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Abstract - Timestamp conversion is an important consideration in the deployment of distributed archi-
tectures. In this article we propose a precise, low-cost solution for on-line and post-processing timestamp
conversion in distributed architectures, robust as regards the plugging and unplugging of hardware and
the addition of new nodes (that is to say the di�erent pieces of hardware connected to the network), not
synchronized, and with no negative impact on the conversion quality.

Each node (e.g., a computer) has at least one free-running clock. This clock's time is the reference
for all events used by the node. When the local node needs to record the time of an event timestamped
by a remote node, the time is converted from the remote node's time to the local node's time. Interval
timestamping is used, to take account of time imperfections (e.g. sensor and computer latencies, or due
to time conversion between the di�erent computers).

A network clock is used, enabling a precise conversion and avoiding exchanges of messages for the
conversion of clock correspondences. Moreover, it allows an unlimited number of nodes in the network.

Keywords: Distributed Architecture, Timestamping Conversion, Timestamping Error Modeling, Free Running Clock
Nodes, Network Clock

1 Introduction
Most data processing algorithms for use in dynamic environments take account of the temporal aspects of data
acquisition, that is to say monotony, synchronization and dynamic models. For example, in perception and
control applications, the well-known Kalman Filter uses a prediction model and updating equations to combine
out-of-sequence data arriving at di�erent times [Bar-Shalom, 2000]. When data acquisition and data processing
are centralized in the same computer, its clock becomes the reference time, and temporal data organization is
made possible via a timestamping process. Cooperative sensing implies a reference time for all computers linked
to the network, determining exactly when the di�erent events occur. Time-sharing techniques can be di�erent
depending on the requirements and on the networks.

Implementing a distributed sensor acquisition and processing architecture means paying particular attention
to timestamping problems. One solution might be to connect sensors using hard synchronization or/and to use
real-time distributed systems. This approach is expensive and precludes application evolution. Another solution
is to use a common pool of computers and to take account of delays (the time required for data transmission).
Several approximations are used: delays can be ignored or assumed to be constant. Errors can therefore appear
when the true delay does not correspond to the assumptions made.

An obvious �rst step is to set all computer clocks to the same time at system startup. However, clocks do
not run at the same speed, since each one is unique at the atomic scale, and has a particular 'drift' which,
moreover, varies depending on external conditions (mainly temperature, but also vibrations), on its age and on
other parameters. We observed, for example, a maximum drift of 200 µs/s for standard desktop PCs, which
gives a time variation of 0.72 s for one hour. For precise applications, this drift is by no means negligible.

Two software solutions are traditionally used to precisely share the time between several computers. The �rst
solution is to synchronize all computer clocks (clock synchronization), and the second is to convert a timestamp
from one clock reference to another clock reference each time it is necessary (timestamp conversion).

This paper proposes a method for managing data timestamping and accuracy. Timestamping inaccuracy is
represented by interval dates. We describe a method for estimating this interval, using standard computers in a
distributed architecture, without dedicated systems. The proposed method, which to our knowledge has never
previously been used for timestamp conversion, works both on-line and for post-processing, and harnesses the
advantages of a network clock for timestamp correspondence computation. Some networks, such as synchronous
bus-networks, use a clock to synchronize exchanges of messages. It is a common time accessible to all nodes,



but this time is not monotonous, so it cannot be taken as global reference time. We look at how it might
be possible to overcome this obstacle and hence obtain all the advantages of a network clock. The proposed
date-sharing method is intended for applications where the network is liable to evolve (through the addition
or removal of nodes, sensors and networks), or where it is unsafe (for example as a result of dysfunctional
switches). It provides a low-cost conversion, and the precision is in the order of three or four times the network
clock granularity. The error conversion is estimated, meaning that data integrity is preserved, making it suitable
for cases such as sensor data fusion algorithms.

