Statistical Analysis of Uncertain Data in the Belief Function Framework

Thierry Denœux

Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) http://www.hds.utc.fr/~tdenoeux

> Chiang Mai University August 2016

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Introductory example

- Let us consider a population in which some disease is present in proportion θ .
- *n* patients have been selected at random from that population. Let $x_i = 1$ if patient *i* has the disease, $x_i = 0$ otherwise. Each x_i is a realization of $X_i \sim \mathcal{B}(\theta)$.
- We assume that the x_i 's are not observed directly. For each patient i, a physician gives a degree of plausibility $pl_i(1)$ that patient i has the disease and a degree of plausibility $pl_i(0)$ that patient i does not have the disease.
- The observations are uncertain data of the form pl₁,..., pl_n.
- How to estimate θ ?

3/55

Aleatory vs. epistemic uncertainty

- In the previous example, uncertainty has two distinct origins:
 - Before a patient has been drawn at random from the population, uncertainty is due to the variability of the variable of interest in the population. This is aleatory uncertainty.
 - After the random experiment has been performed, uncertainty is due to lack of knowledge of the state of each particular patient. This is epistemic uncertainty.
- Epistemic uncertainty can be reduced by carrying out further investigations. Aleatory uncertainty cannot.

Approach

- In this lecture, we will consider statistical estimation problems in which both kinds of uncertainty are present: it will be assumed that each data item x
 - has been generated at random from a population (aleatory uncertainty), but
 - it is ill-known because of imperfect measurement or perception (epistemic uncertainty).
- The proposed model treats these two kinds of uncertainty separately:
 - Aleatory uncertainty will be represented by a parametric statistical model;
 - Epistemic uncertainty will be represented using belief functions.

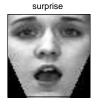
Real world applications

Uncertain data arise in many applications (but epistemic uncertainty is usually neglected). It may be due to:

- Limitations of the underlying measuring equipment (unreliable sensors, indirect measurements), e.g.: biological sensor for toxicity measurement in water.
- Use of imputation, interpolation or extrapolation techniques, e.g.: clustering of moving objects whose position is measured asynchronously by a sensor network,
- Partial or uncertain responses in surveys or subjective data annotation,
 e.g.: sensory analysis experiments, data labeling by experts, etc.

Data labeling example

Recognition of facial expressions



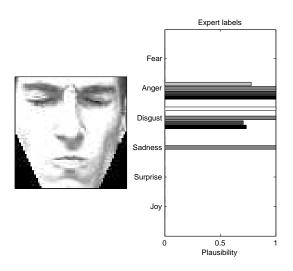
Recognition of facial expressions

Experiment

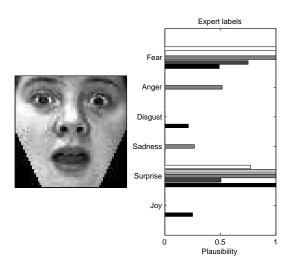
- To achieve good performances in such tasks (object classification in images or videos), we need a large number of labeled images.
- However, ground truth is usually not available or difficult to determine with high precision and reliability: it is necessary to have the images subjectively annotated (labeled) by humans.
- How to account for uncertainty in such subjective annotations?
- Experiment:
 - Images were labeled by 5 subjects;
 - For each image, subjects were asked to give a degree of plausibility for each
 of the 6 basic expressions.

8 / 55

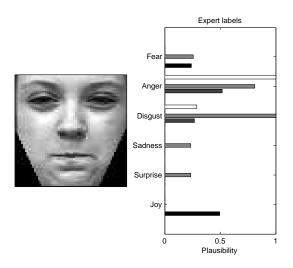
Example 1



Example 2



Example 3



Model

- Complete data: $\mathbf{x} = \{(\mathbf{w}_i, z_i)\}_{i=1}^n$ with
 - **w**_i: feature vector for image *i* (pixel gray levels)
 - z_i : class of image i (one the six expressions).
- The feature vectors \mathbf{w}_i are perfectly observed but class labels are only partially known through subjective evaluations.
- How to learn a decision rule from such data?

