
 
 

 

  

Abstract—This paper describes a multi-sensor fusion system 
dedicated to detect, recognize and track pedestrians. The fusion 
by tracking method is used to fuse asynchronous data provided 
by different sensors with complementary and supplementary 
fields of view. The confidence in detection and recognition is 
calculated based in geometric features and it is updated using 
the Transferable Belief Model framework. The vehicle 
proprioceptive data are filtered by a separate Kalman filter 
and are used to estimate the relative and the absolute state of 
detected pedestrians. Results are shown with experimental data 
acquired in urban environment. 

I. INTRODUCTION 
Recent projects on pedestrian detection [1] or obstacle 

detection [2] have highlighted the use of multi-sensor data 
fusion and more generally the multiplication of data sources 
in order to obtain more reliable, complete and precise data. 
The Vehicle to Vehicle communication is an example to 
enlarge the field of view of a vehicle [3]. 

The work presented in this paper is a contribution to the 
development of an “Advances Driver Assistance Systems” 
(ADAS). A generic multi-sensor pedestrian detection, 
recognition and tracking system, is introduced. However, 
sensors are not synchronized and have not the same 
performance and field of view. Thus to explore the whole 
capability of sensors in order to benefit of all available data 
and to solve the problem of asynchronous sensors, we 
present a generic method to fuse data provided by different 
sensor, with complementary and/or supplementary fields of 
view, by tracking detected objects in a commune space and 
by combining the detection and/or the recognition 
information provided by each sensor taking into 
consideration its performance. 

This paper is organized as follows: section II presents the 
proposed multi-sensor fusion system architecture and 
describes the object level fusion by tracking method. Section 
III described the state models used to filter and estimate 
vehicle and pedestrians’ kinematical state. Section IV 
presents the detection and recognition confidences 
calculation and update. Experimental results are shown in 
section V illustrating the effect of sensors performance. 
Conclusion and perspectives will be proposed in the last 
section. 
 

Manuscript received April 30, 2008. This work is a part of the project 
LOVe (Logiciel d’Observation des Vulnérables http://love.univ-
bpclermont.fr/) and supported by the French ANR PREDIT.   

Fadi Fayad and Véronique Cherfaoui are with HeuDiaSyC UMR CNRS 
6599, Université de Technologie de Compiègne, BP 20529 - 60205 
Compiègne Cedex – France.  

Email: firsname.lastname@hds.utc.fr. 

II. OBJECT-LEVEL FUSION BY TRACKING  

A. Overview of the system 
The described multi-sensor pedestrian tracking system is 

an in-vehicle embedded real-time system. This generic 
fusion system (Fig.1) has as input the unsynchronized data 
provided by independent unsynchronized sensors with 
complementary and supplementary fields of view (Fig.2). 
The system is composed of one “Object Level Fusion 
Module” and one “Sensor Module” per sensor. Each Sensor 
Module analyzes data provided by the corresponding sensor 
to supply the Object Level Fusion Module by a list of 
objects supposed present in the scene of its field of view. A 
lot of works in ADAS and robotics applications are 
dedicated to the object detection capabilities. For example 
for pedestrian detection, [4] proposes obstacle detection and 
identification with Lidar sensor; [5] proposes stereo-vision 
obstacle detection with disparity analysis and SVM based on 
pedestrian classification, [6] gives pedestrian classification 
resulting from monocular vision with AdaBoost algorithm. 
The Object Level Fusion Module takes any ready object list 
and combine it with the existing track list, tacking into 
consideration the vehicle proprioceptive data (filtered by a 
separate Kalman filter) and the performance of each 
detection module (stored in a configuration file with other 
tuning parameters). Latency problem can be solved by a 
time indexed buffer of observations and state vectors as in 
[7]. The buffer size depends on the maximum acceptable 
observation delay.  

