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 Abstract – Efficient and reliable map-matching algorithms 
are essential for Advanced Driver Assistance Systems. While 
most existing solutions fail to provide trustworthy outputs 
when the situation is ambiguous (such as at road intersections, 
roundabouts or when roads are parallel), we present in this 
paper a new map-matching method based on multi-hypothesis 
road tracking that takes advantage of the geographical 
database road connectivity to provide a reliable road-
matching solution with a confidence indicator that can be used 
for integrity monitoring purposes. 
 Index Terms – GNSS-based Localization, Map-Matching, 
Multi-Hypothesis Tracking, Integrity.  

I. INTRODUCTION 
 

Map Matching (MM), using GNSS positioning and 
navigable maps, is a data association problem which 
consists in selecting the most likely road that corresponds to 
the current position of the mobile [19]. Unfortunately, 
because of large estimation errors, MM often has several 
solutions, i.e. several segments are declared candidates with 
good confidence. These segments can belong to the same 
road or to different roads in the case of ambiguous 
situations. Moreover, where there are inaccuracies in the 
map, or where a vehicle is being driven off-road, MM may 
not have a solution. Therefore, MM confidence or MM 
integrity is a crucial issue for many Map-Aided Advanced 
Driver Assistance Systems and other Intelligent 
Transportation Systems (ITS) applications that aim to 
improve road safety. In practice, any MM algorithm should 
be able to deliver confidence indicators. If these indicators 
exceed pre-defined thresholds for the particular application, 
the end-user should be warned that the solution provided is 
not reliable.  

To address this integrity problem we propose in this 
paper a multi-hypothesis road tracking method that attempts 
to exploit data pertaining to road-connectivity. This 
approach belongs to the class of dynamic state observers. 
Tracking techniques [4] allow a system to observe and 
follow the state of a mobile target by filtering noisy 
observations, while detecting and excluding aberrant data. 
They have very efficient implementations, since they often 
rely on the predictor/estimator paradigm, which means that 
all the information can be captured in the current state 
estimation. Therefore, it is unnecessary to retain in memory 
a window of data; by using a recursive scheme, previous 
states can be forgotten. 

For localization purposes, tracking the pose (position 
and attitude) of a mobile is very useful since it allows the 
merging of sequentially redundant data, once the initial 
global localization stage has been accomplished. In 
practice, model equations are nonlinear, and an arbitrary 
initialization can give rise to an erroneous convergence.  

Spatial road network data can be also used to improve 
the performance of MM, for instance when GPS is not 
available, by constraining the localization space (geometry) 
and through anticipation (connectivity). It therefore 
becomes necessary to integrate navigable map information 
into the localization tracker. Classical map-matching 
methods include mainly deterministic methods [2] [24], 
Bayesian methods [12] and fuzzy logic methods [23] [18] 
[14] and set-membership methods [20]. 

Map matching inevitably produces situations of 
ambiguity, for instance at junctions or where roads are 
parallel, or when GPS suffers from outages. When a mono-
hypothesis approach is applied there is a risk of choosing an 
incorrect solution. When the system detects this mistake the 
tracking will be reset and MM will need time to recover the 
correct solution. In contrast, a multi-hypothesis approach 
maintains all the possible solutions in situations of 
ambiguity; each hypothesis inhabits a private world on 
which the alternative hypotheses do not encroach. 
Hypotheses are removed when  they become unlikely. 
Using a Bayesian framework, it is possible to quantify the 
probability of each hypothesis with respect to the others. 
So, at each step, the most probable hypothesis can be 
output. The main advantage of Multi-Hypothesis Map-
Matching (MHMM) over a Mono-Hypothesis approach is 
that the true solution is tracked with a high probability: if 
the current solution is declared incorrect, the system can 
immediately output a new solution without any transient 
phase.  