The intended application for our work is in the domain of intelligent vehicles, and particularly in the embedded
distributed calculation of driver behavior indicators. Several computers are needed in the car to record raw
sensor data and compute all the required indicators. This is a highly dynamic system: a car has a relatively
high speed and every single event needs to be recorded, which means that timestamping has to be very robust
and precise. Furthermore, good on-line timestamps give rise to good dating estimations and therefore good data
fusion results. Distributed architectures can be useful for reducing computer workload, increasing computer
reactivity and enhancing real-time behavior. However, distributed architectures are often avoided because of the
complexity of their deployment, the cost of the hardware, and the poor precision of the algorithms. Nowadays
fast prototyping is more and more widely used, which means that di�erent ideas may be tested quickly; when
the best compromise is found, a stable version can be implemented with adapted hardware.

The article is divided into four parts, plus a conclusion. First, related work is listed in Sect. 2. Then,
the system model is presented in Sect. 2.2, followed by the proposed approaches in Sect. 3. Theoretical and
experimental performances are described in Sect. 4. Finally, conclusions and future work are laid out in Sect. 5.

2 Related work
The subject of this article includes several domains of study. The �rst is computer clock synchronization
and timestamp conversion. The second encompasses those domains inherent in the proposed system model,
including interval manipulation, timestamping with intervals, and synchronous networks. The paper proposes
a new method related to timestamp conversion, using a synchronous network and using interval timestamping.

2.1 Computer clock synchronization and timestamp conversion
Much work has been devoted to clock synchronization or time conversion. [Kopetz et al., 2006] proposes a
classi�cation of the di�erent approaches and describes in detail the di�erent possibilities for clock synchroniza-
tion. Computer clocks can be synchronized by state correction (changing clocks abruptly) or by rate correction
(changing clock speed, but not by too much, so as not to perturb computer operation). In the case of rate
correction we need to distinguish between internal and external synchronization: internal synchronization is a
cooperative activity among all the nodes of a cluster, whereas external synchronization is a process requiring
an external time.

Computer clock synchronization methods have changed over time, directly in�uenced by technological progress
and technical requirements. This section gives a short history of computer clock synchronization leading up to
our method. We describe only software synchronization, excluding hardware clock synchronization, since we
wish to avoid the necessity for much additional hardware. Our method is intended for fast prototyping, where
it is easy to add or remove devices, even during the course of experiments.

2.1.1 Clock model
The �rst concept to be de�ned is that of a computer clock. A computer clock is a hardware device subject to
physical imperfections. It has been modeled mathematically. A computer clock is composed of an oscillator and
a counter. The oscillator generates a periodic process incrementing the counter value. However, the oscillator is
not perfect: it does not run at the same speed in every device, and can also run faster or slower within the same
device, principally as a result of temperature variations, but also depending on aging and other environmental
conditions.

The drift rate (called simply drift in this paper) of a clock at time t is de�ned as the deviation of its speed
from the �correct� speed. A perfect clock would have a drift of 0. The drift is de�ned by

ρi(t) =
dhi(t)
dt

− 1 . (1)

The drift is given at a time t, and can be di�erent at t′ 6= t. It varies according to di�erent parameters:
mainly the temperature, but also external conditions, e.g. vibrations, the aging of the component and other
non-monitorable parameters. For example, we observed that when a computer is switched on after a �long
period� of inactivity, the clock drift varies signi�cantly over the �rst 15 minutes or so, and then remains stable
at normal room temperature.