 

Object-level fusion and confidence management 
in a multi-sensor pedestrian tracking system 

Fadi Fayad and Véronique Cherfaoui 

 
 

Fig.1: System architecture 



 
 

 

 
B. Object level input/output 

The Sensor Module works at the frequency of the 
corresponding sensor, it provides at each detection cycle a 
list of objects supposed present in the scene of its field of 
view. Objects are described by their position (relative to the 
sensor), position error, dimension (if detected), dimension 
error and two indicators quantifying the confidence in 
detection and the confidence in recognition if the sensor is 
capable to recognize pedestrians or any type of obstacles. 
The performance of each sensor module is quantified by two 
probability values: PFR representing the probability of false 
pedestrian recognition and PFA the probability of false alarm 
or false detection. Sensor performance is propagated to the 
object’s detection and recognition confidences. 

The Object Level Fusion Module has to run at the 
frequency of the incoming object lists. It has to combine any 
ready object list with the existing track list to provide a list 
of estimated tracks at the current time. Tracks are 
characterized by their relative position, position error, speed, 
speed error, dimension, dimension error and three indicators 
quantifying the confidences in detection, recognition and 
tracking. 

To fuse data, all information is represented in the same 
3D coordinate system )( LLL ZYX showed in Fig.3: the origin 
is the center of the Lidar reflection mirror and the plan 

)( LLYX  is parallel to the ground. A special calibration 
procedure is developed to project vision data into 3D 
coordinate system and vice versa. 

 
C. Fusion by tracking 

The Track’s state is divided into four parts updated by 
four different processes (Fig.1) with the same update stages 
and models for all tracks: 

1. Kinematical state (track’s position and velocity) 
updated by a classical Kalman filter.  

2. Tracking confidence: calculated and updated based 

on the score of Sittler using likelihood ratio [8] 
3. Dimension: updated by a fixed gain filter taking into 

consideration the objects partial occultation problem 
[9] 

4. Detection and recognition confidences: updated by a 
credibilistic model based on the belief functions [10] 

When the fusion and state updating module receive a list 
of object at its input, it predicts the last list of tracks’ state to 
the current object list time and then it runs an object to track 
association procedure based on a modified version of the 
nearest neighborhood association method. This modified 
method takes into consideration the occultation problem by 
geometrically detecting the occultation areas and allowing 
multi-object to track association to associate all parts of a 
partially hidden object to the corresponding track. 

III. PEDESTRIAN MODEL FOR IN-VEHICLE TRACKING 

A. Coordinate systems transformation 

Let ),,( jio
rr

be an absolute fixed coordinate system and 

),,( JIO
rr

 and ),,( LLL JIO  be two relative coordinate 
systems attached respectively to the center of the rear wheel 
axle and the center of Lidar rotating mirror (Fig.4). The x-
axis is aligned with the longitudinal axis of the car. Let M be 
a point of the space and let ),( yx , ),( YX  and ),( LL YX be 
its respective Cartesian coordinate in the three systems. 

),( YX  and ),( LL YX  are related by the equations: 
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The geometry of Fig.4 shows that: 
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The absolute speed vector of the point M is the derivative 

of its position vector: 
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Let  JdtdYIdtdXV )/()/( +=  be the relative speed of M 

with respect to the vehicle coordinate system ),,( JIO
rr

 and 

 
Fig.2: Complementary and supplementary fields of view 
of the different sensors: Stereo-camera, Lidar and Radar 

 
Fig.3. Commune relative Lidar coordinate system. 



 
 

 

dtoOdvo /=  be the absolute speed of O. 

The derivatives of the vectors I
r

 and J
r

are: 
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Let dtd /θ=Ω  be the absolute rotation speed of the 
vehicle around the point O, then (4) can be written as: 
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B. Vehicle model 

In modern cars, braking is assisted by ABS systems that 
use angular encoders attached to the wheels. In such a case, 
the sensors basically measure the wheel speeds. We propose 
in this paper to use this data to model vehicle movement and 
to estimate its kinematical state. 

