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Abstract 

 
We present in this communication the development of a 

multi-objects matching algorithm with ambiguity removal 
entering into the design of a dynamic perception system for 
intelligent vehicles. The originality of this system lies in the use 
of theories such as fuzzy mathematics and belief theory which 
allow the handling of inaccurate as well as uncertain 
information. Moreover, these theories allow both numeric and 
symbolic data fusion. We started from the hypothesis that we 
have some sensors providing redundant information in time. We 
develop in this article the problem of matching between the 
prediction (known objects) and the perception result (perceived 
objects). This make it possible to update a dynamic environment 
map for a vehicle. The belief theory will enable us to quantify 
association belief on each perceived and known objects. Some 
conflicts can appear in the case of object appearance or 
disappearance, or in the case of a bad perception or a confused 
situation. These conflicts are removed or solved using an 
assignment algorithm, giving a solution called the « best » and 
so ensuring the multi-objects tracking.  

  
 

1  Introduction 
 

Our research is focused on perception systems for vehicle in 
road situation. In order to increase driving safety, the European 
project Prometheus [1] has given the beginning of an answer 
about what could be the vehicle of the future: an interaction 
between the driver and the vehicle through a driving assistance 
system. 

Our works is carrying on this project. We are particularly 
interested in data fusion algorithms giving to the driver some 
accurate but above all reliable and pertinent information in 
relation with the current situation. In order to deal with 
information reliability, we have designed a perception algorithm 
combining some tools dealing simultaneously with the 
inaccuracy and uncertainty of dynamic environment 
representation.  

In this communication, we present a part of a perception 
system with the study of a multi-objects matching algorithm 
including ambiguity removal. Its goal is to associate perceived 

objects with known objects using fuzzy measures. This fuzzy 
data representation is introduced in a fuzzy estimator-predictor 
presented in [2]. The fuzzy measures (high level data) represent 
the perceived objects and the fuzzy prediction windows 
represent the known objects. The estimator allows the extraction 
of new data such as the number of objects in our environment 
with their associated inaccuracy and uncertainty. The predictor 
enables us to take into account the dynamics of each vehicle into 
our environment [3]. The matching algorithm makes it possible 
to switch from a multi-target detection to a multi-target tracking 
mode, which gives the possibility to take into account the 
appearance and disappearance of every object within our 
environment. 

The management of these appearances and disappearances 
allows us to propagate virtual objects through their predictions. 
These virtual objects then have an uncertainty in time. When 
this uncertainty becomes too great, the object disappears. This 
object propagation reduces the effect of awkward events such as 
objects crossing, measure deterioration due to weather 
conditions, or temporary sensors degradation (information 
missing or false alarms). 

Moreover, the multi-object tracking algorithm avoids some 
problems encountered by other algorithms of the same kind like 
the PDAF, which is not adjusted to targets crossing, the JPDAF, 
which takes into account a fixed number of targets and doesn’t 
initialise new tracks, or the MHT that has combinatorial 
problems [4] [5].  

We  quickly present, in a first part, the basic notions, the 
general points and the disadvantage of the belief theory. Then 
we suggest a generalisation of the Dempster’s combination rule 
[6] applied to our problem. These works are based on Michèle 
Rombaut research [7]. In second part, we will give an optimal 
solution to remove these conflicts and then obtain a new 
decision called « the best ». Afterwards, we will describe the 
way to build the initial mass set through a concordance operator 
between known and perceived objects. We will finish with some 
operating examples, a conclusion and our perspectives. 
  
 

2  Belief theory for dynamic association  
 
2.1  Generalities 
 

Belief theory allows both to model and to use uncertain and 
inaccurate data, as well as qualitative and quantitative data, so as 



to keep a consistency and homogeneity with all concepts and 
tools develop in the remaining of the algorithm shown in [3]. 
This theory is well known to "take into account what remains 
unknown and to represent perfectly what is already known". 