General approach

- **1** Postulate a parametric statistical model $p_{\mathbf{x}}(\mathbf{x}; \theta)$ for the complete data;
- Represent epistemic data uncertainty using belief functions (observed data);
- Estimate θ by minimizing the conflict between the model and the observed data using an extension of the EM algorithm: the evidential EM (E²M) algorithm.
- Applications:
 - Probability estimation (Bernoulli model)
 - Linear discriminant analysis with uncertain class labels
 - 3 Linear regression with fuzzy data

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Model

- Let X be a (discrete) random vector taking values in Ω_X , with probability mass function $p_X(\cdot; \theta)$ depending on an unknown parameter $\theta \in \Theta$.
- Let x be a realization of X (complete data).
- We assume that x is only partially observed, and partial knowledge of x is described by a mass function m on Ω_X ("observed" data).
- Problem: estimate θ.

Likelihood function (reminder)

• Given a parametric model $p_X(\cdot; \theta)$ and an observation x, the likelihood function is the mapping from Θ to [0, 1] defined as

$$\theta \to L(\theta; \mathbf{x}) = p_{\mathbf{X}}(\mathbf{x}; \theta).$$

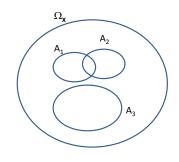
- It measures the "likelihood" or plausibility of each possible value of the parameter, after the data has been observed.
- If we observe that $x \in A$, then the likelihood function is:

$$L(\theta; A) = \mathbb{P}_{\mathbf{X}}(A; \theta) = \sum_{\mathbf{x} \in A} \rho_{\mathbf{X}}(\mathbf{x}; \theta).$$

17/55

Generalized Likelihood function

Definition



- Assume that m has focal sets A_1, \ldots, A_r .
- If we knew that $x \in A_i$, the likelihood would be

$$L(\theta; A_i) = \mathbb{P}_{\boldsymbol{X}}(A_i; \theta) = \sum_{\boldsymbol{x} \in A_i} p_{\boldsymbol{X}}(\boldsymbol{x}; \theta).$$

Taking the expectation with respect to *m*:

$$L(\theta; m) = \sum_{i=1}^{r} m(A_i) L(\theta; A_i)$$

Generalized Likelihood function

Interpretation

We have

$$L(\theta; m) = \sum_{i=1}^{r} m(A_i) \sum_{\mathbf{x} \in A_i} p_{\mathbf{X}}(\mathbf{x}; \theta)$$

$$= \sum_{\mathbf{x} \in \Omega_{\mathbf{X}}} p_{\mathbf{X}}(\mathbf{x}; \theta) \sum_{A_i \ni \mathbf{x}} m(A_i)$$

$$= \sum_{\mathbf{x} \in \Omega_{\mathbf{X}}} p_{\mathbf{X}}(\mathbf{x}; \theta) pl(\mathbf{x}) = 1 - \kappa,$$

where κ is the degree of conflict between $p_{\mathbf{X}}(\cdot; \theta)$ and m.

• Consequently, maximizing $L(\theta; m)$ with respect to θ amounts to minimizing the conflict between the parametric model and the uncertain observations

Generalized Likelihood function

Case of fuzzy data

• We can also write $L(\theta; m)$ as:

$$L(\theta; m) = \sum_{\mathbf{x} \in \Omega_{\mathbf{X}}} p_{\mathbf{X}}(\mathbf{x}; \theta) pl(\mathbf{x}) = \mathbb{E}_{\theta} \left[pl(\mathbf{X}) \right]$$

- If m is consonant, pl may be interpreted as the membership function of a fuzzy subset of Ω_X : it can be seen as fuzzy data.
- $L(\theta; m)$ is then the probability of the fuzzy data, according to the definition given by Zadeh (1968).

