Computational statistics

Lecture 1: Optimizing smooth univariate functions

Thierry Denœux

February 16, 2016

Computational statistics

- Modern methods in statistics and econometrics rely heavily on computational methods, for instance,
 - Nonlinear optimization
 - Monte Carlo simulation
 - Resampling techniques (bootstrap, cross-validation)
 - Non parametric density estimation and smoothing
 - Machine Learning, data mining, big data analysis, etc.
- "Computational statistics" is a branch of Statistics at the intersection with Computer Science. It concerns the study of efficient procedures for solving statistical problems with computers

Contents of this course

- Three parts:
 - Part I: optimization
 - Part II: simulation and resampling
 - Part III: density estimation, smoothing, statistical learning
- We will use the "R" programming language (free, flexible, large collection of available statistical methods)

Part I: Optimization

Many problems in statistics can be seen as optimizing (i.e., minimizing or maximizing) some function,

- maximizing the likelihood
- finding the mode of the posterior density, or highest posterior density intervals
- minimizing risk in Bayesian decision problems
- minimizing empirical risk in machine learning problems, etc.

Categories of optimization problems

- continuous vs. combinatorial optimization
- univariate vs. multivariate
- constrained vs. unconstrained

Contents of this course (Part I)

- Optimizing smooth univariate functions: Bisection, Newton's method, Fisher scoring, secant method
- Optimizing smooth multivariate functions: nonlinear Gauss-Seidel iteration, Newton's method, Fisher scoring, Gauss-Newton method, ascent algorithms, discrete Newton method, quasi-Newton methods
- Combinatorial optimization: local search, ascent algorithms, simulated annealing, genetic algorithms
- Expectation-Maximization (EM) algorithm for maximizing the likelihood or posterior density

Overview

Introduction

Bisection

Newton's method

Secant method

Introduction to optimization

- In this first part, the real-valued function $g: \mathbb{R}^n \to \mathbb{R}$ to be maximized or minimized will be assumed to be smooth (at least differentiable)
- It may be a likelihood, a profile likelihood, a Bayesian posterior, or some other function
- Maximizing g is equivalent to minimizing -g
- Unless otherwise specified, we will consider maximization problems, without loss of generality

Introduction to optimization (continued)

• For maximum likelihood estimation, g is the log likelihood function, ℓ , and \mathbf{x} is the corresponding parameter vector, $\boldsymbol{\theta}$. If $\hat{\boldsymbol{\theta}}$ is a MLE, it maximizes the log likelihood. Therefore $\hat{\boldsymbol{\theta}}$ is a solution to the score equation

$$\ell'(\boldsymbol{\theta}) = \mathbf{0},$$

where $\ell'(\theta) = \left(\frac{\partial \ell(\theta)}{\partial \theta_1}, \dots, \frac{\partial \ell(\theta)}{\partial \theta_n}\right)^T$ and **0** is a column vector of zeros.

- We see that optimization is intimately linked with solving nonlinear equations. Finding a MLE amounts to finding a root of the score equation.
- The maximum of g is a solution to g'(x) = 0.

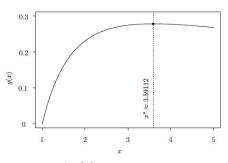
Univariate Optimization for Smooth g

Example 1: Maximize

$$g(x) = \frac{\log\{x\}}{1+x}$$

with respect to x.

• We cannot find the root of $g'(x) = \frac{1+1/x - \log x}{(1+x)^2}$ analytically.



• The maximum of $g(x) = \frac{\log\{x\}}{1+x}$ occurs at $x^* \approx 3.59112$, indicated by

the vertical line

Example 2

• The following data are an i.i.d. sample from a Cauchy(θ , 1) distribution:

$$1.77, -0.23, 2.76, 3.80, 3.47, 56.75, -1.34, 4.24, -2.44, 3.29, 3.71, -2.40, 4.53, -0.07, -1.05, -13.87, -2.53, -1.75, 0.27, 43.21.$$

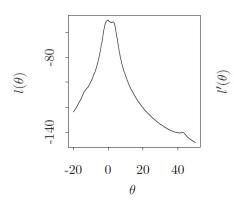
The likelihood function is

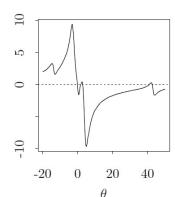
$$L(\theta) = \prod_{i=1}^{20} \frac{1}{\pi \left(1 + (x_i - \theta)^2\right)}$$

Find the MLE for θ .