In a general framework, we can say that our problem 
consists in identifying an object designated by a generic variable 
X among a set of hypotheses Yi. One of these hypotheses is in a 
position to be the solution. In our case, we want to associate 
perceived objects Xi to known objects Yj. Belief theory allows us 
to value the veracity of Pi propositions representing the 
matching of our different objects. These propositions can be 
simple as well as complex: 

P1 = " perceived object X is known object Yi " 
P2 = " perceived object X is known object Yi or Yj " 
 
We must then define a magnitude allowing the 

characterization of this truth. This magnitude is the elementary 
probabilistic mass mΘ() defined on [0,1]. This mass is very close 
to the probabilistic mass, to the exception that we do not 
distribute this mass only on single elements but on all elements 
of the definition referential: 

 2Θ= { A/A⊆Θ} = {∅, Y1, Y2 ,..., Yn, Y1∪Y2 ,…,Θ}.  
This referential is build through the frame of discernment 
{ }nYYY ,,, 21 L=Θ  gathering all admissible hypotheses, which 

must be exclusive (Yi∩Yj=∅, ∀ i ≠ j). This distribution is 
function of the knowledge about the source to model. The whole 
mass obtained is called « distribution of mass ». The sum of 
these masses is equal to 1 and the mass given to the impossible 
case m(∅) must be equal to 0. 
 
2.2  The information combination 
 

The combination of information coming from different 
sources have the advantages of increasing the information 
reliability and reducing the influence of failing information 
(inaccurate, uncertain, incomplete and conflicting). But to obtain 
this result, it is necessary to have complementary and/or 
redundant information. 

The Dempster combination rule consists in obtaining a 
single mass distribution ()Θm  by combination of n elementary 

mass sets ()SjmΘ (which corresponding to the opinion of the 
source j about courant situation). We have thus an orthogonal 
sum noted: SnS mmm ΘΘΘ ⊕⊕= L1 ,⊕ being the operator of the 
Dempster combination. Our new mass set is built with the 
conjunctions of focal element set on each source: 
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But it is possible to get an empty hypotheses conjunction 
(Ai∩Bj=∅) and by definition, we must have the empty mass 
mΘ(∅)=0 and the masses sum on each proposition equal to 1. So 
it is necessary to re-allocate the mass affected to empty set on all 
other masses. For that, we need to re-normalise the final set of 
masses with the re-normalization coefficient  KΘ.. 
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In the framework of a processing an exhaustive frame of 
discernment, the combination of a great number of sources lead 

to a combinatorial explosion. This is the main drawback of this 
combination rule. On the other hand, it offers the advantage of 
being associative and commutative, which is not the case of the 
majority of the fusion operators. 
 
2.3 Generalized combination and multi-objects 
association  
 

In order to reduce this combinative complexity, we limit the 
reference frame of definition while adding as constraint that a 
perceived object can be connected with one and only one known 
object.  

For example, for a detected object to associate among 3 
known objects, we will have the following frame of 
discernment: 

{ } i321   ,,  Yation with is in rel meaning Xwith YYYY i=Θ  
From this frame of discernment, we build the referential of 

definition according to: 
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In this referential of definition, we find the singleton 
hypotheses of the frame of discernment to which we added 
ignorance with the hypothesis Θ and the nothing with the 
hypotheses *. We obtain then a distribution of masses made up 
of the following masses:  

   )(, jji Ym :  mass associated with the proposition « Xi is in  
relation with Yj. » 

)(, jji Ym  :  mass associated with the proposition « Xi is not in 
relation with Yj. » 

)( ,, jijim Θ  : mass representing ignorance. 

(*),.im   :  mass representing the reject : « Xi is in relation 
with nothing. » 

In this distribution of mass, the first index i indicates the 
processed perceived object and the second index j the known 
object. If an index is replaced by a dot, it means that the mass is 
applied to all objects perceived or known according to the 
location of this dot. 

Moreover, if we use a combination in cascade, the mass 
(*),.im  is not part of the initial mass set and appears only after 

the first combination. It replaces the conjunction of the 
combined masses )(, jji Ym . 

By observing the behaviour of the combination in cascade 
with n mass sets, we unveiled a general behaviour which enables 
us to put in equation the final mass set according to the initial 
mass sets. We thus obtain an independence of our final masses 
in relation to the recurrence of the combination. 