The algorithmic complexity of MHMM is usually 
exponential, since each hypothesis can generate new 
hypotheses at each sampling step. In this paper we propose 
using road connectivity information from the navigable map 
to overcome this drawback, so that new hypotheses are 
created only when they are really necessary. We present an 
MHMM based on a Gaussian mixture where each 
hypothesis has a corresponding Electronic Horizon (EH) 
that performs a Gaussian filter.  The EH is a set of two 
roads that the hypothesis is expected to follow. A weight 
(sometimes known as a score) indicating the probability of 
each hypothesis with respect to the others is attributed so as 
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to facilitate the management of the set of hypotheses. 
Finally, we propose a simple strategy to monitor MM 
integrity. Our proposal is to declare the MM worthy of 
confidence when there is only one credible hypothesis and 
when the normalized residuals of this hypothesis fall below 
a threshold. 

The paper is organized in 5 sections: in Section II, the 
mathematical formulation of the use of a priori cartographic 
information about the localization space is presented. In 
Section III the MHMM mechanism is described. Then, in 
Section IV, integrity issues are discussed and a new MM 
integrity criterion is proposed. Finally, experimental results 
illustrating the performance of this approach are presented 
in Section V. 

II. LOCALIZATION  USING A PRIORI 
CARTOGRAPHIC INFORMATION ABOUT THE 

LOCALIZATION SPACE 
Suppose that a map information source is available. 

This map provides a priori information that constrains the 
localization space. For example, a car is likely to be on a 
road, and unlikely to go through a building. The 
cartographic information considered here is a set of roads 
described by interconnected nodes. Each road comprises a 
start node and an end node, with several intermediate 
points. 

In this section we formalize the problem of using a 
priori cartographic information in the localization process. 
We show that the map can be used as an observation (like 
any exteroceptive measurement) in the state observation 
process.  

Suppose that sk represents the mobile state vector at 
time k; zk is an exteroceptive sensor observation (a GPS for 
example).  
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The localization problem consists in estimating the 
probability p(sk | zk

 , g,uk), given the set of observations  
zk = {zk, …, z1}, and the a priori geographical information g.  

Let us see how this geographical information may be 
used to estimate this probability density. 
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Using Bayes’ theorem, equation (2) can be also written as: 
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The denominator p(zk | zk-1
 ,g,uk) is independent of sk. and 

can be considered as a normalization term η.  (3) becomes: 
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Let us now consider each of the two expressions of this 
product. 

Observation zk at time k is independent of all the 
previous zk-1, the observation noise being white. Remarking 
also that the exteroceptive sensor noise is independent of 
the map g, we have: 
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Let us now consider the second term of the product, and let 
us make the a priori density p(sk | zk-1

 ,g,uk) appear using the 
Total Probability theorem and Bayes’ theorem: 
 1
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However, )u,g,z,ss(p k
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1| −  represents the evolution 

model. It is independent of the observations zk, and given 
the assumption of a 1st order Markov process, it depends 
only on the current entry uk. 
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Substituting (5) and (8) into equation (4): 
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Let us now consider the term p(sk | sk-1  ,g, uk ) that 
expresses the influence of the a priori information in the 
localization process: it can be used in the prediction step 
[15], [6], or considered as an observation as we proposed. 

Using Bayes’ theorem, we have: 
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Assuming that the cartographic observation does not 
depend on the current pose, and given that the map is a 1st 
order Markov process, we have: 
 )()|( 1 gpsgp k =−

 (11) 

 )|(),|( 1 kkk sgpssgp =−
 (12) 

To make these two assumptions valid, it is necessary 
that the vehicle moves relative to the map (sk ≠ sk-1).  
Making substitutions in equation (10), we obtain: 
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Equation (8) becomes: 
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By introducing
)g(p

' ηη = , equation (4) can thus be written  

 ).sg(p).sz(p'.)u,zs(p kkk
kk

k ||| η=   

 1
11-k

11 || −
−

−−∫ k
k

kkkk ds.)u,g,zs(p).u,ss(p.  (16) 

In this expression p(zk | sk ) and p(g | sk) represent 
respectively the likelihood of the exteroceptive observation 
and those of the map g relative to the predicted position sk.. 
Here the map is clearly considered as an observation. 

As an example, let us consider a map of one segment 
representing a road on which the vehicle is traveling. This 
case is represented by Fig. 1, which illustrates p(g | sk), g 
being the map. 