A clock's time advances as �correct� time elapses, with its progression modulated by the drift. That is to
say, when two clocks i and u are set to the same time at t (hu(t) = hi(t)), and if u is a perfect clock, the time
of clock i at time t′ is

hi(t′) = hi(t) +
∫ t′

m=t

[ρi(m) + 1] (2)

Moreover, if between m = t and m = t′ ρi(m) is constant (ρi(m) = ρi), we have

hi(t′) = hi(t) + (t− t′)× (ρi + 1) (3)

2.1.2 Computer clock synchronization
Computer clock synchronization with no speci�cation of precision: One of the best-known examples

of synchronization is the Network Time Protocol (NTP) [Mills, 1991]. This was originally intended to
synchronize computers linked via Internet networks. [Mills, 2003] presents the history of NTP. This
method uses the IM algorithm , explained later. NTP is an external synchronization using rate correction:
all computer clocks are synchronized to an external reference time, given by the Internet network. The
fourth version of the protocol allows a computer clock to be maintained with a precision of 10 ms over
the Internet, and 200 µs or less via a local network under ideal conditions.
Some work has been devoted to improving synchronization precision, e.g., Reference Broadcasts Synchro-
nization (RBS ) [Elson et al., 2002]. The idea is that the sender broadcasts a synchronization "pulse" to
the other nodes. This pulse is taken as the reference time for all nodes other than the sender.
With the appearance of sensor networks and the timestamping of transmitted messages, the Timing-sync
Protocol for Sensor Networks (TPSN ) [Ganeriwal et al., 2003] has become possible: a reference message
is sent, and unlike TPSN, all nodes change their clock time. Message transmission can therefore be
evaluated, leading to better synchronization results.
With these methods, synchronization precision is very good provided that the nodes have been communi-
cating long enough among themselves: we have seen that the synchronization speed with rate correction
is very slow. However, the synchronization precision is not explicitly given.

Clock synchronization with precision speci�cation: In the case of dynamic structures (where devices can
leave or join the network), reliable communication is harder to attain. Here it is necessary to know the
synchronization precision between the di�erent nodes. Synchronization precision can be probabilistic or
guaranteed.

Adaptive Clock Synchronization in Sensor Networks (ACSSN ) [PalChaudhuri et al., 2004] is an RBS ex-
tension, sending several messages instead of a single one. It is a probabilistic method adapting its precision
and power consumption to the application. It gives a good synchronization precision probability and is a
good compromise between precision and consumption.
Some methods, such as the IM algorithm [Marzullo and Owicki, 1983], place external clock synchroniza-
tion with interval correspondence in the sensor network domain. Interval correspondence enables the
synchronization precision to be given and interval constraint propagation to be used, as explained in
[Jaulin et al., 2001]. These methods use state correction, allowing instantaneous synchronization and
rapidly decreasing interval imprecision. NTP uses the IM algorithm, but with rate correction and not
state correction, thus avoiding the drawbacks of rate correction resulting from breaks in monotony.
[Kopetz et al., 2006] gives a solution for very precise synchronization (with a granularity of less than one
microsecond in multi-cluster systems) for fault-tolerant distributed systems, by combining clock-state and
clock-rate corrections. This method is intended for real-time applications lacking very precise expensive
clocks, including mass production markets, such as the emerging automotive market for drive-by-wire
systems. However, in the �eld of fast prototyping (the intended scope of this paper), �exibility is required
so that one component may quickly be replaced by another, in both experimental and non-experimental
settings. In contrast, the real-time domain subject to a large number of constraints which make it ill-
adapted to the kind of �exibility which is our concern in this paper.

Time synchronization methods are divided into two families: those which perform rate correction, and
those which perform state correction. To obtain optimal precision, in the �rst case, clocks must be
connected over a su�ciently long period. In the second case, the precision is immediately optimal, but
there are breaks in clock monotony. Time correspondence was developed to overcome these drawbacks.



2.1.3 Timestamping correspondence
Timestamping correspondence without precision speci�cation: Timestamping correspondence meth-

ods have been developed to accompany the increasing popularity of sensor networks, where an exact
synchronization is impossible owing to the network dynamic and to the unreliability of communications.
Post facto synchronization [Elson and Estrin, 2001] has been developed to make a clock correspondence
between di�erent computers. The method resembles ACSSN : in order to timestamp an event with a
reference clock a reference time is sent. However, unlike ACSSN, no precision is given.

