UMR CNRS 7253

Site Tools


en:publi:other_conf

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
en:publi:other_conf [2017/11/17 11:30]
tdenoeux
en:publi:other_conf [2021/12/02 11:46] (current)
tdenoeux
Line 1: Line 1:
 ====== Applications of Belief Functions ====== ====== Applications of Belief Functions ======
 +
 +   - Xiaoqian Zhou, Xiaodong Yue, Zhikang Xu, Thierry Denoeux, and Yufei Chen. Deep Neural Networks with Prior Evidence for Bladder Cancer Staging. IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2021), 2021. {{ :en:publi:bibm-final.pdf |pdf}}
 +   - L. Huang, T. Denoeux, D. Tonnelet, P. Decazes and S. Ruan. Deep PET/CT Fusion with Dempster-Shafer Theory for Lymphoma Segmentation. In C. Lian et al. (Eds), Machine Learning in Medical Imaging, Springer International Publishing", Cham, pages 30-39, 2021. {{ :en:publi:huang2021_chapter_deeppetctfusionwithdempster-sh.pdf |pdf}}
 +   - L. Huang, S. Ruan, P. Decazes and T. Denoeux. Evidential Segmentation of 3D PET/CT Images. In T. Denoeux, E. Lefèvre, Zh. Liu and F. Pichon (Eds), Belief Functions: Theory and Applications, Springer International Publishing, Cham, pages 159-167, 2021. {{ :en:publi:belief2021_revised_td.pdf |pdf}}
 +   - L. Huang, S. Ruan and T. Denoeux. Covid-19 Classification with Deep Neural Network and Belief Functions. Fifth International Conference on Biological Information and Biomedical Engineering (BIBE 2021), July 20–22, 2021, Hangzhou, China. {{ :en:publi:bibe2021-41_hl.pdf |pdf}}
 +   - L. Huang, S. Ruan and T. Denoeux. Belief function-based semi-supervised learning for brain tumor segmentation. 2021 IEEE International Symposium on Biomedical Imaging (ISBI 2021), Nice, France, IEEE, 2021. {{ :en:publi:isbi2021.pdf |pdf}}
    - C. Lian, S. Ruan, T. Denoeux, Y. Guo and P. Vera. Accurate segmentation in FDG-PET images with guidance of complementary CT images. 2017 IEEE International Conference on Image Processing (ICIP 2017), Beijing, China, IEEE, 2017. {{:en:publi:final_icip17.pdf|pdf}}    - C. Lian, S. Ruan, T. Denoeux, Y. Guo and P. Vera. Accurate segmentation in FDG-PET images with guidance of complementary CT images. 2017 IEEE International Conference on Image Processing (ICIP 2017), Beijing, China, IEEE, 2017. {{:en:publi:final_icip17.pdf|pdf}}
    - C. Lian, S. Ruan, T. Denoeux, H. Li and P. Vera. Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive  distance metric. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages 1177-1180, Melbourne, Australia, IEEE, 2017. {{:en:publi:isbi-2017.pdf|pdf}}    - C. Lian, S. Ruan, T. Denoeux, H. Li and P. Vera. Tumor delineation in FDG-PET images using a new evidential clustering algorithm with spatial regularization and adaptive  distance metric. 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages 1177-1180, Melbourne, Australia, IEEE, 2017. {{:en:publi:isbi-2017.pdf|pdf}}
-   - C. Lian, S. Ruan, T. Denoeux, H. Li, and P. Vera, "Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PET Images", 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016), Part II, LNCS 9901, SPringer, Athens, Greece, pages 61-69, October 2016. {{:en:publi:miccai16.pdf|pdf}}+   - C. Lian, S. Ruan, T. Denoeux, H. Li, and P. Vera, "Robust Cancer Treatment Outcome Prediction Dealing with Small-Sized and Imbalanced Data from FDG-PET Images", 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016), Part II, LNCS 9901, Springer, Athens, Greece, pages 61-69, October 2016. {{:en:publi:miccai16.pdf|pdf}}
    - C. Lian, H. Li, T. Denoeux, P. Vera and S. Ruan, Dempster-Shafer Theory based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy, 18th International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI-2015), Part III, LNCS 9351, pages 695-702, Springer, Munich, Germany, October 2015. {{:en:publi:93510083.pdf|pdf}}    - C. Lian, H. Li, T. Denoeux, P. Vera and S. Ruan, Dempster-Shafer Theory based Feature Selection with Sparse Constraint for Outcome Prediction in Cancer Therapy, 18th International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI-2015), Part III, LNCS 9351, pages 695-702, Springer, Munich, Germany, October 2015. {{:en:publi:93510083.pdf|pdf}}
    - C. Lian, S. Ruan, T. Denoeux and P. Vera. Outcome prediction in tumour therapy based on Dempster-Shafer Theory.  IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015), New York, USA, pages 63-66, April 2015. {{:en:publi:016_0065.pdf|pdf}}    - C. Lian, S. Ruan, T. Denoeux and P. Vera. Outcome prediction in tumour therapy based on Dempster-Shafer Theory.  IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015), New York, USA, pages 63-66, April 2015. {{:en:publi:016_0065.pdf|pdf}}

User Tools