The score function has multiple roots requiring numerical solution.

Log likelihood and score function for the Cauchy data





Local vs. global maximum

• A vector \mathbf{x}_0 is a local maximum of g if $\exists \epsilon > 0$ such that, for all $\mathbf{x} \in \mathbb{R}^n$.

$$\|\mathbf{x} - \mathbf{x}_0\| \le \epsilon \Rightarrow g(\mathbf{x}_0) \ge g(\mathbf{x})$$

• A vector \mathbf{x}_0 is a global maximum of g if, for all $\mathbf{x} \in \mathbb{R}^n$,

$$g(\mathbf{x}_0) \geq g(\mathbf{x})$$

- We usually want to find a global maximum, but optimization algorithms can only be guaranteed to converge to a local maximum
- Solution: restart the algorithm from different initial conditions, but we can never be sure to have reached a global maximum

Iterative Methods

• Recall the simple example where we seek to maximize

$$g(x) = \frac{\log\{x\}}{1+x}$$

with respect to x.

- We will rely on successive approximations of the solution.
- If we know that the maximum is around 3, it might be reasonable to use $x^{(0)} = 3.0$ as an initial guess, or starting value.
- An updating equation will be used to produce an improved guess, $x^{(t+1)}$, from the most recent value $x^{(t)}$, for $t=0,1,2,\ldots$ until iterations are stopped.

Overview

Introduction

Bisection

Newton's method

Secant method

Secant method

Bisection Method

- If g' is continuous on $[a_0, b_0]$ and $g'(a_0)g'(b_0) \le 0$ then the intermediate value theorem implies that there exists at least one $x^* \in [a_0, b_0]$ for which $g'(x^*) = 0$ and hence x^* is a local optimum of g.
- To find such a root, the bisection method systematically shrinks the interval from $[a_0, b_0]$ to $[a_1, b_1]$ to $[a_2, b_2]$ and so on, where $[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \cdots$ and so forth.
- If these intervals are chosen to retain $g'(a_i)g'(b_i) \leq 0$, then the *i*th interval contains a root.

Bisection Method

- Let $x^{(0)} = (a_0 + b_0)/2$ be the starting value.
- The updating equations are

$$[a_{t+1}, b_{t+1}] = \begin{cases} [a_t, x^{(t)}] & \text{if } g'(a_t)g'(x^{(t)}) \leq 0 \\ [x^{(t)}, b_t] & \text{if } g'(a_t)g'(x^{(t)}) > 0 \end{cases}$$

and

$$x^{(t+1)} = (a_{t+1} + b_{t+1})/2.$$

• If g has more than one root in the starting interval, it is easy to see that bisection will find one of them, but will not find the rest.

Example

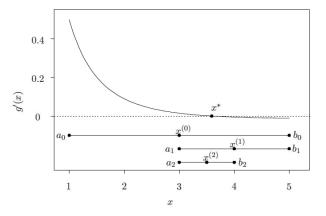
• To find the value of x maximizing

$$g(x) = \frac{\log\{x\}}{1+x},$$

we might take $a_0 = 1$, $b_0 = 5$, and $x^{(0)} = 3$.

- The following figure illustrates the first few steps of the bisection algorithm.
- For continuous smooth functions, bisection is guaranteed to converge to a root because a root is always in the interval and the length of the interval halves at each iteration. However, the method is slow.

Example



The top portion of this graph shows g'(x) and its root at x^* . The bottom portion shows the first three intervals obtained using the bisection method with $(a_0, b_0) = (1, 5)$. The tth estimate of the root is at the center of the tth interval.

Stopping Criteria

- Near the root $g'(x^{(t+1)}) \approx 0$. However, relatively large changes from $x^{(t)}$ to $x^{(t+1)}$ are often seen even when $g'(x^{(t+1)})$ is roughly zero, therefore a stopping rule based directly on $g'(x^{(t+1)})$ is not very reliable.
- On the other hand, a small change from $x^{(t)}$ to $x^{(t+1)}$ is most frequently associated with $g'(x^{(t+1)})$ near zero. Therefore, we typically assess convergence by monitoring $\left|x^{(t+1)}-x^{(t)}\right|$ and use $g'(x^{(t+1)})$ as a backup check.
- The absolute convergence criterion mandates stopping when

$$\left|x^{(t+1)}-x^{(t)}\right|<\epsilon,$$

where ϵ is a constant chosen to indicate tolerable imprecision.

