`, Σ̂)π̂`

,

where θ̂ is the MLE of θ.
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Partially supervised classification Linear discriminant analysis

Complete-data likelihood

The complete-data likelihood is

Lc(θ) =
n∏

i=1

p(wi |Zi = zi )p(zi ) (1a)

=
n∏

i=1

g∏
k=1

φ(wi ;µk ,Σ)zikπzik
k , (1b)

where φ(·;µk ,Σ) is the multivariate normal density,

φ(w ;µk ,Σ) =
1

(2π)d/2|Σ|1/2 exp
{
−1

2
(w − µ)T Σ−1(w − µ)

}
,

and zik is a binary class indicator variable, such that zik = 1 if zi = k and
zik = 0 otherwise.

Thierry Denœux Belief Functions Seminar BJUT, May 2017 37 / 63



Partially supervised classification Linear discriminant analysis

Observed-data likelihood

Under the assumption of cognitive independence, the contour function on
ΩX is pl(x) =

∏n
i=1 pli (xi ), with

pli (xi ) =

{
plik if xi = (wi , k) for some k = 1, . . . ,g
0 otherwise.

The evidential likelihood is thus

L(θ) =
n∏

i=1

g∑
k=1

plikφ(wi ;µk ,Σ)πk . (2)
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Partially supervised classification Linear discriminant analysis

Special cases

When there is no uncertainty, i.e., when plik = zik for all (i , k), we have

g∑
k=1

plikφ(wi ;µk ,Σ)πk =

g∏
k=1

φ(wi ;µk ,Σ)plikπplik
k ,

and the evidential likelihood (2) becomes identical to the complete-data
likelihood (1b).
When uncertainty is maximal, i.e., class labels are completely unknown,
then plik = 1 for all (i , k), and the evidential likelihood (2) becomes

L(θ) =
n∏

i=1

g∑
k=1

φ(wi ;µk ,Σ)πk ,

which is the likelihood function corresponding to the unsupervised case.
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Partially supervised classification Linear discriminant analysis

E2M algorithm: E-step

In the E-step of the E2M algorithm for this model, we compute the expectation
of the complete-data log-likelihood

`c(θ) =
n∑

i=1

K∑
k=1

zik [logφ(wi ;µk ,Σ) + logπk ]

with respect to the combined probability mass function

pX (x |pl ; θ(q)) =
n∏

i=1

p(xi |pli ; θ(q)),

with

p(xi |pli ; θ(q)) =


plikπ

(q)
k φ(wi ;µ

(q)
k ,Σ(q))∑

` pli`π
(q)
` φ(wi ;µ

(q)
` ,Σ(q))

if xi = (wi , k) for some k

0 otherwise.
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Partially supervised classification Linear discriminant analysis

E2M algorithm: E-step (continued)

We get

Q(θ, θ(q)) =
n∑

i=1

g∑
k=1

t (q)
ik [logφ(wi ;µk ,Σ)πk + logπk ] , (3)

with

t (q)
ik = E(Zik |pl ; θ(q)) =

plikπ
(q)
k φ(wi ;µ

(q)
k ,Σ(q))∑

` pli`π
(q)
` φ(wi ;µ

(q)
` ,Σ(q))

. (4)

Thierry Denœux Belief Functions Seminar BJUT, May 2017 41 / 63



Partially supervised classification Linear discriminant analysis

E2M algorithm: M-step

The parameter values maximizing Q(θ, θ(q)) can be readily obtained as

π
(q+1)
k =

1
n

n∑
i=1

t (q)
ik , µ

(q+1)
k =

∑n
i=1 t (q)

ik w i∑n
i=1 t (q)

ik

.

Σ(q+1) =
1
n

∑
i,k

t (q)
ik (w i − µ

(q+1)
k )(w i − µ

(q+1)
k )T

The complexity is the same as that of the EM algorithm
with unsupervised data and precise attributes.
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Partially supervised classification Logistic regression
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Partially supervised classification Logistic regression

Model

In contrast with LDA, LR starts with a model of the conditional distribution
of Z given W = w . The conditional probabilities are

pk (w ; θ) =
exp(βT

k w̃)

1 +
∑g−1
`=1 exp(βT

` w̃)
, k = 1, . . . ,g − 1 (5a)

pg(w ; θ) =
1

1 +
∑g−1
`=1 exp(βT

` w̃)
, (5b)

where pk (w ; θ) = P(Z = k |W = w ; θ), βk is a p + 1-dimensional vector of
coefficients, θ = (βT

1 , . . . , β
T
g−1)T is the vector of all parameters in the

model, and w̃ = (1,wT )T is an extended input vector.
Logistic regression maximizes the conditional likelihood