Let us consider the line ∆ passing through h(sk)  (where 
h(sk) is the projection of the state sk in 2D map observation 
space) and perpendicular to the segment in question. Let us 
suppose that along ∆ the density of probability p(g | sk) is 
Gaussian. The likelihood is obtained by calculating the 
innovation µ (here the deviation with the road) and by using 
it in the density of Gaussian probability.  
 

 
Fig. 1. Map probability expressed with as a Gaussian density 

function. 
 

It will be noticed that the probability density function 
can have any shape, and that it can be approximated by a 
mixture of Gaussians. For each Gaussian, the same 
approach can be applied. 

III. USING A MAP-MATCHING METHOD BASED ON A 
MULTI- HYPOTHESIS APPROACH  

MM is a data association problem. Data association in 
dynamic situations is a key issue in Multi-Target Tracking 
(MTT) systems [3]. The association stage consists in 

establishing a correlation between the predicted targets 
(known as tracks) and the observations detected by the 
sensors. Multi-Hypothesis Tracking MHT is one of the 
promising approaches to the multi targets tracking problem. 
At every stage it selects the most likely solution to the 
tracking problem, while retaining some other hypotheses 
for future assumptions. MHT supports the creation and 
destruction of tracks. By definition, a track is the state 
vector of a target, with a covariance and a score and 
updated with an observation, while a hypothesis is a set of 
compatible tracks. The likelihood of a track is determined 
by a score maintained as a Log-Likelihood Ratio (LLR) 
[21]. Different implementations of MHT algorithms are 
described in [4]. Because the number of tracks/hypothesis 
can grow exponentially, ad-hoc methods can reduce the 
combinatory: pruning techniques can delete 
tracks/hypotheses with low probabilities, and merging 
techniques combine similar tracks. 

In this paper we assume that MHMM tracks a single 
vehicle position using multiple hypotheses. We are 
therefore describing a single target tracking case, and do not 
need to distinguish between track and hypothesis. To clarify 
this, a definition of hypothesis is given and the methods for 
hypothesis creation and deletion are described. The 
track/hypothesis score (weight) is computed and maintained 
as in MHT. We describe in detail the management policy 
for the hypotheses, where an EH comprising 2 roads is 
associated with each Gaussian filter.  

A. Hypothesis definition 
The EH associated with each hypothesis consists of two 

roads (each one being a poly-line): the current road and a 
following road connected to it. There are two main 
advantages. First, there is no discontinuity when 
approaching the end of the current road. Secondly, the MM 
with this EH is extremely simple since it is a poly-line 
without any junctions. Given the typical length of roads, it 
is unnecessary to retain more than two roads in memory: 
between two samples the distance traveled is limited to a 
few meters.  
 

Hi  : Localization Hypothesis 

 A state: a state vector si,k and its associated  
covariance matrix Pi,k, 

 A electronic horizon gi that includes the road of the 
mother-hypothesis Ridm and an upcoming one Ridf, 
connected to it gi = {Ridm,i , Ridf,i } 

 A weight wi,k, showing (after normalization) the 
relative importance of the different hypotheses 

 An absolute confidence indicator vri,k quantifying 
confidence in this hypothesis. 

Table 1. Definition of a localization hypothesis 

A hypothesis Hi at time k is defined as being composed 
of the elements shown in Table 1. 



Special Issue of the Journal of Intelligent Transportation Systems on Intelligent Vehicle Navigation 

  4 

B. Hypothesis Creation 
One important requirement is an efficient strategy when 

a hypothesis reaches the end of its road. Let us assume that 
the location of a hypothesis is approaching the end of its 
EH, and that the current road is connected to two upcoming 
roads. 

A first possibility is to replicate the current hypothesis 
into two others, corresponding respectively to each of the 
upcoming roads. The EH associated with each hypothesis 
includes the current road and one of the two upcoming 
ones. If there is no reason to favor one path over the other 
(such as we might, for example, in the case of a pre-
computed route), then at the time of duplication the 
Gaussians have the same weight. 

A second possibility is to clone the current hypothesis 
with anticipation. This is essential to take into account map 
and estimation errors. 

