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Computational statistics

@ Modern methods in statistics and econometrics rely heavily on
computational methods, for instance,

Nonlinear optimization

Monte Carlo simulation

Resampling techniques (bootstrap, cross-validation)

Non parametric density estimation and smoothing

Machine Learning, data mining, big data analysis, etc.

@ "Computational statistics” is a branch of Statistics at the intersection
with Computer Science. It concerns the study of efficient procedures
for solving statistical problems with computers




Contents of this course

@ Three parts:
@ Part |: optimization
@ Part Il: simulation and resampling
© Part Ill: density estimation, smoothing, statistical learning
@ We will use the “R" programming language (free, flexible, large
collection of available statistical methods)




Part |: Optimization

Many problems in statistics can be seen as optimizing (i.e., minimizing or
maximizing) some function,

@ maximizing the likelihood

@ finding the mode of the posterior density, or highest posterior density
intervals

@ minimizing risk in Bayesian decision problems

@ minimizing empirical risk in machine learning problems, etc.




Categories of optimization problems

@ continuous vs. combinatorial optimization
@ univariate vs. multivariate

@ constrained vs. unconstrained




Contents of this course (Part I)

@ Optimizing smooth univariate functions: Bisection, Newton's
method, Fisher scoring, secant method

@ Optimizing smooth multivariate functions: nonlinear Gauss-Seidel
iteration, Newton's method, Fisher scoring, Gauss-Newton method,
ascent algorithms, discrete Newton method, quasi-Newton methods

© Combinatorial optimization: local search, ascent algorithms,
simulated annealing, genetic algorithms

@ Expectation-Maximization (EM) algorithm for maximizing the
likelihood or posterior density
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Introduction to optimization

@ In this first part, the real-valued function g : R” — R to be

maximized or minimized will be assumed to be smooth (at least
differentiable)

@ It may be a likelihood, a profile likelihood, a Bayesian posterior, or
some other function

e Maximizing g is equivalent to minimizing —g

@ Unless otherwise specified, we will consider maximization problems,
without loss of generality
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Introduction to optimization (continued)

@ For maximum likelihood estimation, g is the log likelihood function,
¢, and x is the corresponding parameter vector, 6. If 6 is a MLE, it
maximizes the log likelihood. Therefore 6 is a solution to the score

equation
7 (0) =0,
() o00)\ " .
where £(0) = ( Z55->,..., 5y, ) and 0 is a column vector of zeros.

@ We see that optimization is intimately linked with solving nonlinear
equations. Finding a MLE amounts to finding a root of the score
equation.

@ The maximum of g is a solution to g’(x) = 0.
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Univariate Optimization for Smooth g

@ Example 1: Maximize

w02t

with respect to x.

@ We cannot find the root of g’'(x) = H(ll/i% analytically.
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"~ 3.59112
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@ The maximum of g(x) = Iog{x} occurs at x* =~ 3.59112, indicated xbﬁ
the vertical line e
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Example 2

@ The following data are an i.i.d. sample from a Cauchy(6,1)
distribution:
1.77, —0.23, 2.76, 3.80, 3.47, 56.75, —1.34, 4.24, —2.44, 3.29, 3.71,
—2.40, 4,53, —0.07, —1.05, —13.87, —2.53, —1.75, 0.27, 43.21.

@ The likelihood function is

20

1
O

Find the MLE for 6.

@ The score function has multiple roots requiring numerical solution.
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Log likelihood and score function for the Cauchy data
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Local vs. global maximum

@ A vector xq is a local maximum of g if 3¢ > 0 such that, for all
x € R",
[x — %ol < €= g(xo0) > g(x)

@ A vector xg is a global maximum of g if, for all x € R”,

g(xo) > g(x)

@ We usually want to find a global maximum, but optimization
algorithms can only be guaranteed to converge to a local maximum

@ Solution: restart the algorithm from different initial conditions, but
we can never be sure to have reached a global maximum
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lterative Methods

@ Recall the simple example where we seek to maximize

log{x}
X)= ——
g(x) 1+x
with respect to x.
@ We will rely on successive approximations of the solution.

o If we know that the maximum is around 3, it might be reasonable to
use x(9) = 3.0 as an initial guess, or starting value.

