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Computational statistics

Modern methods in statistics and econometrics rely heavily on
computational methods, for instance,

Nonlinear optimization
Monte Carlo simulation
Resampling techniques (bootstrap, cross-validation)
Nonparametric density estimation and smoothing
Machine Learning, data mining, big data analysis, etc.

Computational statistics is a branch of Statistics at the intersection
with Computer Science. It concerns the study of efficient procedures
for solving statistical problems with computers.
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Contents of this course

Three parts:
1 Part I: optimization
2 Part II: simulation and resampling
3 Part III: statistical learning

We will use the “R” programming language (free, flexible, large
collection of available statistical methods).
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Part I: Optimization

Many problems in statistics can be seen as optimizing (i.e.,
minimizing or maximizing) some function, for instance:

maximizing the likelihood
finding the mode of the posterior density, or highest posterior density
intervals
minimizing risk in Bayesian decision problems
minimizing empirical risk (error) in machine learning problems, etc.

For the simplest models, a closed-form expression of the solution can
be found. In most cases, we have to resort to iterative procedures;
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Categories of optimization problems

continuous vs. combinatorial optimization
univariate vs. multivariate
constrained vs. unconstrained
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Contents of this course (Part I)

1 Optimizing smooth univariate functions: Bisection, Newton’s
method, Fisher scoring, secant method

2 Optimizing smooth multivariate functions: nonlinear Gauss-Seidel
iteration, Newton’s method, Fisher scoring, Gauss-Newton method,
ascent algorithms, discrete Newton method, quasi-Newton methods

3 Combinatorial optimization: local search, ascent algorithms,
simulated annealing, genetic algorithms

4 Expectation-Maximization (EM) algorithm for maximizing the
likelihood or posterior density

Thierry Denœux Computational statistics February 4, 2017 6 / 35



Introduction

Overview

Introduction

Bisection

Newton’s method

Secant method

Thierry Denœux Computational statistics February 4, 2017 7 / 35



Introduction

Introduction to optimization

In this first part, the real-valued function g : Rn → R to be
maximized or minimized will be assumed to be smooth (at least
differentiable)
It may be a likelihood, a profile likelihood, a Bayesian posterior, or
some other function
Minimizing g is equivalent to maximizing −g
Unless otherwise specified, we will consider maximization problems,
without loss of generality
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Introduction

Introduction to optimization (continued)

For maximum likelihood estimation, g is the log likelihood function
`, and x is the corresponding parameter vector θ. If θ̂ is a MLE, it
maximizes the log likelihood. Therefore θ̂ is a solution to the score
equation

`′(θ) = 0,

where `′(θ) =
(
∂`(θ)
∂θ1

, . . . , ∂`(θ)∂θn

)T
and 0 is a column vector of zeros.

We see that optimization is intimately linked with solving nonlinear
equations. Finding a MLE amounts to finding a root of the score
equation.
The maximum of g is a solution to g′(x) = 0.
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Introduction

Univariate Optimization for Smooth g

Example 1: Maximize

g(x) =
log(x)
1+ x

with respect to x .
We cannot find the root of g ′(x) = 1+1/x−log x

(1+x)2
analytically.

The maximum of g(x) = log(x)
1+x occurs at x∗ ≈ 3.59112, indicated by

the vertical line
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Introduction

Example 2

The following data are an i.i.d. sample from a Cauchy(θ, 1)
distribution:
1.77, −0.23, 2.76, 3.80, 3.47, 56.75, −1.34, 4.24, −2.44, 3.29, 3.71,
−2.40, 4.53, −0.07, −1.05, −13.87, −2.53, −1.75, 0.27, 43.21.
The likelihood function is

L(θ) =
20∏
i=1

1

π
(
1+ (xi − θ)2

)
Find the MLE for θ.
The score function `(θ) has multiple roots requiring numerical
solution.
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Introduction

Log likelihood and score function for the Cauchy data
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Introduction

Local vs. global maximum

A vector x0 is a local maximum of g if ∃ε > 0 such that, for all
x ∈ Rn,

‖x− x0‖ ≤ ε⇒ g(x0) ≥ g(x)

A vector x0 is a global maximum of g if, for all x ∈ Rn,

g(x0) ≥ g(x)

We usually want to find a global maximum, but optimization
algorithms can only be guaranteed to converge to a local maximum
Solution: restart the algorithm from different initial conditions, but
we can never be sure to have reached a global maximum
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Introduction

Iterative Methods

Recall the simple example where we seek to maximize

g(x) =
log(x)
1+ x

with respect to x .
We will rely on successive approximations of the solution.
If we know that the maximum is around 3, it might be reasonable to
use x (0) = 3.0 as an initial guess, or starting value.
An updating equation will be used to produce an improved guess,
x (t+1), from the most recent value x (t), for t = 0, 1, 2, . . . until
iterations are stopped.
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Bisection