More generally, let us suppose that at time k, a 
hypothesis i designated by Hi,k (si,k , Pi,k , gi, wi,k, vri,k) 
arrives at a distance ∆ from the end of its EH gi. The 
hypothesis Hi,k is replicated into a number of new 
hypotheses. The information on the number of roads 
connected to the end of the current road nc, is stored in the 
map structure: the number of created hypotheses is equal to 
the number of connected roads nc. For j = 1 to nc, each new 
hypothesis j gets the same weight as the mother-hypothesis 
i and the same state at the time of creation (i.e. state vector 
si,k and covariance matrix Pi,k). The new EH gj associated 
with each new hypothesis j contains a road from the EH 
Ridf,j (roads connected to the end of the current segment) 
and the road Ridm,i corresponding to the mother hypothesis 
(the road on which hypothesis Hi was evolving). We may 
express this as Ridm,,j = Ridf,i. It should be noted that the new 
hypotheses do not continue to include the road Ridm,i from 
their mother hypothesis, because the size of each EH gj 
would then increase endlessly. Moreover, since the 
likelihood vrl,k associated with each hypothesis k is re-
computed each time, it makes no sense to transmit it. 

After transmitting its characteristics to the newly-
created hypotheses, the mother hypothesis Hi,k is eliminated. 
A normalizing step for the weights wk is then carried out.  

To illustrate the EH management associated with the 
hypotheses, consider the case of a simple intersection of 
three roads as shown in Fig. 2. We suppose that the 
hypothesis Fi, associated with the EH {ID0, ID1} has 
reached the threshold distance ∆ from the end of road ID1. 
Two hypotheses Fm and Fn are created from the properties 
of Fi. The EH associated with Fm and Fn, will be 
respectively composed of {ID1 ID2} and {ID1 ID3}. 

 

 
Fig. 2. Illustration of a 3-road intersection situation 

C. Hypothesis Deletion 
As soon as a hypothesis’s weight falls below a fixed 

deletion threshold ξel, we consider that the hypothesis is no 
longer credible, and it is eliminated. To avoid the 
elimination of a credible hypothesis Hi whose instantaneous 
likelihood vri,k may decrease suddenly at time k, for 
example as a result of an inappropriate observation that 
causes its weight wi,k to fall below the deletion threshold ξel, 
we propose filtering the computational weight wi,k: 

 1,1,,, .. −− += kimemkikiki wLwvrw  (17) 

where Lmem (0<Lmem<1) is a forget factor that quantifies the 
part of the former wk-1 that is injected into wk. Typically, 
Lmem is set to 0.1. Note that the threshold ξel is a parameter 
that has to be tuned respectively with the map offset.  

D.  Detecting tracking divergence 
Tracking divergence can occur when all hypotheses are 

mistaken and cease to bear any relation to the observations 
that update these hypotheses. 

In normal conditions, if a hypothesis Hi moves away 
from the updating observations, its instantaneous likelihood 
vri will decrease in the update stage, and thus its weight wi 
will also decrease. In the case where all available 
hypotheses move away from the updating observations, all 
their likelihoods and consequently their weights will 
decrease, but as a normalizing step follows, the decrease in 
the weights will no longer be effective.  

In order, therefore, to detect system divergence, a non-
normalized sum of weights should be computed, and this 
computation should be carried out with a time interval ∆t, 
so as to prevent intermittent outlier observations from 
triggering divergence detection unnecessarily. If the non-
normalized computed sum remains below a fixed threshold 
δdiv during a ∆t interval, a re-initialization of the system is 
undertaken with the first valid GPS data based on the 
mechanism shown. 

It should be remarked that system re-initialization 
occurs only rarely. It may result from significant 
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discrepancies in digital maps in some regions, or from 
mismanagement of the road-map cache. 

 
 

 
Fig. 3. Synoptic of MHMM 

E. Estimating the vehicle location from the 
different hypotheses 

Several solutions can be proposed to achieve the 
estimated map matching from the different hypotheses at 
time k. We propose selecting a set of credible hypotheses as 
output: the normalization of the weights wj,k with respect to 
the maximum of the weights is the metric that is compared 
to a fixed threshold δimp to characterize the probable output 
hypotheses. 
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The threshold δimp must be chosen in some optimal 
way. If δimp is too small, a large number of hypotheses 
(including unlikely ones) will be proposed as outputs. In 
contrast, a high δimp will reduce the number of likely 
hypotheses to zero, one or two. 