@ An updating equation will be used to produce an improved guess,
x(t+1) | from the most recent value x(), for t = 0, 1,2, ... until
iterations are stopped.
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Bisection Method

e If g’ is continuous on [ag, bo] and g’(a0)g’(bo) < 0 then the
intermediate value theorem implies that there exists at least one
x* € [ao, bo] for which g’(x*) = 0 and hence x* is a local optimum
of g.

@ To find such a root, the bisection method systematically shrinks the
interval from [ag, bg] to [a1, b1] to [a2, b2] and so on, where
[a0, bo] D [a1, b1] D [a2, b2] D -+ and so forth.

o If these intervals are chosen to retain g’(a;)g’(bi) < 0, then the ith
interval contains a root.
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Bisection Method

o Let x(9) = (ag + hy)/2 be the starting value.

@ The updating equations are

[a 1 b 1]: [at,x(t)] ifg’(at)g’(x(t))go
t+1, Drt [x(t)’ b if g’(at)g’(x(t)) =0

and
XU = (apq + bey1)/2.

o If g has more than one root in the starting interval, it is easy to see
that bisection will find one of them, but will not find the rest.
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Example

@ To find the value of x maximizing

g(x) = I?gf;}

I

we might take ag = 1, by = 5, and x(®) = 3.

@ The following figure illustrates the first few steps of the bisection
algorithm.

@ For continuous smooth functions, bisection is guaranteed to converge

to a root because a root is always in the interval and the length of
the interval halves at each iteration. However, the method is slow.
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Example

The top portion of this graph shows g’(x) and its root at x*. The bottom
portion shows the first three intervals obtained using the bisection methed:
with (ag, bp) = (1, 5). The tth estimate of the root is at the center of*u:w
the tth interval.
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Stopping Criteria

o Near the root g/(x(t*1)) ~ 0. However, relatively large changes from
x(t) to x(t+1) are often seen even when g’(x(t+1)) is roughly zero,
therefore a stopping rule based directly on g’(x(tt1) is not very
reliable.

@ On the other hand, a small change from x(!) to x(t+1) is most
frequently associated with g’(x(t*1)) near zero. Therefore, we
typically assess convergence by monitoring |x(t+1) — x(t)‘ and use
g'(x(t*t1) as a backup check.

@ The absolute convergence criterion mandates stopping when

(D) _ (1)

< €,

where € is a constant chosen to indicate tolerable imprecision.
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Stopping Criteria (continued)

@ The relative convergence criterion mandates stopping when iterations
have reached a point for which

(D) x(0)]

X0 < €. (1)

@ This criterion enables the specification of a target precision (e.g.,
‘within 1%") without worrying about the units of x.

@ Preference between the absolute and relative convergence criteria
depends on the problem at hand:

o If the scale of x is huge (or tiny) relative to €, an absolute convergence
criterion may stop iterations too reluctantly (or too soon).

e The relative convergence criterion corrects for the scale of x, but can
become unstable if x(*) values (or the true solution) lie too close to
zero.

o In this latter case, another option is to monitor relative convergence -
|X t+1) _ X(t)| § ‘

‘X(t)‘+6 € R

by stopping when
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Convergence diagnostics

@ Also important to include stopping rules that flag a failure to
converge:

e Stop after N iterations, regardless of convergence. Do not devote all
affordable iterations to one attempt! Budget time for many smaller
attempts, anticipating convergence failures, data corrections, multiple
starting values, etc.

e Could stop if any convergence measure fails to decrease or cycle over
several iterations, or if the solution itself cycle unsatisfactorily.

o It is also sensible to stop if the procedure appears to be converging to
a point at which g(x) is inferior to another value you have already
found (i.e., a known false peak or local maximum).

@ Regardless of which such stopping rules you employ, any indication of
poor convergence behavior means that x(t*1) must be discarded and
the procedure somehow restarted in a manner more likely to yield
successful convergence.
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Newton's Method

@ Suppose that g’ is continuously differentiable and that g”(x*) # 0.
e At iteration t, the approach approximates g’(x*) by the linear Taylor
series expansion:

0 =g'(x") ~ g/ (x) + (x* — x(0)g"(x1V)
e Since g’ is approximated by its tangent line at x(*), it seems sensible
to approximate the root of g’ by the root of the tangent line. Thus,
solving for the root,

TS N B ) N BT

g"(x(®)