Fig.5 shows the elementary displacement of the vehicle 
between two samples at tk and tk+1.The presented car-like 
vehicle model is a real odometric model [11] and not the 
discretized kinematics model used in [12]. Assumptions are 
made on the elementary motions and geometric relationships 
are expressed to provide relations between the rotations of 
the wheels and the displacements. The rear wheels’ speeds 
are read from the CAN bus of the experimental vehicle. 
They are supposed constants between two readings. On the 
assumption that the road is perfectly planar and the motion 
is locally circular, the vehicle’s linear speed ov and angular 
speed Ω can be calculated from the rear wheels speed as 
follow: 
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Where VRR and VRL represent respectively the rear right 
and left wheel speeds, and e is the distance between their 
points of contact with the road plane. 

With the assumption of constant wheels speed between 
two CAN readings (with sampling time of Te), the equations 
(7) prove that the linear and angular speeds are also 
constant; the vehicle state evaluation between the time tk and 

ekk Ttt +=+1  can be written as: 
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Where kθ  represents the absolute heading angle of the 
vehicle. 

The vehicle state is filtered and estimated with a 
traditional Kalman filter having the state vector: 
[ ]Tov Ωθ  and the measurement vector: [ ]TRLRR VV  

The model error covariance matrix is experimentally 
approximated based on the maximum error provided by the 
assumption of constant angular and linear speed model. The 
measurement error covariance matrix is calculated based on 
the ABS angular encoders’ error. 

C. Pedestrian model 
Pedestrians are supposed moving linearly at constant 

speed. The evaluation of the absolute position ),( yx  and 
speed ),( yx vv of a pedestrian, with respect to the coordinate 

system ),,( jio
rr

, between the time tk and tk+1 is: 
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From the equation (2), (4), (5), (7) and (10) we calculated 
the relative position and velocity of a pedestrian with respect 
to the coordinate system ),,( JIO

rr
: 
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Pedestrians state is filtered and estimated with a traditional 
Kalman filter (one filter per pedestrian) having the state 
vector: [ ]Tyxyx VVYXvv  

and the measurement vector: ⎥
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The model error covariance matrix is experimentally 
approximated based on the maximum error provided by the 
assumption of pedestrian constant speed model. The 
measurement error covariance matrix is calculated based on 
the sensor’s resolution saved in a configuration file with 
other tuning parameters.  

After updating the kinematical state by a classical Kalman 
filter, the next section will describe the update method used 
for the detection and the recognition confidences by a 
credibilistic model based on the belief functions. 
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Fig.4. absolute and relative coordinate systems 



 
 

 

IV. CONFIDENCE INDICATORS   

A. Definition of pedestrian’s confidence indicators 
The objective of the system is the detection and the 

recognition of pedestrians. To quantify this goal, we defined 
two numerical indicators representing respectively the 
confidence in detection and in recognition. These indicators 
can be calculated, for example, based on statistical 
approaches or on geometrical features analysis. As an 
example, a calculation method of theses indicators is 
described in [13] for the case of 4-planes Lidar.  

B. Confidence indicators updating 

1) TBM principle and notation 
The transferable belief model TBM is a model to 

represent quantified beliefs based on belief functions [14]. It 
has the advantage of being able to explicitly represent 
uncertainty on an event. It takes into account what remains 
unknown and represents perfectly what is already known.  

a) Knowledge representation 
Let Ω be a finite set of all possible solution of a problem. 

Ω is called the frame of discernment (also called state 
space); it’s composed of mutually exclusive elements. The 
knowledge held by a rational agent can be quantified by a 
belief function defined from the power set 2Ω to [0,1]. Belief 
functions can be expressed in several forms: the basic belief 
assignment (BBA) m, the credibility function bel, the 
plausibility function pl, and the commonality function q 
which are in one-to-one correspondence. We recall that 
m(A) quantifies the part of belief that is restricted to the 
proposition “the solution is in Ω⊆A ” and satisfies: 

1)( =∑
Ω⊆A

Am    (3) 

Thus, a BBA can support a set Ω⊆A  without supporting 
any sub-proposition of A, which allows to account for 
partial knowledge. Smets introduced the notion of open 
world where Ω is not exhaustive; this is quantified by a non 
zero value of m(Ø). 

b) Information fusion 
n distinct pieces of evidence defined over a common 

frame of discernment and quantified by BBAs ΩΩ
nmm L1 , 

may be combined, using a suitable operator. The most 
common are the conjunctive and the disjunctive rules of 
combination defined, respectively as: 
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Obtained BBAs should be normalized in a closed world 
assumption.  