Independence assumptions

- Let us assume that $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{np}$, where each \mathbf{x}_i is a realization from a p-dimensional random vector \mathbf{X}_i .
- Independence assumptions:
 - Stochastic independence of X_1, \ldots, X_n :

$$p_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\theta}) = \prod_{i=1}^{n} p_{\mathbf{X}_i}(\mathbf{X}_i; \boldsymbol{\theta}), \quad \forall \mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n) \in \Omega_{\mathbf{X}}$$

2 Cognitive independence of x_1, \ldots, x_n with respect to m:

$$pl(\mathbf{x}) = \prod_{i=1}^{n} pl_i(\mathbf{x}_i), \quad \forall \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Omega_{\mathbf{x}}.$$

Under these assumptions:

$$\log L(\boldsymbol{\theta}; m) = \sum_{i=1}^{n} \log \mathbb{E}_{\boldsymbol{\theta}} \left[pl_i(\boldsymbol{X}_i) \right].$$

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Description

• The generalized log-likelihood function $\log L(\theta; m)$ can be maximized using an iterative algorithm composed of two steps:

E-step: Compute the expectation of $\log L(\theta; \mathbf{X})$ with respect to $m \oplus p_{\mathbf{X}}(\cdot; \boldsymbol{\theta}^{(q)})$:

$$Q(\theta, \theta^{(q)}) = \frac{\sum_{\mathbf{x} \in \Omega_X} \log(L(\theta; \mathbf{x})) p_{\mathbf{X}}(\mathbf{x}; \theta^{(q)}) pl(\mathbf{x})}{\sum_{\mathbf{x} \in \Omega_X} p_{\mathbf{X}}(\mathbf{x}; \theta^{(q)}) pl(\mathbf{x})}.$$

M-step: Maximize $Q(\theta, \theta^{(q)})$ with respect to θ .

• E- and M-steps are iterated until the increase of $\log L(\theta; m)$ becomes smaller than some threshold.

Properties

- When m is categorical: m(A) = 1 for some $A \subseteq \Omega$, then the previous algorithm reduces to the EM algorithm \rightarrow evidential EM (E²M) algorithm.
- ② Monotonicity: any sequence $L(\theta^{(q)}; m)$ for q = 0, 1, 2, ... of generalized likelihood values obtained using the E²M algorithm is non decreasing, i.e., it verifies

$$L(\theta^{(q+1)}; m) \geq L(\theta^{(q)}; m), \quad \forall q.$$

The algorithm only uses the contour function pl, which drastically reduces the complexity of calculations.

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Model and data

- Let us assume that the complete data $\mathbf{x} = (x_1, \dots, x_n)$ is a realization from an i.i.d. sample X_1, \dots, X_n from $\mathcal{B}(\theta)$ with $\theta \in [0, 1]$.
- We only have partial information about the x_i 's in the form: pl_1, \ldots, pl_n , where $pl_i(x)$ is the plausibility that $x_i = x$, $x \in \{0, 1\}$.
- Under the cognitive independence assumption:

$$\log L(\theta; pl_1, \dots, pl_n) = \sum_{i=1}^n \log \mathbb{E}_{\theta} \left[pl_i(X_i) \right]$$
$$= \sum_{i=1}^n \log \left[(1-\theta)pl_i(0) + \theta pl_i(1) \right]$$

E- and M-steps

Complete data log-likelihood:

$$\log L(\theta, \mathbf{x}) = n \log(1 - \theta) + \log \left(\frac{\theta}{1 - \theta}\right) \sum_{i=1}^{n} x_i.$$

E-step: compute

$$Q(\theta, \theta^{(q)}) = n \log(1 - \theta) + \log\left(\frac{\theta}{1 - \theta}\right) \sum_{i=1}^{n} \xi_{i}^{(q)}, \text{ with}$$

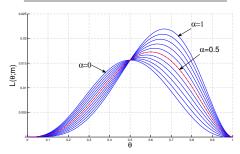
$$\xi_i^{(q)} = \mathbb{E}_{\theta^{(q)}} \left[X_i | p l_i \right] = \frac{\theta^{(q)} p l_i(1)}{(1 - \theta^{(q)}) p l_i(0) + \theta^{(q)} p l_i(1)}.$$