@ When the optimization of g corresponds to a MLE problem where 0

is a solution to ¢'(f) = 0, the updating equation for Newton's
method is

i

,

p(t+1) — g(t) _

0'(6) €
g//( e(t)) ’ “
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Example

@ For the simple function of Example 1,

g(x) = log{x}

14 x]

we have

B0 (x® + 1) (1 + 1/x(®) — log{x(8)})
34+ 4/x(1) +1/(x(1)2 — 2log{x(1}"

@ The following figure illustrates the first several iterations. Starting
from x(©) = 3.0, Newton's method quickly finds x(*) ~ 3.59112. For
comparison, the first five decimal places of x* are not correctly
determined by the bisection method until iteration 19.
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Example (continued)

At the first step, Newton's method approximates g’ by its tangent line at
(0) whose root, x(1), serves as the next approximation of the true rooty 5
. The next step similarly yields x(2), which is already quite close to the
root at x*.
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Convergence rate

o Define the approximation error at iteration t, e(t) = x(t) — x*

o A method has convergence of order 3 if lim_,o0 €() = 0 and

for some constants ¢ # 0 and 8 > 0.

@ Higher orders of convergence are better in the sense that precise
approximation of the true solution is more quickly achieved.

@ Newton's method has quadratic convergence order, § = 2

@ Unfortunately, high orders are sometimes achieved at the expense of
robustness: some slow algorithms are more foolproof than their
faster counterparts.
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Convergence of Newton's method

Newton's method may fail to converge. For instance
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Starting from x(©), Newton's method diverges by taking steps that are
increasingly distant from the true root, x*. In contrast, the bisection
method would converge in this case.

iy
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When does Newton's method converge?

@ Theorem 1: If g’ has two continuous derivatives and g”(x*) # 0,
then there exists a neighborhood of x* for which NM converges to
x* when started from some x(%) in that neighborhood

@ Theorem 2: If g’ is twice continuously differentiable, is convex and
has a root, then NM converges to that root from any starting point.

Reminder: a real-valued function f defined on an interval / is convex if
the line segment between any two points on the graph of the function lies
above or on the graph,

Vx,y € ILVYa € [0,1], f(ax + (1 — a)y) < af(x) + (1 — a)f(y)
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Importance of the starting point

1(6)

—OO0¢———
TT T

T

Log-likelihood for the Cauchy data. Arrows show convergence of

Newton's method from several starting values
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Fisher Scoring

@ Fisher information (for scalar parameter) is

10) = E{£'(0)*} = ~E{£"(0)}

*under regularity conditions.
° Beminder: for large iid samples, it holds approximately that
0~ N(@0,1(0)71).
o Let J(O) = —¢"(0) (observed information)
o Usually /1(0) ~ J(f)
o This suggests using the increment h(t) = ¢/(9(t))/1(6()) where
1(6()) is the Fisher information evaluated at 6(t).

@ This yields
o+ — g(8) 1 ¢/(9(D)1(p(D)) 1 P
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Fisher Scoring vs. Newton's method

@ Fisher scoring and Newton's method share the same asymptotic
properties; either may be easier for a particular problem.

@ In particular, /() may be easier to compute. In the case of iid data,
/n(e) = nll(a)

@ The observed information —¢”(0) may be negative (resulting in
divergence), specially far from the solution, whereas /(#) is always
positive.

e Generally, FS makes rapid improvements initially, while NM gives
better refinements near the end.

@ Case of the linear canonical one-parameter exponential family:

F(x; 0) = b(x) exp [0t(x) — c(6)]

A

We have —¢"(0) = ¢”"(8) = 1(6): FS and NM coincide.
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Secant Method

When differentiating g’ is difficult, we can replace the derivative by
the discrete differenced approximation,

g'(xM) — g'(x(t1)
- x(t) — x(t=1)

g"(xt1)
This yields the update
X(t) — X(t_l)

(t4+1) _ (1) /(4 (1)
. g/ (x®) — g/(x(tD)

—g'(x

fort > 1.
Requires two starting points, x(©) and x(1),

The following figure illustrates the first steps of the method for
maximizing the simple function of Example 1.

A
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The order of convergence of the secant method is superlinear: :
B~ 1.62 3
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Example

1.5 2.0 2.5 3.0 3.5 4.0

The secant method locally approximates g’ using the secant line between--
x(©) and x(). The corresponding estimated root, x(?), is used with X(l&j?;{,
to generate the next approximation
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