In the literature concerning particle filters [9], the 
notion of “effective particles” is often used to trigger a new 
process of particle re-sampling. Let us define the number of 
effective particles as: 
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In [9], the authors propose that if Neff becomes less than 
two-thirds of the total number of particles N, then the 
particles must be re-sampled. We have adapted this strategy 
to the case of Gaussian particles. We have linked the 
threshold δimp with NEff: 
  δimp =1/(2.Neff)  (20) 

F. Practical consideration 
Let us suppose that at time k, we have N hypotheses: 

for all the available hypotheses Hi (i=1:N), each hypothesis 
has its own Kalman filter. The traveled distance and 
heading rotation are first obtained from the dead reckoning 
sensors. If the vehicle is moving, the correction of the 
previous prediction is computed using the current GPS fix.  

Suppose now that the system is operating in normal 
tracking mode (after the initialization stage). If we retain all 
the hypotheses, their number will increase without bound, 
given that, at the end of each road-segment, each hypothesis 
will be divided into at least two. We have set a maximum 
number of hypotheses (denoted Npmax). Typically, the values 
of Npmax range from 8 to 16 hypotheses. When the total 
number of hypotheses exceeds Npmax, we retain Npmax 
hypotheses according to their score wi.  

G. Update step 
Using the result demonstrated in section II, we have 

two separate exteroceptive observations: GPS fixes and 
map observations. To compute the weights efficiently, the 
update steps are serialized on the reasonable assumption 
that there is no correlation between errors. So, in the update 
step, the state of every hypothesis is corrected by the two 
observations, and thus the weights wi,k are also updated and 
normalized as many times as there are observations. We 
prefer to use a hybridized GPS (HGPS) instead of a 
standalone GPS receiver to overcome the problems of GPS 
jumps and, more importantly, the low availability of GPS in 
urban areas. If there is masking, and if navigation is using 
dead-reckoning prediction, HGPS continues to provide 
exteroceptive observation to the MHMM system and the 
different hypotheses continue to be updated in terms of 
weight and state. 

It is important to remark that the map data of the EH is 
always coherent with its hypothesis. However, a hypothesis 
can rapidly become inconsistent with the HGPS (if it is an 
incorrect hypothesis). Thus, we have implemented a Chi-
Square test with the HGPS before correcting the 
hypothesized pose where there is inconsistency with the 
HGPS. Nevertheless, the weights are always updated in 
order to make the confidence decrease (see Algo. 1).  
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The weights wi, the likelihoods vri, and the filters’ 
estimates are updated by the two exteroceptive sources. The 
weights of the filters are updated by the HGPS point. The 
weight of the incorrect hypotheses will decrease step by 
step. The likelihoods of the hypotheses will also be 
changing in the same way but more rapidly than the weights 
(which are cumulative normalized probabilities). The 
likelihoods can be interpreted as an indicator of the overall 
consistency of the system, like any normalized residual 
quantity. 

Another important characteristic of the map-matching 
is its spatial nature. Many approaches rely on data fusion 
approaches that assume independence of the errors. If the 
vehicle is stationary, the same map data can be used several 
times, violating the independence hypothesis. For these 
reasons, the map-matching can be formulated by a space-
triggered state space description: if the distance traveled 
between 2 time-steps (also known as the curvilinear 
abscissa) is smaller than a threshold, then the map-updating 
step is not done. 

H. Segment selection 
Each hypothesis has its own map: it is an EH composed 

of 2 roads. The road-matching method consists in selecting 
the nearest segment whose direction is compatible with the 
heading of the vehicle. The orthogonal projection is 
considered as the map-matched position and used as an 
exteroceptive observation by the corresponding hypothesis 
filter. This mechanism is used at each time step. 

