UMR CNRS 7253

Thierry Denoeux
Thierry Denoeux
Thierry Denoeux
Thierry Denoeux
Thierry Denoeux

Site Tools


en:publi:belief_art

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
en:publi:belief_art [2020/07/15 00:36]
tdenoeux
en:publi:belief_art [2020/07/15 00:43] (current)
tdenoeux
Line 1: Line 1:
 ====== Belief Functions and Pattern recognition ====== ====== Belief Functions and Pattern recognition ======
-  - T. Denoeux and P. P. Shenoy. An Interval-Valued Utility Theory for Decision Making with Dempster-Shafer Belief Functions. International Journal of Approximate Reasoning, Vol. 124, pages 194216, 2020. {{ :​en:​publi:​utilitytheoryfdstheory_final.pdf |pdf}}+  - T. Denoeux and P. P. Shenoy. An Interval-Valued Utility Theory for Decision Making with Dempster-Shafer Belief Functions. International Journal of Approximate Reasoning, Vol. 124, pages 194-216, 2020. {{ :​en:​publi:​utilitytheoryfdstheory_final.pdf |pdf}}
   - Z.-G. Su, Q. Hu, and T. Denoeux. A Distributed Rough Evidential K-NN Classifier: Integrating Feature Reduction and Classification. IEEE Transactions on Fuzzy Systems (to appear), 2020.{{ :​en:​publi:​tfs_2019_final_version.pdf |pdf}}   - Z.-G. Su, Q. Hu, and T. Denoeux. A Distributed Rough Evidential K-NN Classifier: Integrating Feature Reduction and Classification. IEEE Transactions on Fuzzy Systems (to appear), 2020.{{ :​en:​publi:​tfs_2019_final_version.pdf |pdf}}
   - Z.-G. Liu, L.-Q. Huang, K. Zhou, and T. Denoeux. Combination of Transferable Classification with Multi-source Domain Adaptation Based on Evidential Reasoning. IEEE Transactions on Neural Networks and Learning Systems (to appear), 2020. {{ :​en:​publi:​tnnls-2013-p-0123.pdf |pdf}}   - Z.-G. Liu, L.-Q. Huang, K. Zhou, and T. Denoeux. Combination of Transferable Classification with Multi-source Domain Adaptation Based on Evidential Reasoning. IEEE Transactions on Neural Networks and Learning Systems (to appear), 2020. {{ :​en:​publi:​tnnls-2013-p-0123.pdf |pdf}}

User Tools