The conjunctive and disjunctive rules of combination 
assume the independence of the data sources. In [15] and 
[16] Denoeux introduced the cautious rule of combination 

(denoted by ) to combine dependent data. This rule has the 
advantage of combining dependent BBAs without increasing 
total belief: the combination of a BBA with itself will give 
the same BBA: m = m m (idempotence property). The 
cautious rule of combination is based on combining 
conjunctively the minimum of the weighted function 
representing dependent BBAs. 

c) Reliability and discounting factor 
The reliability is the user opinion about the source [17]. 

The idea is to weight most heavily the opinions of the best 
source and conversely for the less reliable ones. The result is 
a discounting of the BBA mΩ produced by the source into 
the new BBA mΩ,α where: 
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The discounting factor (1-α) can be regarded as the 
degree of trust assigned to the sensor. 

d) Decision making 
The couple (credibility, plausibility) is approximated by a 

measurement of probability by redistribute the mass 
assigned to each element of 2Ω, different from singleton, to 
the elements which compose it. The probability resulting 
from this approximation is called pignistic probability BetP; 
it’s used for decision making: 
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2) Confidence calculation 

a) Defining the frames of discernment 
Before defining any quantified description of belief with 

respect to the objects’ detection and/or pedestrians’ 
recognition, we must define a frame of discernment Ω on 
which beliefs will be allocated and updated.  

For the objects detection problem, we can associate two 
general cases: object O and non object NO. The object can 
be a pedestrian or a non pedestrian object, but with no object 
identification, the frame of discernment of the object 
detection process is limited to: { }NOOd ,=Ω . As an 
example, a disparity image analyzer of a stereo-vision 
system can have Ωd as its frame of discernment. 

 
A mono-vision pedestrian recognition process based on 

an AdaBoost algorithm for example, gives the probability of 
detecting a pedestrian P or non pedestrian NP. The non 
pedestrian can be a non pedestrian object or a false alarm. 

 
 

Fig.4. Relation between the state spaces of the detection and the 
recognition processes 



 
 

 

Let { }NPPr ,=Ω  be the frame of discernment of this type 
of recognition processes.  

The update stage requires a commune frame of 
discernment, let { }FANPOPO ,,=Ω  be the frame 
containing all possible solutions of the detection and the 
recognition problem. The relation between the three frames 
Ω, Ωd and Ωr is represented in Fig.4. 

b) Basic belief assignment calculation 
The outputs of the detection and the recognition processes 

are Bayesian probability functions. With no additional 
information, we have to build, based on these probabilities, 
the basic belief assignments { }itSd Om d

ks

Ω
,,  (BBA of the 

detection module of the object Oi detected by the source Ss 
and defined over Ωd at time tk) and/or { }itSr Om r

ks

Ω
,,  (BBA of 

the recognition module of the object Oi detected by the 
source Ss and defined over Ωr at time tk). 

We are using the inverse pignistic probability transform 
proposed by Sudano [18] to calculate belief functions from 
Bayesian probability functions. So, to build the BBAs, we 
calculate from the probability functions the less informative 
BBAs who regenerate the same probability as its pignistic 
probability [10] 

3) Confidence updating algorithm 
The fusion and tracking module updates all tracks 

information such as track’s state and track’s detection and 
recognition confidences. The algorithm of track detection 
and recognition confidence update with object detection and 
recognition confidence consists in: (Fig.5) 

-Transform the probabilities { }itSd OP
ks ,,  and { }itSr OP

ks ,,  
(probability of detection, resp. of recognition, of the object 
Oi detected, resp. recognized, by the source Ss at time tk) into 
basic belief assignment BBAs: { }itSd Om d

ks

Ω
,,  and { }itSr Om r

ks

Ω
,,  

-Transform the performance of the sensor module into 
discounting values: the probability of false alarm PFA and 
the probability of false recognition PFR of the sensor module 
transform the last BBAs into { }itSd Om dd

ks

α,
,,

Ω  and { }itSr Om rr

ks

α,
,,

Ω  

where αd and αr are respectively the discounting factors of 
the detection and the recognition processes. 