Timestamping correspondence with precision speci�cations: Some methods provide timestamping cor-
respondence with precision speci�cation, through the use of interval timestamping. These methods were
developed for ad-hoc networks, where the network con�guration can change, where the propagation time
cannot be known in advance, and where consequently it is di�cult to make use of a common time (and
therefore an external synchronization) because the accessibility of this common time cannot be guaran-
teed. Timestamping correspondence methods were developed to solve these problems. These methods
exchange messages with a view to timestamping particular events.
A �rst method is presented in [Römer, 2001], which exchanges messages to compare the clocks at the
di�erent network nodes and to timestamp events occurring within these nodes. Message exchanges always
include a message transmission and an acknowledgement. An event is timestamped using a particular
clock, and the timestamp is then converted to another clock.
It will be noticed that the IM algorithm (and the NTP enhancements) can also be used to convert
timestamps from one reference clock to another: IM computes an estimation of the clock correspondences
with an interval. Instead of synchronizing the clocks, it is possible to use the information to convert a
date from one reference clock to another, taking account of imprecision.

2.1.4 General requirements
The requirements are the ability to timestamp events precisely with di�erent clocks and to plug and unplug
devices (including devices which may already have their own timestamp conversion system) using a synchronous
bus-network.
In other words, we should like to make it possible for two unconnected timestamp-sharing systems to be joined
together and share their timestamps with the minimum imprecision added. This requirement makes a times-
tamp conversion method necessary, because of the dynamic network structure. In order to know the general
imprecision, we also need to estimate this imprecision as accurately as possible.
The networks which we are concerned with are synchronous bus-networks, which, by de�nition, will already
posses their own integrated network clocks.

Similar existing systems: A system similar to ours, using the same synchronous bus-network, is described
in [Hosek, 2005]. In this work, a special mode of the Firewire bus-network is used, where the master interface
node (the interface node corresponding to the bus-network clock) may be selected. For this type of bus there is
a hi-resolution time (�cycle-time�) and a low-resolution time (�bus-time�). Combining these two registers gives
a clock with resolution of 40 ns that will over�ow every 136 years.
However, in the work just presented, there is a master node and slave nodes: at the outset all nodes must be
connected to the master node to have the same time as the master node. Otherwise, if a component were to
join the network subsequently (and therefore not have the same time as the master node), there would be a
time discontinuity, because of the abrupt clock synchronization. Moreover, during a disconnection period, the
created subnetwork clocks will drift apart from each other.

In our work we want it to be possible for two networks to join together even if they have not previously
been connected. When disconnections and reconnections occur, we wish to estimate the error due to clock drift
between the two networks. Moreover, we wish to estimate the imprecision due to timestamp conversion. These
requirements are not met by the previously-cited work.

2.2 Basis of our approach
The system is intended for the fast prototyping of applications with numerous sensors and a large data �ow,
requiring a precise timestamping and a distributed architecture. Interval timestamping is used here to estimate
timestamp imprecision. This can be useful for integrity checking. By "fast prototyping" we mean the exper-
imental deployment of applications with low hardware costs, enabling cooperative computers to be used and
di�erent con�gurations to be tested without the need for large, expensive systems which would be di�cult to
implement. A distributed architecture can also be used to improve the real-time behavior of the system: the
greater the computer workload, the slower its reactivity.



In this section we present the two main characteristics of the proposed system: interval timestamping
and a synchronous network. The system is the same as that presented in [Bezet and Cherfaoui, 2005a] and
[Bezet and Cherfaoui, 2005b].

2.2.1 Timestamping with intervals
The paradigm of interval-based synchronization in the context of infrastructure-based networks was proposed by
Marzullo and Owicki [Marzullo and Owicki, 1983] and re�ned by Schmid and Schossmaier [Schmid and Schossmaier, 1997].
This paradigm was introduced to evaluate the uncertainty caused by the time reference change.