Bisection Method

If g ′ is continuous on [a0, b0] and g ′(a0)g
′(b0) ≤ 0 then the

intermediate value theorem implies that there exists at least one
x∗ ∈ [a0, b0] for which g ′(x∗) = 0 and hence x∗ is a local optimum
of g .
To find such a root, the bisection method systematically shrinks the
interval from [a0, b0] to [a1, b1] to [a2, b2] and so on, where
[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · and so forth.
If these intervals are chosen to retain g ′(ai )g

′(bi ) ≤ 0, then the ith
interval contains a root.
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Bisection

Bisection Method

Let x (0) = (a0 + b0)/2 be the starting value.
The updating equations are

[at+1, bt+1] =

{
[at , x

(t)] if g ′(at)g ′(x (t)) ≤ 0
[x (t), bt ] if g ′(at)g ′(x (t)) > 0

and
x (t+1) = (at+1 + bt+1)/2.

If g has more than one root in the starting interval, it is easy to see
that bisection will find one of them, but will not find the rest.
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Bisection

Example

To find the value of x maximizing

g(x) =
log(x)
1+ x

,

we might take a0 = 1, b0 = 5, and x (0) = 3.
The following figure illustrates the first few steps of the bisection
algorithm.
For continuous smooth functions, bisection is guaranteed to converge
to a root because a root is always in the interval and the length of
the interval halves at each iteration.
However, the method is slow.
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Bisection

Example

The top portion of this graph shows g ′(x) and its root at x∗. The bottom
portion shows the first three intervals obtained using the bisection method
with (a0, b0) = (1, 5). The tth estimate of the root is at the center of
the tth interval.
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Bisection

Stopping Criteria

Near the root g ′(x (t+1)) ≈ 0. However, relatively large changes from
x (t) to x (t+1) are often seen even when g ′(x (t+1)) is roughly zero,
therefore a stopping rule based directly on g ′(x (t+1)) is not very
reliable.
On the other hand, a small change from x (t) to x (t+1) is most
frequently associated with g ′(x (t+1)) near zero. Therefore, we
typically assess convergence by monitoring

∣∣x (t+1) − x (t)
∣∣ and use

g ′(x (t+1)) as a backup check.
The absolute convergence criterion mandates stopping when∣∣∣x (t+1) − x (t)

∣∣∣ < ε,

where ε is a constant chosen to indicate tolerable imprecision.
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Bisection

Stopping Criteria (continued)

The relative convergence criterion mandates stopping when iterations
have reached a point for which∣∣x (t+1) − x (t)

∣∣∣∣x (t)∣∣ < ε. (1)

This criterion enables the specification of a target precision (e.g.,
‘within 1%’) without worrying about the units of x .
Preference between the absolute and relative convergence criteria
depends on the problem at hand:

If the scale of x is huge (or tiny) relative to ε, an absolute convergence
criterion may stop iterations too reluctantly (or too soon).
The relative convergence criterion corrects for the scale of x , but can
become unstable if x (t) values (or the true solution) lie too close to
zero.

In this latter case, another option is to monitor relative convergence

by stopping when |x
(t+1)−x(t)|
|x(t)|+ε < ε.
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Bisection

Convergence diagnostics

Also important to include stopping rules that flag a failure to
converge:

Stop after N iterations, regardless of convergence. Do not devote all
affordable iterations to one attempt! Budget time for many smaller
attempts, anticipating convergence failures, data corrections, multiple
starting values, etc.
Could stop if any convergence measure fails to decrease or cycle over
several iterations.
It is also sensible to stop if the procedure appears to be converging to
a point at which g(x) is inferior to another value you have already
found (i.e., a known false peak or local maximum).

Regardless of which such stopping rules you employ, any indication of
poor convergence behavior means that x (t+1) must be discarded and
the procedure somehow restarted in a manner more likely to yield
successful convergence.
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Newton’s method

Newton’s Method

Suppose that g ′ is continuously differentiable and that g ′′(x∗) 6= 0.
At iteration t, the approach approximates g ′(x∗) by the linear Taylor
series expansion:

0 = g ′(x∗) ≈ g ′(x (t)) + (x∗ − x (t))g ′′(x (t))

Since g ′ is approximated by its tangent line at x (t), it seems sensible
to approximate the root of g ′ by the root of the tangent line. Thus,
solving for the root,

x∗ ≡ x (t+1) = x (t) − g ′(x (t))

g ′′(x (t))
= x (t) + h(t)

When the optimization of g corresponds to a MLE problem where θ̂
is a solution to `′(θ) = 0, the updating equation for Newton’s
method is

θ(t+1) = θ(t) − `′(θ(t))

`′′(θ(t))
.
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Newton’s method

Example

For the simple function of Example 1,

g(x) =
log(x)
1+ x

,

we have

h(t) =
(x (t) + 1)

(
1+ 1/x (t) − log{x (t)}

)
3+ 4/x (t) + 1/(x (t))2 − 2 log{x (t)}

.