∏
≠
=

−⋅⋅=

jk
nk

kkijjiiji YmYmKYm
L1

,,,.,. ))(1()()(  

∏
=

⋅=
nj

jjiii YmKm
L1

,,.,. )((*)  

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+Θ⋅=Θ ∏∏

== nj
jji

nj
jjijijiii YmYmmKm

LL 1
,

1
,,,,.,. )()()()(  



with ∏
=

=
nl

lii KK
L1

,,.  

Ki,. is the re-normalization of the n combinations, the 
product of the various re-normalization carried out during all the 
combinations. 

∑ ∏∏
−=

≠
−=−= ⎟⎟

⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⎥
⎦

⎤
⎢
⎣

⎡
=∅

11 11
,,

11
,,. )()()(

nk
km

nm
mkkinni

nl
lii AYmYmKm

L LL

 

with )()( ,,, mmimimim YmmA +Θ=  

)(1
1

,.
,. ∅−
=

i
i m

K  

( )∏ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⋅−

=

nj

n

j jji

jji
jji

i

Ym
Ym

Ym

K

L1 1 ,

,
,

,.

)(1
)(

1)(1

1  

From each mass set, we build two matrices cr
i,.Μ and cr

j.,Μ  
which give the belief that a perceived object is associated with a 
known object and conversely. The sum of the elements of each 
column is equal to 1 due to re-normalisation. The resulting 
frames of discernment are: 

{ }jjnjjj YYYY *,,,2,1., ,,,, L=Θ   and 

{ },*,2,1,,. ,,,, imiiii XXXX L=Θ  
We can interpret Y*,1 as the relation «no perceived object Xi 

is in relation with the known object Y1» and Y1,*  as the relation 
«the perceived object X1 is not dependent with any known 
object». In the first case we can deduce that an object has just 
disappeared and in the second case, that an object has just 
appeared. These objects, which appeared or disappeared, can 
also be false alarms. 

The following step consists in establishing the best decision 
on association using these two matrices obtained previously. As 
we use a referential of definition built with singleton hypotheses, 
except Θ and *, the use of the mass redistribution function 
would not add any useful additional information. This 
redistribution would quite simply reinforce the fact that our 
perceived object is really in relation with a known object. This is 
why we use for our decision criterion the maximum of belief on 
each column of the two belief matrices. 

][)( ,,.
Cr

jiji MMaxYd =   

This rule answers the question « what is the known object Yj 
in relation with the perceived object Xi ». We have the same rule 
for the known objects: 
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The problem is then to know how to process ambiguities. 
Ambiguity will intervene when an object, perceived or known, 
is in relation with two perceived or known objects, or if the first 
maximisation gives a decision on the relation between objects Xi 
and Yj and the second maximisation gives a decision that is 
contradictory to the first, for example Yj in relation to Xk, i≠k. 

The following step consists in obtaining a matrix in which 
all the objects will be classified without ambiguities and with a 
maximisation of the belief on the decision.  

One wants to thus ensure that the decision taken is not 
" good " but " the best ". By the " best ", we mean that if we 

have a known object and some defective or frustrate sensor to 
perceive it, then we are unlikely to know what this object 
corresponds to, and therefore we have little chance to ensure that 
the association is good. But among all the available possibilities, 
we must certify that the decision is the " best " of all possible 
decisions. 

It is thus necessary to find a way of combining the lines and 
the columns of the two matrices of beliefs in order to obtain a 
new general matrix representing final associations. The 
following chapter describes how to solve this problem while 
avoiding the study of all the combinations of the elements 
concerned by the conflict. 

  
 

3 Conflicts Resolution  
 
3.1 Affectation: a solution to resolve the 
conflicts  
 

In order to use the most of possible information and to 
obtain an optimal decision with maximisation of the belief sum, 
we have decomposed the two belief matrix cr

j.,Μ et cr
i,.Μ . Thus 

we obtain a more synthetic new structure combining all 
information at our disposal. 