M-step:

$$\theta^{(q+1)} = \frac{1}{n} \sum_{i=1}^n \xi_i^{(q)}.$$

Numerical example

-	i	1	2	3	4	5	6
	$pl_i(0)$	1	1	1	α	0	0
	$pl_i(1)$	0	0	0	$1 - \alpha$	1	1



$$\alpha = 0.5$$

q	$\theta^{(q)}$	$L(\theta^{(q)}; pI)$
0	0.3000	6.6150
1	0.5500	16.8455
2	0.5917	17.2676
3	0.5986	17.2797
4	0.5998	17.2800
5	0.6000	17.2800

$$\widehat{\theta} = 0.6$$

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Problem statement

- We consider a population of objects partitioned in g classes.
- Each object is described by *d* continuous features $\mathbf{W} = (W^1, \dots, W^d)$ and a class variable Z.
- The goal of discriminant analysis is to learn a decision rule that classifies any object from its feature vector, based on a learning set.

Learning tasks

Classically, different learning tasks are considered:

```
Supervised learning: \mathcal{L}_s = \{(\mathbf{w}_i, z_i)\}_{i=1}^n;
Unsupervised learning: \mathcal{L}_{ns} = \{\mathbf{w}_i\}_{i=1}^n;
Semi-supervised learning: \mathcal{L}_{ss} = \{(\mathbf{w}_i, z_i)\}_{i=1}^{n_s} \cup \{\mathbf{w}_i\}_{i=n_s}^n
```

Here, we consider partially supervised learning:

$$\mathcal{L}_{\textit{ps}} = \{(\boldsymbol{w}_i, m_i)\}_{i=1}^n,$$

where m_i is a mass function representing partial information about the class of object i.

 This problem can be solved using the E²M algorithm using a suitable parametric model.

Linear discriminant analysis

- Generative model:
 - Complete data: $\mathbf{x} = \{(\mathbf{w}_i, z_i)\}_{i=1}^n$, assumed to be a realization of an iid random sample $\mathbf{X} = \{(\mathbf{W}_i, z_i)\}_{i=1}^n$;
 - Given $Z_i = k$, \boldsymbol{W}_i is multivariate normal with mean μ_k and common variance matrix Σ .
 - The proportion of class k in the population is π_k .
 - Parameter vector: $\theta = (\{\pi_k\}_{k=1}^g, \{\mu_k\}_{k=1}^g, \Sigma)$.
- The Bayes rule is approximated by assigning each object to the class k* that maximizes the estimated posterior probability

$$p(Z = k | \mathbf{w}; \widehat{\boldsymbol{\theta}}) = \frac{\phi(\mathbf{w}; \widehat{\boldsymbol{\mu}}_k, \widehat{\boldsymbol{\Sigma}}) \widehat{\pi}_k}{\sum_{\ell} \phi(\mathbf{w}; \widehat{\boldsymbol{\mu}}_{\ell}, \widehat{\boldsymbol{\Sigma}}) \widehat{\pi}_{\ell}},$$

where $\widehat{\theta}$ is the MLE of θ .

33 / 55

Observed-data likelihood

 In partially supervised learning, the observed-data log-likelihood has the following expression:

$$\log L(\boldsymbol{\theta}; \mathcal{L}_{ps}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{g} p l_{ik} \pi_{k} \phi(\boldsymbol{w}_{i}; \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right),$$

where pl_{ik} is the plausibility that object i belongs to class k.

Supervised learning is recovered as a special case when:

$$pl_{ik} = z_{ik} = \begin{cases} 1 & \text{if object } i \text{ belongs to class } k; \\ 0 & \text{otherwise.} \end{cases}$$

• Unsupervised learning is recovered when $pl_{ik} = 1$ for all i and k.