Lc(θ) =
n∏

i=1

P(Zi = zi |wi ; θ) =
n∏

i=1

g∏
k=1

pk (w ; θ)zik , (6)

with pk (w ; θ) equal to (5).
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Partially supervised classification Logistic regression

Evidential likelihood

Under the cognitive independence assumption, the evidential likelihood is

L(θ) =
n∏

i=1

g∑
k=1

plik pk (wi ; θ). (7)

We can easily check that L(θ) = Lc(θ) whenever plik = zik for all (i , k),
i.e., when there is no label uncertainty.
On the other hand, in case of maximal uncertainty, i.e., when plik = 1 for
all (i , k), we have L(θ) = 1 for all θ, and the model parameters can no
longer be estimated.
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Partially supervised classification Logistic regression

E2M algorithm: E-step

In the E-step, we compute the expectation of the complete-data
log-likelihood with respect to the combined probability mass function

pZ (z|pl ; θ(q)) =
n∏

i=1

pZi (zi |pli ; θ(q)),

with

pZi (k |pli ; θ(q)) =
plik pk (wi ; θ

(q))∑
` pli`p`(wi ; θ(q))

, k = 1, . . . ,g.

We get

Q(θ, θ(q)) =
n∑

i=1


g−1∑
k=1

t (q)
ik βT

k w̃i − log

1 +

g−1∑
k=1

βT
k w̃i

 , (8)

with

t (q)
ik = E(Zik |pl ; θ(q)) =

plik pk (wi ; θ
(q))∑

` pli`p`(wi ; θ(q))
. (9)
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Partially supervised classification Logistic regression

E2M algorithm: M-step

The maximization of (8) cannot be performed in one step and requires an
iterative optimization procedure, such as the Newton-Raphson algorithm.
It is actually not necessary to maximize function Q(θ, θ(q)): we may
simply make a step uphill, i.e., find some new estimate θ(q+1) such that
Q(θ(q+1), θ(q)) > Q(θ(q), θ(q)). Such a procedure is classically called a
Generalized EM algorithm.
An uphill step starting from the previous estimate θ(q) can be made by
carrying out one iteration of the Newton-Raphson algorithm with line
search, i.e., by using the following update rule,

θ(q+1) = θ(q) − η
[
∂2Q(θ, θ(q))

∂θ∂θT

]−1

θ=θ(q)

∂Q(θ, θ(q))

∂θ

∣∣∣∣
θ=θ(q)

,

where η is the step size.
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Partially supervised classification Results
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Partially supervised classification Results

Sleep data

1178 EEG signals encoded as 64-dimensional patterns.
Each example (positive or negative) was then assigned a soft label
consisting of a Bayesian mass function mi such that

mi ({1}) = ki/5, mi ({0}) = 1− ki/5, (10)

where 1 and 0 represent, respectively, the positive (K -complex) and
negative (delta wave) class, and ki denotes the number of experts who
classified the pattern as positive.
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Partially supervised classification Results

Methodology

Both LR and LDA were applied to these data. To reduce the input
dimension, Principal Component Analysis (PCA) was first used as a
preprocessing step, and the number of components was varied between
1 and 20.
The LR and LDA classifiers were trained using three different sets of
labels:

1 Soft labels (10), taking into account the proportion of experts in favor of each
class;

2 Crisp labels, corresponding to the majority decision;
3 “Semi-supervised labels”: instances classified as positive by two or three

experts were considered as ambiguous and were labeled by the vacuous
mass function m?; the other instances were labeled unambiguously
according to the majority class.

We used 10-fold cross-validation, repeated 10 times with different
random partitions. The mean cross-validation error rates with
corresponding 95% confidence intervals are represented as functions of
the number of principal components in the following figures.
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Partially supervised classification Results

Results: logistic regression
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Partially supervised classification Results

Results: LDA
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Partially supervised classification Results

Results: comparison

LR soft LR majority LR semi-sup. LDA soft LDA majority LDA semi-sup.

er
ro

r r
at

e

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

0.202

0.204

Thierry Denœux Belief Functions Seminar BJUT, May 2017 53 / 63



Partially supervised classification Results

Expression recognition problem
Experimental settings

216 images of 60× 70 pixels, 36 in each class.
One half for training, the rest for testing.
A reduced number of features was extracted using Principal component
analysis (PCA).
Each training image was labeled by 5 subjects who gave degrees of
plausibility for each image and each class.
The plausibilities were combined using Dempster’s rule (after some
discounting to avoid total conflict).
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Partially supervised classification Results

Combined labels
Example 1
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Partially supervised classification Results

Combined labels
Example 2
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Partially supervised classification Results

Combined labels
Example 3
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Partially supervised classification Results

Results

Number of principal components
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Partially supervised classification Results

Results
Example 1

Test image 14
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Partially supervised classification Results

Results
Example 2

Test image 37
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Partially supervised classification Results

Results
Example 3

Test image 48
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