I. Efficient Map Update Implementation 
Let us examine how the map correction stage is 

performed using an observation computed from the EH. We 
first suppose that a candidate segment has been selected. 
Consider the following: 

 
- [ ]Tkikikiki yxs ,,,, θ=  is the pose of the 

hypothesis 
- [ ]Tkikiki yxZ ,,, =  is a point that corresponds to 

the projection of the estimated position onto the 
most likely segment (see equation  (21) and 
Fig. 4). 
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The estimate is merged with the map during the 
Kalman estimation stage. The covariance associated with 
the map observation is modeled by an ellipsoid around the 
selected segment, as shown in Figure 4 [7]. The center of 
the ellipsoid is Ym, the orthogonal projection onto the 
segment of the last estimated location. In the frame 
associated with the segment, the longitudinal inaccuracy is 
far greater than the lateral inaccuracy. Theoretically, the 

longitudinal inaccuracy can be chosen as large as possible, 
even infinite for a long segment. In practice, we consider a 
one-sigma value in the order of the length of the segment.  

Fusion (GPS,  
DR sensor) 

Confidence Zone 
around the segment 

Result of the 
fusion 

 

Map observation 
 

Fig. 4. Merging a hypothesis’ estimate with the selected segment 
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J. Complete Algorithm 
1 For every hypothesis Hi at time k: 

1.1. Prediction step using proprioceptive sensors 
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1.2. Map update step 
Compute the map observation using the Hi’s EH  
Update the state using this observation 
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       Update the weight using the likelihood of the map   
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'
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T
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1.3. GPS update step, if a hybrid GPS fix is available 
If the fix is coherent with the current hypothesis Hi  

   Update the state using the hybrid GPS 
1

,1|,,1|,,, )...(. −
−− += βQJPJPJK T

sikkisikkisiki
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End If 
Update the weight using the likelihood of the GPS 
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T
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      1.4. Hypotheses creation using connectivity 
If Hi’s position < ∆ from the end of its EH 

                  Replicate Hi as many times as connected roads 
                  Delete Hi  
            End if 
2. Normalize the weight of every hypothesis   
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,
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3.Hypotheses management  
Sort the Hi with respect to their weight 
Keep the N Hi that have the highest weight  
Delete the others   

4 Decision stage 
Compute the number of efficient hypotheses 
 

Algorithm 1. MHMM Algorithm 

si,k and Pi,k represent respectively the state vector and the 
covariance matrix of the hypothesis i, zk is an observation, f and h 
are the evolution and observation equations, K is the filter gain, 

N(a,b) is a normal distribution of mean a and variance b. 

IV. INTEGRITY ISSUES 
Nowadays, integrity is a fundamental characteristic of 

localization systems. For some ITS applications, integrity 
can be more important than precision.  

By definition, the integrity of a localization system is 
the measure of confidence that can be accorded to the 
exactitude of the positioning delivered by this system.   

In practice, integrity means applying successive checks 
to ensure that the information is valid. A good example of 
this concept is RAIM (Receiver Autonomous Integrity 
Monitoring) [1], which is a technique to verify the 
consistency of the current GPS navigation solution when 
pseudorange redundancy exists (more than 5 satellites). The 
principle of a snapshot RAIM is to monitor normalized 
residuals using a threshold computed with a Chi-Square 
distribution, under Gaussian assumptions and given 
selected False Alarm and Miss Detection probabilities.  

Since snapshot methods are not adapted to dynamic 
sensor fusion, several results [8] indicate that integrity can 
be assured by checking the consistency of the innovation 
signal of a state observer. MM integrity can therefore be 
monitored using normalized innovations between candidate 
segments and the current estimated pose (position and 
heading). Unfortunately, as a result of inaccuracies in the 
map or because of large estimation errors, map-matching 
often has several solutions, i.e. several segments are 
declared candidates with good confidence. Applying a 
snapshot-like integrity test for MM is therefore time-
consuming, since at each sample time several candidates 
can be declared safe. To tackle this problem, MHMM is 
very useful since it is able to make use of the road-
connectivity information, so to quantify the confidence of 
each hypothesis with respect to the others.    

Our proposal is to declare MM worthy of confidence 
when there is a hypothesis that is much more likely than the 
others, and when a test on the normalized innovations of 
this hypothesis is below a consistency threshold. In [17], 
the authors propose to monitor three indicators (distance 
residuals, heading residuals, and an indicator related to 
uncertainty of MM) to check the integrity of MM. Since a 
mono-hypothesis scheme is used, they propose combining 
the three indicators using fuzzy rules. Integrity is then 
monitored using this scalar value.  