The following figure illustrates the first several iterations. Starting
from x (0) = 3.0, Newton’s method quickly finds x (4) ≈ 3.59112. For
comparison, the first five decimal places of x∗ are not correctly
determined by the bisection method until iteration 19.
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Newton’s method

Example (continued)

At the first step, Newton’s method approximates g ′ by its tangent line at
x (0) whose root, x (1), serves as the next approximation of the true root,
x∗. The next step similarly yields x (2), which is already quite close to the
root at x∗.
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Newton’s method

Convergence rate

Define the approximation error at iteration t, ε(t) = x (t) − x∗

A method has convergence of order β if limt→∞ ε
(t) = 0 and

lim
t→∞

∣∣ε(t+1)
∣∣∣∣ε(t)∣∣β = c

for some constants c 6= 0 and β > 0.
Higher orders of convergence are better in the sense that precise
approximation of the true solution is more quickly achieved.
Newton’s method has quadratic convergence order, β = 2
Unfortunately, high orders are sometimes achieved at the expense of
robustness: some slow algorithms are more foolproof than their
faster counterparts.
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Newton’s method

Convergence of Newton’s method

Newton’s method may fail to converge. For instance

Starting from x (0), Newton’s method diverges by taking steps that are
increasingly distant from the true root, x∗. In contrast, the bisection
method would converge in this case.
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Newton’s method

When does Newton’s method converge?

Theorem 1: If g ′ has two continuous derivatives and g ′′(x∗) 6= 0,
then there exists a neighborhood of x∗ for which NM converges to
x∗ when started from some x (0) in that neighborhood
Theorem 2: If g ′ is twice continuously differentiable, is convex and
has a root, then NM converges to that root from any starting point.

Reminder: a real-valued function f defined on an interval I is convex if
the line segment between any two points on the graph of the function lies
above or on the graph,

∀x , y ∈ I ,∀α ∈ [0, 1], f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Newton’s method

Importance of the starting point

Log-likelihood for the Cauchy data. Arrows show convergence of
Newton’s method from several starting values
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Newton’s method

Fisher Scoring

Fisher information (for scalar parameter) is

I (θ) = E{`′(θ)2} =∗ −E{`′′(θ)}

∗under regularity conditions.
Reminder: for large iid samples, it holds approximately that
θ̂ ∼ N (θ, I (θ)−1).
Let J(θ̂) = −`′′(θ̂) (observed information)
Usually I (θ̂) ≈ J(θ̂)

This suggests using the increment h(t) = `′(θ(t))/I (θ(t)) where
I (θ(t)) is the Fisher information evaluated at θ(t).
This yields

θ(t+1) = θ(t) + `′(θ(t))I (θ(t))−1
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Newton’s method

Fisher Scoring vs. Newton’s method

Fisher scoring and Newton’s method share the same asymptotic
properties; either may be easier for a particular problem.
In particular, I (θ) may be easier to compute. In the case of iid data,
In(θ) = nI1(θ).
The observed information −`′′(θ) may be negative (resulting in
divergence), specially far from the solution, whereas I (θ) is always
positive.
Generally, FS makes rapid improvements initially, while NM gives
better refinements near the end.
Case of the linear canonical one-parameter exponential family:

f (x ; θ) = b(x) exp [θt(x)− c(θ)]

We have −`′′(θ) = c ′′(θ) = I (θ): FS and NM coincide.
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Secant method

Secant Method

When differentiating g ′ is difficult, we can replace the derivative by
the discrete differenced approximation,

g ′′(x (t)) ≈ g ′(x (t))− g ′(x (t−1))

x (t) − x (t−1)

This yields the update

x (t+1) = x (t) − g ′(x (t))
x (t) − x (t−1)

g ′(x (t))− g ′(x (t−1))

for t ≥ 1.
Requires two starting points, x (0) and x (1).
The following figure illustrates the first steps of the method for
maximizing the simple function of Example 1.
The order of convergence of the secant method is superlinear:
β ≈ 1.62
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Secant method

Example

The secant method locally approximates g ′ using the secant line between
x (0) and x (1). The corresponding estimated root, x (2), is used with x (1)

to generate the next approximation
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