The decomposition of each of these matrices gives the sub-
matrices A1, A2 and B1, B2. The two first represent the relations 
between the various objects and the two others represent the 
impossibility and unknown concepts on the relations linking the 
objects. 

The two matrices B1 and B2 contain information on the 
appearance or disappearance of targets, or the expression of a 
conflict. By applying a conjunction to all the relations included 
in the matrices A1 and A2, we obtain a new more synthetic 
matrix that represents the relations between the n perceived 
objects and the m known objects. This matrix is homogeneous 
since we handle the same objects in the two matrices we 
combine.   

We can interpret this new matrix as being a cost matrix 
connecting two sets of data. Our goal is now to find the best two 
to two assignment of n perceived objects with m known objects. 
Setting this matrix in graph form brings us back to a traditional 
problem of assignment, which is generally seen as a particular 
case of the transport problem without capacities [8]. It can also 
be seen as a problem of perfect coupling with minimum weight 
(or maximum) in a bipartite graph [9]. 

If the known objects are independent, the total belief on our 
coupling is the sum of the beliefs of each couple perceived 
objects / known objects. Our problem is thus an assignment 
problem on the bipartite graph perceived objects / known 
objects. An arc of this graph will indicate a possible assignment 
of a perceived object with a known object and will be valued by 
the corresponding belief. The required solution is thus a 
coupling of n arcs and maximum belief with a constraint of non-
adjacency on the couples which means that a perceived object 
can be associated with one and only one known object and 
reciprocally. These algorithms of coupling have the advantage 
of generalising the assignment problems and being a part of a 
class of linear programs in integer numbers that admit a 
resolution algorithm with polynomial complexity in N and M 
(the number of arcs and the number of nodes of the graph) [10].  



In our system, we used a traditional assignment algorithm 
called the Hungarian algorithm [11]. This algorithm relies on the 
fact that we do not change the problem by subtracting from a 
line (or a column) any number α. This property enables us to 
reveal admissible arcs representing the most probable relations. 

The general principle of this Hungarian algorithm is the 
recurrence of the operations of coupling, of search of improving 
chains, marking and modification of the admissible arcs as long 
as we do not obtain a maximum coupling.  

 
3.2 Maximisation of the decision belief  
 

With this assignment algorithm, we have an optimal 
decision in the sense of the maximisation of the sum of belief. 
This algorithm is based on the processing of a square matrix, 
otherwise we add fictitious elements in order to have an 
exhaustive coupling, that is a coupling where each perceived 
object is affected to a known object. Each relation with a virtual 
object is valued with a belief equal to 0. 

For now, our decision is made of real or fictitious objects. In 
order to obtain our final decision, first we will take out these 
elements, then we will remove the assignments with a belief that 
is lower than the belief mi,j(*) associated with nothing. In fact, 
this second filtering enables us to use information on the 
unknown not used in the coupling algorithm. These two 
filterings are summarised by the following equation: 
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xi,j represents the relation between Xi and Yj, this relation is 
validated if xi,j=1 and is rejected if not. 
 
3.3 Quantification of decision confidence  
 

The cost that we will calculate from the sum of the beliefs 
will enable us to quantify the confidence we have in our 
decision. To say that a decision is " the best " is well but not 
sufficient. It is necessary to be able to quantify this concept of 
" better ". If in a case, the cost is 0.4 and in a second case, we 
have a cost of 0.9, we will be certain in both cases that the two 
decisions are the best (the two cases are obviously independent). 
However we will tend to give more confidence to the second 
decision because this one reflects a greater reliability on 
association. 

This confidence can be obtained by using the cardinality of 
the coupling that gives us maximum confidence and by using the 
beliefs. The coefficient obtained represents the percentage of 
confidence we have in our decision. Knowing the cardinal of our 
association, we know that, if we have a maximum confidence on 
all associations (we do not have any unknown factor then), the 
cost associated on our decision will be equal to this cardinal. 
This means that the belief on each association is equal to 1. 
Confidence we have in our decision is then: 
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Cij represents the belief that object Xi is in relation to the object 
Yj.  

xi,j represents if the object Xi is associated with the object Yj.. or 
not. 
 