-Transform beliefs from Ωd and Ωr to the commune frame 
of discernment Ω by doing the refinement process, i.e. 
moving the belief on a subset of Ωd (respectively Ωr) to the 
corresponding subset of Ω. We get: { }itSd Om dd

ks

α,
,,
Ω↓Ω  and 

{ }itSr Om rr
ks

α,
,,
Ω↓Ω  

-Compute the cautious combination of the obtained 
BBAs. 

-Combine the result with the associated track belief 
function { }jt Tm

k

Ω
−1

 to get { }jt Tm
k

Ω  as result of the 
combination and update process. 

-Estimate the track’s detection and recognition 
confidence: { }itd TP

k,  and { }itr TP
k, . 

 

V. EXPERIMENTAL RESULTS 

A. Experimentations 
The algorithms are tested as a real time embedded system 

implemented in the experimental vehicle CARMEN (Fig.3) 
of the laboratory Heudiasyc. CARMEN is equipped with 
different sensors such as 4-plans Lidar, stereo and mono 
cameras and radar. Proprioceptive data, such as wheels 
speed, is read from the vehicle CAN bus. Only Lidar and 
proprioceptive data are used in this experiment while image 
data provided by cameras is used to validate results by 
projecting laser data, tracks and confidences on the 
corresponding image (Fig.6).  Experimentations are done in 
an urban environment.  

 
To simulate two unsynchronized sensors with different 

performance, Lidar data are assigned at each scanning 
period to one of two virtual Lidars having different detection 
and recognition confidences but the same measurement 
precision as the real Lidar. 

B. Results 
Results show the efficiency of the described method in 

unsynchronized data fusion especially when the frequency 

 
Fig.6. Projection on the image of the 4 scanning layers and the 
pedestrians with their corresponding detection and recognition 

confidences. 
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Fig.5. Confidence update algorithm. 



 
 

 

of the incoming data is unknown or variable. As an example, 
we will show the detection and recognition confidence result 
of tracking one pedestrian detected by the laser scanner.  

The probability of false alarm PFA and false recognition 
PFR of the first virtual Lidar are fixed respectively to 10% 
and 40%, while the second virtual Lidar has more false 
alarms with %40=FAP  and less false recognition 
with %10=FRP .  

Fig.7 and Fig.8 show the results of tracking the same 
pedestrian during 90 Lidar scans. The 90 scans are 
distributed between the two virtual Lidar sensors. Fig.7 
shows that the track detection confidence follows the 
confidence variation of the object detected by the first 
sensor having less false alarm probability then the second 
sensor. While Fig.8 shows the variation of the tracked 
pedestrian’s recognition confidence with the variation of the 
objects confidence detected by the two sensors. 

 

 

 

VI. CONCLUSION AND FUTURE WORKS 
In this paper we presented a multi-sensor fusion system 

dedicated to detect, recognize and track pedestrians. The 
fusion by tracking method is used to solve the problem of 
asynchronous data provided by different sensors. The tracks 
state is divided into four parts and updated with different 
filters: Kalman filter is used for the kinematical state, 

detection and recognition confidences are updated under the 
transferable belief framework, track dimension is filtered 
with a fixed gain filter wile tracking confidence is calculated 
and updated based on a likelihood ratio method. Results are 
shown with experimental data acquired in urban 
environment. Future works will concentrate on the 
validation of the method with multi-sensor data such as 
image and radar that have different performance in the 
detection and the recognition processes. 
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Fig.8. Track recognition confidence variation of one pedestrian 

recognized by two sensors having different recognition performance. 

 
Fig.7. Track detection confidence variation of one pedestrian detected 

by two sensors having different detection performance. 