With MHMM, integrity monitoring has a different 
paradigm since there are two different criteria. First, we use 
the number of efficient hypotheses (termed Neff in 
Equation 19) and a Normalized Innovation Squared (NIS) 
similar to a Mahalanobis distance in position and heading. 
This innovation information is computed between the 
HGPS and the predicted state of the most likely hypothesis. 
Algorithm 2 summarizes this simple integrity monitoring 
strategy. In [5], we have studied different monitoring 
strategies that can be used for other ITS applications (such 
as road charging). 
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Threshold1= function(probability ratio between the 
hypotheses) 
Threshold2=Chi2Inv(False Alarm Probability) 
Confidence=0 
If Neff < Threshold1  

If NIS of the most likely hypothesis < threshold2 Then 
Confidence=1 // MM output is confident 

 End If 
End If 

Algorithm 2. Integrity monitoring. 

V. RESULTS 
 Experiments were performed in Compiègne using a 
KVH fiber optic gyro, an odometer input and a Trimble 
AgGPS 132 (L1-only receiver). The GIS used by the map-
matching module is based on a Software Development Kit 
(SDK) provided by BeNomad (www.benomad.com). The 
maps are size-optimized and provided in the SVS (Scalable 
Vector System) file format. For our prototype, we used a 
geographical database converted in SVS format. The SVS 
format is very compact since the file size for the whole 
town of Compiegne is only 68 KB and that for the entire 
Oise département is only 3 MB. As a source digital map, 
we used a NavteQ database. In this map, coordinates are 
expressed in the French Lambert 93 projection system. 
 We now report results that we obtained from a 5.7 Km 
test (see Fig. 5) with the car shown in Figure 6. 
 

 
Fig. 5. Overview of the test site with the trajectory 

 
Fig. 6. Car used in the experiments 

 
Fig. 7. Hypothesis creation at a road-intersection 

To illustrate the MHMM mechanism at intersections, 
Figure 7 shows a real case. An initial hypothesis (shown in 
dotted, light blue lines) arrives at the threshold distance ∆ 
(here ∆=7m) from the end of the road. This road-end is 
connected to two different roads. The initial hypothesis is 
therefore divided into two new hypotheses (one is shown as 
‘x’ and the other as ‘ ’). The HGPS is shown as ‘*’. 
Changes in weight w and instantaneous absolute likelihoods 
of the two created hypotheses vr are shown respectively in 
the curves on the lower left and lower right. 

The left-hand side of Figure 8 shows all the hypotheses 
during an on-road test in Compiègne. On the right-hand 
side, the most likely hypothesis is shown at each point in 
this trial.  
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Fig. 8 Hypotheses and the most likely one during an on-road trial. 
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Fig. 9 Most likely hypothesis, integrity and hybrid GPS 

 
During on-road tests, different sensor data {GPS, 

wheel speed sensors, yaw rate gyro and video cameras} 
were acquired and saved into timestamped data files. The 
cameras provided different views of the vehicle’s 
environment. 

In the laboratory, we developed a “Data player” to 
replay and process the sensor data in similar conditions as 
real time. While replaying the stored localization data the 
player can also read images acquired by the cameras, and 
using this method an operator is able to know exactly, from 
the map and the video, which road the car is traveling on. 
Figure 10 gives a screenshot of a player we used. 

 

 
Fig. 10 - Data player with video monitoring for the data analysis 

Figure 9 shows the integrity computation result from 
the most difficult part of the trial (upper part of Fig. 8). The 
Most Likely Hypothesis (denoted by MLH) is shown as ‘+’, 
the hybrid GPS as ‘.’, and we can clearly see that the map is 
offset with respect to the GPS. When the MLH is shown in 
bold, it means that it is considered worthy of confidence. 
The integrity indicator is here the bold line. We draw the 
reader’s attention to the ambiguous situation indicated by 
the circle. Because of the map offset, the MLH is not the 
appropriate one. Nevertheless, the confidence indicator 
clearly indicates that the output is not likely. This correctly 
corresponds to the reality on the ground.  
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Fig. 11 Number of effective filters during the road test 

 
Figure 11 shows results regarding the number of 

efficient hypotheses Neff during the test. Different values of 
Neff were matched up with the following geographical cases: 
Neff ≅ 1 is often obtained for the case where the vehicle is 
running on segment, far from an intersection, with the 
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associated trajectory having a fairly large weight. Neff ≅ 2, 3, 
4 is generally obtained when approaching an intersection, 
with, respectively, 2, 3, 4 roads in the upcoming 
intersection. 