 
4 Generation of the sets of masses  
 

One of the difficulties of this theory implementation is the 
creation of the set of the initial masses. To generate them, we 
must firstly use a distance measurement that quantifies the 
similarity between our perceived objects and our known objects, 
and secondly we need an operator that generates our mass set 
from our similarity index. According to the model of 
representation for the used information, this index is computed 
with the distance of Mahalanobis in the statistical representation 
framework or, in the possibilist framework, with the possibilist 
index or the index of Jacquard [12]. 

We studied an index of similarity from a representation of 
the objects by fuzzy quantities [3]. The support of a fuzzy 
quantity represents the inaccuracy around measurement and the 
height, its uncertainty.  

The index of similarity (or agreement) quantifies, by a 
geometrical approach, the agreement between two fuzzy 
quantities that are symmetrical, asymmetrical, normalised or 
sub-normalised. We give here two versions of this distance 
measurement. 
 

Similarity measurement for 1 dimension objects: 
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Similarity measurement for 2 dimensions objects:  
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This index quantifies the intersection between the known 
object and the perceived object. It is normalised by the 
projection of the fuzzy measurement whose certainty would be 
equal to 1. This index makes it well possible to take into account 
the uncertainty and the inaccuracy of the objects (perceived or 
known). The figures 4.1 and 4.2 show the behaviour of this 
agreement operator (2D) when we apply a translation motion on 
the perceived object on his axis and when we increase the 
uncertainty on the known object. We see the influence of a 
strong inaccuracy of our fuzzy measurement on the computation 
of the measurement of similarity. Indeed, we observe that the 
value of the agreement index is never equal to 1 even if the 
certainty of the perceived object and the certainty of the known 
object are both maximum. 
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Fig 4.1 fuzzy quantities: 
perceived object and known 
object 

Fig 4.2 Concordance index 
behaviour 

Using this index, we can generate our mass sets, but for that, 
it is necessary to find a suitable operator. Several works were 
already lead by [13], [14] or [15]. Often these operators are only 
well suited to particular cases. The most traditional operators are 
based either on exponential (adapted to classification), or on 
probabilities which makes it possible to handle the information 
modelled by the Gaussian. In our case, we want masses within 
[0,1] with the mass equal to 0 in the case of a total discordance 
and the mass equal to 1 for sources in total agreement. One 
wants also to be able to take into account the reliability of the 
information sources. This led us to develop this set of functions: 
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The coefficient α0 represents the reliability of information 
sources. 

The generated set of masses has the properties of the belief 
theory and reflects the initial beliefs on the hypotheses of the 
frame of discernment. 

 
Fig 4.4  Generation of the mass set 

 
 
5 Examples  
 

In this part, we will show a representative example of the 
operating mode of this multi-object association algorithm with 
ambiguity removal. The purposes of this example will first to 
handle appearances and disappearances of objects or false alarm 

and secondly to maximise the sum of the beliefs on our 
association and thus to obtain " the best " decision. 

Y1

Y3

Y2

Y4

X1

X3

X2

m(.)

distance

Y1 Y2 Y3 Y4

X1 X2 X3  
Fig 5.1 Our road situation corresponding to our scenario  
This example simulates a scenario that includes three 

perceived objects and four known objects (fig 5.1). One object is 
a 1D information (distance). In the three perceived objects, we 
have a false alarm or the appearance of an object. In the four 
known objects, we have an object that probably has just 
disappeared. The sets of masses for each set of relations between 
a perceived object and the known objects are given below. 
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Set of mass associated to X2 
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Set of mass associated to X3 
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From these sets of masses and by using the equations given 
in part 2.3 we obtain a new set of masses represented in two 
matrices of beliefs cr

i ,.Μ  and cr
j.,Μ . The first gives the belief of 

the relations between the perceived objects and the known 
objects and the second the belief between the known objects and 
the perceived objects. 