Stopping Criteria (continued)

• The relative convergence criterion mandates stopping when iterations have reached a point for which

$$\frac{\left|x^{(t+1)} - x^{(t)}\right|}{\left|x^{(t)}\right|} < \epsilon. \tag{1}$$

- This criterion enables the specification of a target precision (e.g., 'within 1%') without worrying about the units of x.
- Preference between the absolute and relative convergence criteria depends on the problem at hand:
 - If the scale of x is huge (or tiny) relative to ϵ , an absolute convergence criterion may stop iterations too reluctantly (or too soon).
 - The relative convergence criterion corrects for the scale of x, but can become unstable if $x^{(t)}$ values (or the true solution) lie too close to zero.
- In this latter case, another option is to monitor relative convergence by stopping when $\frac{\left|x^{(t+1)}-x^{(t)}\right|}{\left|x^{(t)}\right|+\epsilon}<\epsilon.$

Convergence diagnostics

- Also important to include stopping rules that flag a failure to converge:
 - Stop after N iterations, regardless of convergence. Do not devote all
 affordable iterations to one attempt! Budget time for many smaller
 attempts, anticipating convergence failures, data corrections, multiple
 starting values, etc.
 - Could stop if any convergence measure fails to decrease or cycle over several iterations, or if the solution itself cycle unsatisfactorily.
 - It is also sensible to stop if the procedure appears to be converging to a point at which g(x) is inferior to another value you have already found (i.e., a known false peak or local maximum).
- Regardless of which such stopping rules you employ, any indication of poor convergence behavior means that $x^{(t+1)}$ must be discarded and the procedure somehow restarted in a manner more likely to yield successful convergence.

Overview

Introduction

Introduction

Risection

Newton's method

Secant method

Secant method

Newton's Method

Introduction

- Suppose that g' is continuously differentiable and that $g''(x^*) \neq 0$.
- At iteration t, the approach approximates $g'(x^*)$ by the linear Taylor series expansion:

$$0 = g'(x^*) \approx g'(x^{(t)}) + (x^* - x^{(t)})g''(x^{(t)})$$

• Since g' is approximated by its tangent line at $x^{(t)}$, it seems sensible to approximate the root of g' by the root of the tangent line. Thus, solving for the root,

$$x^* \equiv x^{(t+1)} = x^{(t)} - \frac{g'(x^{(t)})}{g''(x^{(t)})} = x^{(t)} + h^{(t)}$$

• When the optimization of g corresponds to a MLE problem where $\hat{\theta}$ is a solution to $\ell'(\theta)=0$, the updating equation for Newton's method is

$$\theta^{(t+1)} = \theta^{(t)} - \frac{\ell'(\theta^{(t)})}{\ell''(\theta^{(t)})}.$$

Example

• For the simple function of Example 1,

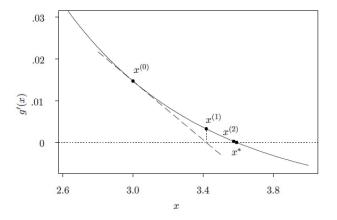
$$g(x) = \frac{\log\{x\}}{1+x},$$

we have

$$h^{(t)} = \frac{(x^{(t)} + 1)(1 + 1/x^{(t)} - \log\{x^{(t)}\})}{3 + 4/x^{(t)} + 1/(x^{(t)})^2 - 2\log\{x^{(t)}\}}.$$

• The following figure illustrates the first several iterations. Starting from $x^{(0)}=3.0$, Newton's method quickly finds $x^{(4)}\approx 3.59112$. For comparison, the first five decimal places of x^* are not correctly determined by the bisection method until iteration 19.

Example (continued)



At the first step, Newton's method approximates g' by its tangent line at $x^{(0)}$ whose root, $x^{(1)}$, serves as the next approximation of the true root x^* . The next step similarly yields $x^{(2)}$, which is already quite close to the root at x^* .

Convergence rate

- Define the approximation error at iteration t, $\epsilon^{(t)} = x^{(t)} x^*$
- ullet A method has convergence of order eta if $\lim_{t \to \infty} \epsilon^{(t)} = 0$ and

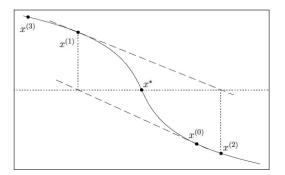
$$\lim_{t \to \infty} \frac{\left| \epsilon^{(t+1)} \right|}{\left| \epsilon^{(t)} \right|^{\beta}} = c$$

for some constants $c \neq 0$ and $\beta > 0$.