E²M algorithm

E-step: Using $p_{\mathbf{X}}(\cdot; \boldsymbol{\theta}^{(q)}) \oplus m$, compute

$$t_{ik}^{(q)} = \mathbb{E}(Z_{ik}|m; \boldsymbol{\theta}^{(q)}) = \frac{\pi_k^{(q)} \rho l_{ik} \phi(\boldsymbol{w}_i; \boldsymbol{\mu}_k^{(q)}, \boldsymbol{\Sigma}^{(q)})}{\sum_{\ell} \pi_k^{(q)} \rho l_{i\ell} \phi(\boldsymbol{w}_i; \boldsymbol{\mu}_\ell^{(q)}, \boldsymbol{\Sigma}^{(q)})}$$

M-step: Update parameter estimates

$$\pi_k^{(q+1)} = \frac{1}{n} \sum_{i=1}^n t_{ik}^{(q)}, \qquad \boldsymbol{\mu}_k^{(q+1)} = \frac{\sum_{i=1}^n t_{ik}^{(q)} \boldsymbol{w}_i}{\sum_{i=1}^n t_{ik}^{(q)}}.$$

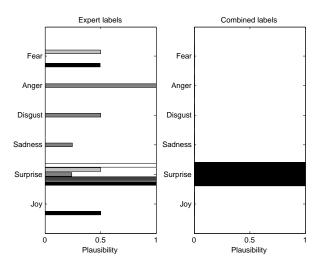
$$\Sigma^{(q+1)} = \frac{1}{n} \sum_{i,k} t_{ik}^{(q)} (\mathbf{w}_i - \mu_k^{(q+1)}) (\mathbf{w}_i - \mu_k^{(q+1)})'$$

Face recognition problem

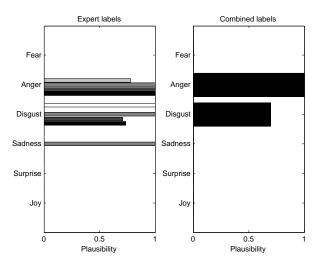
Experimental settings

- 216 images of 60×70 pixels, 36 in each class.
- One half for training, the rest for testing.
- A reduced number of features was extracted using Principal component analysis (PCA).
- Each training image was labeled by 5 subjects who gave degrees of plausibility for each image and each class.
- The plausibilities were combined using Dempster's rule (after some discounting to avoid total conflict).

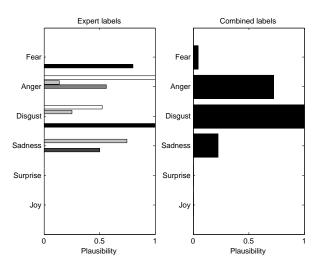
Combined labels

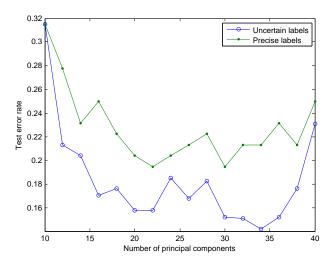


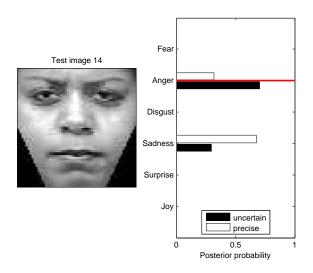
Combined labels

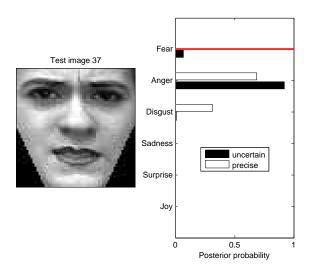


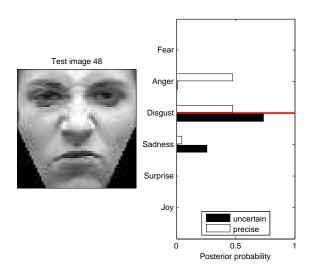
Combined labels











Outline

- Motivation
- Estimation from evidential data
 - Model and problem statement
 - Evidential EM algorithm
 - Example: uncertain Bernoulli sample
- Applications
 - Partially supervised LDA
 - Linear regression with fuzzy data