cr
i,.Μ Y1 Y2 Y3 Y4 * Θ 

X1 0.6545 0.1636 0.0182 0 0.0524 0.1113 
X2 0.3214 0.3214 0.0357 0 0.0090 0.3124 
X3 0.1154 0.6923 0.0192 0 0.0087 0.1644 

 
cr

j.,Μ X1 X2 X3 * Θ 

Y1 0.6000 0.1500 0.1000 0.0025 0.1475 
Y2 0.1429 0.1429 0.5714 0.0114 0.1314 
Y3 0.0833 0.0833 0.0833 0.3457 0.4043 
Y4 0 0 0 0.7290 0.2710 

For each one of these matrices, we obtained a decision by 
using the maximum of belief. The first decision obtained on the 
matrix cr

i ,.Μ  is: 
X1 is in relation to Y1   X2 is in relation to Y1  
X2 is in relation to Y2   X3 is in relation to Y2  

And the second decision with the matrix gives us: 
Y1 is in relation to X1   Y2 is in relation to X3 

 Y3 is in relation to Θ   Y4 is in relation to *  



We can deduce from the first decision we have a conflict on 
the object to associate with X2. The second decision shows 
firstly a total ignorance on the association of the first three 
known objects, and secondly an association of the fourth object 
Y4 with nothing. 

In order to solve this conflict, we will use the algorithm of 
ambiguity lifting on the new matrix resulting from the 
combination of our two belief matrices. 

cr
ji,Μ  Y1 Y2 Y3 Y4 

X1 0.3927 0.0234 0.0015 0 
X2 0.0482 0.0459 0.0030 0 
X3 0.0115 0.3956 0.0016 0 

In order to get a square matrix cr
ji,Μ , we add a virtual 

perceived object X4 with for each of its relations with the known 
objects a belief of 0. To reveal the admissible arcs in our matrix 
(given by ijij CC −= 1 ), we use the cost matrix cr

ji,Μ with a 
complement to 1. The result of this assignment algorithm gives 
the following association matrix:  

Xi,j Y1 Y2 Y3 Y4 
X1 1 0 0 0 
X2 0 0 1 0 
X3 0 1 0 0 
X4 0 0 0 1 

By applying our filtering, We can immediately eliminate 
association with the virtual objects (criterion on the cardinality: 

YjandXi ≤≤ ), in our case, X4 is our virtual object. Then we 
will use information on the belief mi,j(*), that is  the information 
on the fact that an object is  affected with nothing, to filter the 
remainder of the objects. 

We have ))(),(max()( ,.23.,33,2 ∗∗< mmYm  thus X2 is 
associated with " nothing ". We then obtain as a final decision 
that X1 is associated with Y1, X2 is associated with nothing and 
X3 is associated with Y2. This enables us to build the assignment 
matrix that follows: 

Xi,j Y1 Y2 Y3 Y4 * 
X1 1 0 0 0 0 
X2 0 0 0 0 1 
X3 0 1 0 0 0 
X4 0 0 0 0 1 

This association enters in the design of a wider algorithm 
enabling us to make multi-target tracking and dynamic 
environment cartography.  
 
 
6 Conclusion and future works 
 

This algorithm enables us to combine the opinions we have 
on relations between objects. We can take into account the 
inaccuracy and uncertainty on all measurements and predictions. 
We are also able, by using these fuzzy models of data, to 
generate sets of masses representative of the current situation. 
Moreover, this combination has the advantage of being 
associative and commutative, which is difficult to obtain with 
the majority of the data fusion operators. By generalising the 
Dempster combination rule, we also showed that it is possible to 

reduce the complexity of this combination and to make it 
independent of the recurrence. 

With the assignment algorithm, we showed that we give a 
decision we can affirm to be optimal, which is the “best”. We 
are also able to quantify the confidence we have on this 
decision. This algorithm must be integrated in a vehicle 
perception system in order to carry out the cartography of the 
dynamic environment of the vehicle in the purpose of 
characterising the current road situation. Also, the initialisation 
step of the algorithm is very simple and automatic, as it does not 
depend on constraining and hard to implement heuristic 
parameters, and does not suffer from constraints due to human 
intervention. 
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