The concept of interval date is extended in this paper to timestamps. It provides guaranteed bounds between
which a particular event is certain to have occurred. The di�erence between the upper and the lower bound
(interval width) is called the uncertainty.

Interval dates help to overcome several imperfections. The �rst imperfection is the granularity of the computer
clock: a given date means nothing more than somewhere in the interval between two ticks of the system
clock. The second imperfection is the inherent limitation of hardware components, for example latency and
transmission lags of sensors and computers, which means data cannot be dated accurately.

Algorithms are nowadays more and more accurate and e�cient. If there are no good timestamping estima-
tions, it becomes futile to continue improving the accuracy of algorithms, since results can never be satisfactory.

Interval timestamping is also useful for checking data integrity. Data integrity veri�cation can be important,
e.g., for data fusion processes. It enables to system coherence to be controlled: if there is a problem of integrity,
data can be wrong. A date approximation can cause an integrity problem, whereas interval timestamping means
that dating is certain (an example of a timestamp integrity problem is given for the case of a laser range scanner
in [Bezet and Cherfaoui, 2006]).

Furthermore, the combination of several bounds for a single time is unambiguous and optimal, whereas the
combination of time estimates requires additional information about the quality of the estimates, if it is to be
unambiguous.

In spite of its advantages, timestamping with guaranteed bounds has not been extensively studied.

Interval analysis: As intervals are used, we shall now provide some explanations regarding interval analysis.
This section is freely inspired from the book [Jaulin et al., 2001], which provides the basis for the interval analysis
used in this paper.

An interval is denoted [x] or [x, x], meaning that [x] is a number between x and x. The di�erence between
the upper bound x and the lower bound x is called the interval width = x− x. Given two intervals [x] and [y],
the basic arithmetic operations, addition, subtraction, multiplication and division used in this paper are de�ned
as

[x] + [y] = [x + y, x + y] (4)
[x]− [y] = [x− y, x− y] (5)

[x]× [y] = [min(x× y, x× y, x× y, x× y),
max(x× y, x× y, x× y, x× y)] (6)

1/[x] =
{

[1/x, 1/x], if 0 /∈ [x] (7)
[−∞, +∞], if 0 ∈ [x] (8)

[x]/[y] = [x]× 1/[y] (9)
Interval analysis enables constraint propagation. It enables the width of an interval to be reduced by taking

advantage of redundant data intervals. It uses the property of an interval number which ensures that the value
is between the lower and the upper bound of the interval. If several interval numbers with the same value are
computed, the intersection of the intervals gives another interval with a reduced interval width.

Note: all calculations in this paper are done using intervals.

2.2.2 The synchronous network
Synchronous networks were developed to avoid message collisions, increasing the data �ow [Obermaisser, 2004].
A node cannot send a message at an arbitrary time, but must await its turn: this is known as time-triggered
communication. A time-triggered communication system uses the Time Division Multiple Access (TDMA) me-
dia access strategy. TDMA statically divides the channel capacity into a number of slots and assigns a unique
slot to every node. The communication activities of every node are controlled by a time-triggered communica-
tion schedule. The schedule speci�es the temporal pattern of message transmissions, i.e., at what time point
nodes send and receive messages. A sequence of sending slots is called a TDMA round. This enables every
member of a set of nodes to transmit a message exactly once. The implementation of such a method requires a



global clock. As far as we know, no timestamp conversion has ever been developed for a synchronous network;
that is what motivated this paper.

Being able to plug and unplug hardware is desirable when fast prototyping is used: this means that new sen-
sors, computers and subnetworks may be added to the existing network during experiments, and dysfunctional
switches may be taken into account.

3 Timestamp conversion with bounded error speci�cation
The proposed methods for on-line and post-processing timestamp conversion are based on the same principles:

• All data are timestamped using the local system clock.