Model and data

- The complete data is assumed to be a realization \mathbf{y} of an n-dimensional Gaussian random vector $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 l_n)$, where
 - X is a fixed design matrix of size (n, p),
 - I_n is the identity matrix of size n, and
 - $\theta = (\beta, \sigma)^T$ is the parameter vector.
- We further assume that the realizations y_i of the dependent variables are ill-known and described by contour functions pl_i .
- Under the cognitive independence assumption, the joint contour function with respect to y is

$$pl(\mathbf{y}) = \prod_{i=1}^{n} pl_i(y_i)$$

Observed and complete-data likelihoods

The complete data likelihood is

$$L(\boldsymbol{\theta}; \boldsymbol{y}) = \phi(\boldsymbol{y}; \boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n) = \prod_{i=1}^n \phi(\boldsymbol{y}_i; \boldsymbol{x}_i^T \boldsymbol{\beta}, \sigma^2),$$

where x_i is the vector of input variables for the *i*-th observation.

The observed data likelihood is

$$L(\theta; pl) = \int \phi(\mathbf{y}; \mathbf{X}\beta, \sigma^2 l_n) pl(\mathbf{y}) d\mathbf{y}$$
$$= \prod_{i=1}^n \int \phi(\mathbf{y}_i; \mathbf{X}_i^T \beta, \sigma^2) pl_i(\mathbf{y}_i) d\mathbf{y}_i$$

Evidential EM algorithm

• E-step: Taking the expectation of log $L(\theta; Y)$ with respect to $p_Y(\cdot; \theta) \oplus pl$ and using the fit $\theta^{(q)}$ of θ we get

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(q)}) = -n\log\sigma - \frac{1}{2\sigma^2} \left(\sum_{i=1}^n \gamma_i^{(q)} - 2\beta^T \boldsymbol{X}^T \boldsymbol{\xi}^{(q)} + \beta^T \boldsymbol{X}^T \boldsymbol{X}\beta \right) + C,$$

where $\boldsymbol{\xi}^{(q)} = \mathbb{E}_{\boldsymbol{\theta}^{(q)}}(\boldsymbol{Y}|pl)$ and $\gamma_i^{(q)} = \mathbb{E}_{\boldsymbol{\theta}^{(q)}}(Y_i^2|pl_i)$ denote, respectively, the expectations of \boldsymbol{Y} and Y_i^2 with respect to $p_{\boldsymbol{Y}}(\cdot;\boldsymbol{\theta}) \oplus pl$ using the fit $\boldsymbol{\theta}^{(q)}$ of $\boldsymbol{\theta}$.

• M-step: differentiating $Q(\theta, \theta^{(q)})$ with respect to β and σ , we get

$$\boldsymbol{\beta}^{(q+1)} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\xi}^{(q)}$$

$$\sigma^{(q+1)} = \sqrt{\frac{1}{n} \left(\sum_{i=1}^{n} \gamma_i^{(q)} - 2 \, \beta^{(q+1)T} \boldsymbol{X}^T \boldsymbol{\xi}^{(q)} + \beta^{(q+1)T} \boldsymbol{X}^T \boldsymbol{X} \beta^{(q+1)} \right)}$$

Case of Gaussian fuzzy numbers

When the contour functions are normalized Gaussians of the form

$$pl_i(y) = \phi(y; m_i, s_i)s_i\sqrt{2\pi},$$

 $p_{\mathbf{Y}}(\cdot; \boldsymbol{\theta}) \oplus pl$ is then Gaussian distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$ and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n)$, where

$$\mu_i = \frac{\mathbf{x}_i^T \boldsymbol{\beta} \mathbf{s}_i^2 + m_i \sigma^2}{\mathbf{s}_i^2 + \sigma^2}$$

and

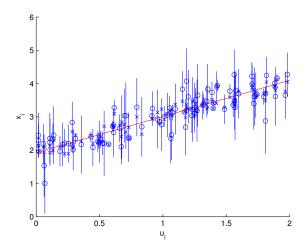
$$\sigma_i = \frac{s_i^2 \sigma^2}{s_i^2 + \sigma^2}.$$

 More complex formula can be found for the case where the contour functions are triangular or trapezoidal (see Denoeux, 2011).