With nominal settings, 97% good matches were 
obtained between the most likely hypothesis and the actual 
position of the vehicle. It was confirmed that the incorrect 
matches correspond to ambiguous situations correctly 
detected by the MHMM. The NIS threshold is less 
sensitive. In practice, we used a constant value 
corresponding to a Threshold2 = 6 (which corresponds to a 
False Alarm probability of 0.05). If the errors are Gaussian, 
then the NIS follows a χ2 distribution (with 2 degrees of 
freedom here). Usually [8], the accuracy requirement of a 
GNSS navigation system is specified at the 95th percentile, 
i.e. for any estimated position at a specific location the 
probability that the positioning error is within the accuracy 
requirement should be at least 95%. 

1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

time

N
IS

 
Fig. 12. NIS test between the Most Likely hypothesis and the 

HGPS 

Figure 12 shows the result of a Chi-Square test on the 
NIS between the most likely hypothesis and the HGPS. The 
bold line is the χ2 threshold corresponding to a tail of 5%. 
The number of NIS points that are higher than this 
threshold is 4.3% of the total number of points. Thus, this 
result is coherent with the range of 5%. It also indicates that 
the Gaussian assumption regarding the noise distribution is 
in practice justified. The peaks in the NIS curve correspond 
either to false matches or to map errors (important map 
offsets). 

Let us examine how the threshold on the number of 
effective hypotheses (Threshold1) has an effect on the 
results of the integrity monitoring. To this end we consider 
the False Alarm (FA) and Missed Detections (MD) rates, as 
in [17]. We declare that there is a false alarm when the 
integrity computation asserts that the system is non-
confident, while its output is correct. A missed detection is 
observed when the computation indicates that integrity is 
checked while it is not. 

Let FAR denote the FA rate and MDR the MD rate. 
The Overall Correct Detection Rate is defined as OCDR=1-
FAR-MDR [17].  

Figure 13 and Table 2 show respectively the FAR and 
the MDR, and the FA and MD, for different Neff thresholds 
for an on-road test composed of 3661 positions. We clearly 
see that if the threshold on Neff is high (more permissive), 
the FA number decreases, but the number of MD increases. 
The OCDR, which is a global indicator on the good 
behavior of the integrity computation, increases also.  

 
Neff 

Threshold 
FA MD OCDR 

1.1 536 4 85.25 
1.2 527 5 85.47 
1.5 467 6 87.08 
1.7 403 7 88.80 
1.9 395 15 88.80 

Table 2. Statistics for 3661 samples. 
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Fig. 13. False Alarms and Missed detections versus the number of 

effective hypotheses threshold. 

We observe that our integrity monitoring is cautious, 
since the FAR is high, entailing an availability of 85-88% 
for the MM. We observe also that the MDR is low (<0,5%) 
which is a good performance. If this criterion is crucial, the 
Neff threshold has to be tune to a low value close to 1.  

VI. CONCLUSION 
This paper has presented a map-matching method that 

relies on multi-hypothesis tracking for on-road vehicles. 
This method combines proprioceptive sensors with GPS 
and map information. The main idea behind this approach is 
to associate a hypothesis with each newly-encountered road 
after an intersection or roundabout. The likelihood of each 
available hypothesis is evaluated by computing a recursive 
weight through a likelihood that updates the weight of the 
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different hypotheses. We have proposed a simple integrity 
monitoring strategy that relies on two indicators.  The 
decision rule we have proposed takes account of 
consistency of estimated location with the map, as well as 
the respective probabilities of different hypotheses to 
handle ambiguity zones. Real tests were carried out in real 
road conditions and results illustrate the performance of the 
method.  

A direct perspective of this research is to enhance 
MHMM integrity computation while approaching 
intersections, since we have remarked that our strategy is 
too cautious in such cases. One idea is to merge closed 
hypotheses before applying the decision rule. Another 
perspective is to test this strategy with extensive road tests. 
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