• All timestamps are intervals: they give guaranteed bounds within which it is certain that events occurred.

• At each data exchange, a new timestamp interval is computed with the new local clock.

• The new timestamp takes into account the drift between the di�erent clocks in order to give a better
estimation and to guarantee the interval estimation.

• Computations are performed using interval analysis, providing guaranteed bounds on the timestamps.
Timestamp intervals re�ect the time correspondence precision.

Note: the network communication mode is client-server architecture, where clients request data provided
by servers. Servers produce the original data timestamps, and clients receiving the data must compute new
timestamps in accordance with their local clock reference.

On-line timestamp conversion and post-processing timestamp conversion use the same system architecture
(various computers are connected via a synchronous bus). The client-server architecture is used on-line to trans-
fer time correspondence information when timestamp conversions are required. For post-processing conversion,
client-server architecture is not essential, and the timestamp conversion information is stored via time corre-
spondence computations based on readings of synchronous network time. The main problem here is managing
possible insertions/removals of new subnetworks with di�erent clock times. The two conversions use the same
basic principles, and can be managed simultaneously.

3.1 Proposed approach for on-line timestamp conversion
The general principle of on-line timestamp conversion is as �lows: the server converts the data timestamps
from its local system time base to the synchronous network time base. They are then sent to the client, which
converts them from the synchronous network time base to its local system time base.
This process is completely extensible: one computer can have several servers and/or clients. Likewise, the server
and its client(s) can be implemented on the same computer.

3.1.1 Computation of the new timestamp
The process is divided into two steps. The �rst step, performed by the server, is to convert the timestamp from
the server clock's reference time to the synchronous network clock reference time. The second, performed by
the client, is to convert the received time to the client clock's reference time.

If we consider time periods during which conditions are su�ciently similar for us to assume constant drift in
the involved clocks (i.e. where the temperature does not vary signi�cantly and without signi�cant vibrations),
Equ. (3) can be used to convert the time from one clock reference to another. For time ta, tb, with ta < tb, this
drift is estimated with the average drift ρ̂i/j in [ta, tb]

(
denoted ρ̂i/j(ta, tb)

)
as

ρ̂i/j(ta, tb) =
hi(hj(tb))− hi(hj(ta))

hj(tb)− hj(ta)
− 1 . (10)

As hi(hj(t)) is hi(t) (t is an absolute time), the previous equation can be written

ρ̂i/j(ta, tb) =
hi(tb)− hi(ta)
hj(tb)− hj(ta)

− 1 . (11)

ρ̂j/i(ta, tb) can easily be computed from Equ. (11) as

ρ̂j/i(ta, tb) =
1

1 + ρ̂i/j(ta, tb)
− 1 . (12)



However, exact times are unknown, which is why we use interval times instead. The time correspondence
between two clocks i and j can be approximated by taking the time of a clock i, then the time of the other
clock j and �nally the time of the �rst clock i, giving an interval. This process prevents a possible interruption
of unknown duration between the two clock readings. For Equ. (11) we obtain a drift estimation of

[ρ̂i/j(ta, tb)] =
[hi(tb)]− [hi(ta)]
[hj(tb)]− [hj(ta)]

− 1 . (13)

Moreover, the correspondence between two computer clocks is unknown. This is why two steps are needed:
�rst the conversion from the server to the network clock, and then from the network clock to the client clock.

To convert a timestamp from the server to the client clock reference, three clocks are needed: the server clock,
the client clock and the synchronous network clock. Their respective readings at time t are denoted as hs(t), hc(t)
and hn(t) (notation of [Blum et al., 2004]. The local clock (server or client clock) is denoted as hl(t). It should
be noted that ta, tb and tc are not the same times for the client and for the server. They are denoted tac

, tbc
,

tcc
and tas

, tbs
, tcs

for respectively the client and the server. However, t is the same for the client and the server.