Numerical experiment

- To demonstrate the interest of expressing partial information about ill-known data in the form of possibility distributions, we performed the following experiment.
- We generated n = 100 values x_i from the uniform distribution in [0, 2], and we generated corresponding values y_i using the linear regression model with $\beta = (2, 1)^T$ and $\sigma = 0.2$.
- To model the situation where only partial knowledge of values y_1, \ldots, y_n is available, contour functions pl_1, \ldots, pl_n were generated as follows:
 - For each i, a "guess" y'_i was randomly generated from a normal distribution with mean y_i and standard deviation σ_i , were σ_i was drawn randomly from a uniform distribution in [0, 0.5];
 - pl_i was defined as the triangular possibility distribution with core y_i' and support $[y_i' 2\sigma_i, y_i' + 2\sigma_i]$.

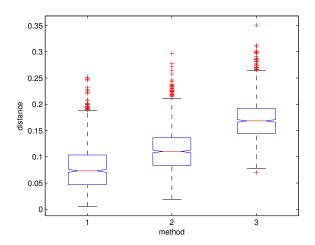
Example of a generated dataset



Numerical experiment (continued)

- Three strategies were compared for estimating the parameter vector $\theta = (\beta, \sigma)^T$:
 - Using the fuzzy data pl_1, \ldots, pl_n (method 1)
 - Using only 0.5-cuts of the fuzzy data (method 2)
 - **1** Using only the crisp guesses y'_1, \ldots, y'_n (method 3)
- For each of these three methods, the L_2 distance $\|\widehat{\theta} \theta\|$ between the true parameter vector and its MLE was computed.
- The whole experiment was repeated 1000 times.

51 / 55



Summary

- The formalism of belief functions provides a very general setting for representing uncertain, ill-known data.
- Maximizing the proposed generalized likelihood criterion amounts to minimizing the conflict between the data and the parametric model.
- This can be achieved using an iterative algorithm (evidential EM algorithm) that reduces to the standard EM algorithm in special cases.
- In classification, the method makes it possible to handle uncertainty on class labels (partially supervised learning). Uncertainty on attributes can be handled as well.

53 / 55

Other applications

- The E²M algorithm can be applied to any problem involving a parametric statistical model and epistemic uncertainty on observations, e.g.:
 - Independent factor analysis (Cherfi et al., 2011);
 - Clustering of fuzzy data using Gaussian mixture models (Quost and Denoeux, 2016);
 - Hidden Markov models (Ramasso and Denoeux, 2014).
- Open problem: How to elicit subjective evaluations in the Dempster-Shafer framework?

References I

cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux.

Maximum likelihood estimation from fuzzy data using the EM algorithm. *Fuzzy Sets and Systems*, 183:72-91, 2011.

T. Denœux.

Maximum likelihood estimation from Uncertain Data in the Belief Function Framework. *IEEE Trans. Knowledge and Data Engineering*, Vol. 25, Issue 1, pages 119-130, 2013.

Z. L. Cherfi, L. Oukhellou, E. Côme, T. Denoeux and P. Aknin.

Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: Application to railway track circuit diagnosis. *Soft Computing*, Vol. 16, Number 5, pages 741-754, 2012.

References II

cf. https://www.hds.utc.fr/~tdenoeux

E. Ramasso and T. Denoeux.

Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions. *IEEE Transactions on Fuzzy Systems*, Vol. 22, Issue 2, pages 395-405, 2014.

B. Quost and T. Denoeux.

Clustering and classification of fuzzy data using the fuzzy EM algorithm. *Fuzzy Sets and Systems*, Vol. 286, pages 134-156, 2016.