- Higher orders of convergence are better in the sense that precise approximation of the true solution is more quickly achieved.
- Newton's method has quadratic convergence order, $\beta=2$
- Unfortunately, high orders are sometimes achieved at the expense of robustness: some slow algorithms are more foolproof than their faster counterparts.

Convergence of Newton's method

Newton's method may fail to converge. For instance



Starting from $x^{(0)}$, Newton's method diverges by taking steps that are increasingly distant from the true root, x^* . In contrast, the bisection method would converge in this case.

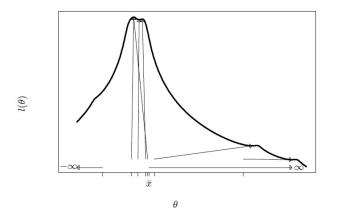
When does Newton's method converge?

- Theorem 1: If g' has two continuous derivatives and $g''(x^*) \neq 0$, then there exists a neighborhood of x^* for which NM converges to x^* when started from some $x^{(0)}$ in that neighborhood
- Theorem 2: If g' is twice continuously differentiable, is convex and has a root, then NM converges to that root from any starting point.

Reminder: a real-valued function f defined on an interval I is convex if the line segment between any two points on the graph of the function lies above or on the graph,

$$\forall x, y \in I, \forall \alpha \in [0, 1], f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Importance of the starting point



Log-likelihood for the Cauchy data. Arrows show convergence of Newton's method from several starting values

Introduction

Fisher Scoring

• Fisher information (for scalar parameter) is

$$I(\theta) = \mathbb{E}\{\ell'(\theta)^2\} =^* -\mathbb{E}\{\ell''(\theta)\}\$$

- *under regularity conditions.
- Reminder: for large iid samples, it holds approximately that $\hat{\theta} \sim \mathcal{N}(\theta, I(\theta)^{-1})$.
- Let $J(\hat{\theta}) = -\ell''(\hat{\theta})$ (observed information)
- Usually $I(\hat{\theta}) \approx J(\hat{\theta})$
- This suggests using the increment $h^{(t)} = \ell'(\theta^{(t)})/I(\theta^{(t)})$ where $I(\theta^{(t)})$ is the Fisher information evaluated at $\theta^{(t)}$.
- This yields

$$\theta^{(t+1)} = \theta^{(t)} + \ell'(\theta^{(t)})I(\theta^{(t)})^{-1}$$

Fisher Scoring vs. Newton's method

- Fisher scoring and Newton's method share the same asymptotic properties; either may be easier for a particular problem.
- In particular, $I(\theta)$ may be easier to compute. In the case of iid data, $I_n(\theta) = nI_1(\theta)$.
- The observed information $-\ell''(\theta)$ may be negative (resulting in divergence), specially far from the solution, whereas $I(\theta)$ is always positive.
- Generally, FS makes rapid improvements initially, while NM gives better refinements near the end.
- Case of the linear canonical one-parameter exponential family:

$$f(x; \theta) = b(x) \exp [\theta t(x) - c(\theta)]$$

We have $-\ell''(\theta) = c''(\theta) = I(\theta)$: FS and NM coincide.

Overview

Introduction

Bisection

Newton's method

Secant method

Secant Method

• When differentiating g' is difficult, we can replace the derivative by the discrete differenced approximation,

$$g''(x^{(t)}) \approx \frac{g'(x^{(t)}) - g'(x^{(t-1)})}{x^{(t)} - x^{(t-1)}}$$

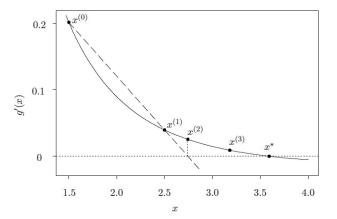
This yields the update

$$x^{(t+1)} = x^{(t)} - g'(x^{(t)}) \frac{x^{(t)} - x^{(t-1)}}{g'(x^{(t)}) - g'(x^{(t-1)})}$$

for t > 1.

- Requires two starting points, $x^{(0)}$ and $x^{(1)}$.
- The following figure illustrates the first steps of the method for maximizing the simple function of Example 1.
- The order of convergence of the secant method is superlinear: $\beta \approx 1.62$

Example



The secant method locally approximates g' using the secant line between $x^{(0)}$ and $x^{(1)}$. The corresponding estimated root, $x^{(2)}$, is used with $x^{(1)}$ to generate the next approximation