The �rst step is to convert the timestamp from the server reference time to the synchronous network reference
time. The corresponding equation is

[hn(t)] = [hn(tcs)] + ([hs(t)]− [hs(tcs)])×
[
1 + [ρ̂n/s(tas , tbs)]

]
(14)

The second step is to convert the timestamp from the synchronous network reference date to the client ref-
erence date. The corresponding equation is the symmetric of Equ. (14), i.e.

[hc(t)] = [hc(tcc)] + ([hn(t)]− [hn(tcc)])×
[
1 + [ρ̂c/n(tac , tbc)]

]
(15)

3.2 Proposed approach for post-processing timestamp conversion
The general idea behind post-processing timestamp conversion is to regularly record clock equivalencies during
experiments, enabling timestamps to be interpolated or extrapolated at the post-processing phase from one
time base to another, thanks to the recorded �les.

3.2.1 Required process during data acquisition and storage
A low priority process must be run during data acquisition, which will then allow the time equivalence between
the clocks to be computed during post-processing. This process runs on all computers, and generates a �le
for each computer, called the time equivalence �le. This �le contains the time equivalencies between the local
computer clock and the synchronous network clock. This time equivalence �le can be written for example at the
frequency of 1 Hz (this frequency depends on the network dynamic). As time equivalencies cannot be known
with an exact manner, interval dates are written into the �le. These interval dates are used to compute the
clock correspondences.

As the synchronous network clock is not monotonous, a monotonous time is required so that computer clock
equivalencies may be computed without any ambiguity. This time is the time of one of the computers (Cr)
composing the network. It is the same for all computers linked to the network, and the particular computer
to be used may be chosen arbitrarily. This allows possible ambiguities and defective links to be revealed. The
insertion of the reference computer in the time equivalence �le requires a relatively small amount of network
bandwidth. If margins are so tight that it is not possible to obtain any additional network bandwidth, this �eld
may be dropped. It is only a piece of information used to simplify post-processing calculations.

The time equivalence �le is composed of several records. Each record comprises �ve �elds, as shown in Tab. 1:
the local computer time is �rst taken (time tl1), then the net-time (time tn), next the local computer time again
(time tl2, and tl2− tl1 is stored, to save space). Finally, a request is transmitted in order to obtain the reference
computer name (Cr) and time (tCr , which is an approximation of the reference computer time expressed as a
point time).

Local Net Di� Reference Reference
time time local computer computer

time name time
tl1 tn tl2 − tl1 tCr Cr

Table 1: A time equivalence �le record



As the net-time (synchronous network clock) is incremented by a software counter, this counter needs to be
the same for all nodes linked to the network. This constraint is satis�ed by resetting the software counter at
every addition or removal of a component, when the network time is synchronized abruptly. When the network
architecture changes, a bus-reset is sent: when a bus-reset is detected, the net-time software counter is set to
zero, which means that all nodes connected to the network always have the same network time.
At each bus-reset detection, a special record (bus-reset record) is written to the time equivalence �le, so that
between two bus-reset records we have a block where the net-time is monotonous, and comes from the same
free-running clock.

3.2.2 Time correspondence computation
The goal is to obtain the time equivalence between two local computer times. This computation makes use of
two time equivalence �les. Checking that two computers have been linked simply means checking that the same
reference computer is to be found in the two �les, with a non-null reference time interval intersection. Once two
such records have been detected in the �les, it is certain that the two related blocks correspond to an identical
sequence.

If no reference computer is to be found in the time equivalence �le, �nding two equivalent blocks involves a
little more e�ort. We have to check two equivalent blocks where the net-time begins and ends at approximately
the same value, which is not a completely sure method. However, the probability of performing two experiments
where the net-time begins and ends at the same values is very low. If, moreover, there are bus-resets in the
�le (i.e. architecture changes), the probability of having the same values for two �les where the nodes have
not been connected is close to zero. However, to reduce this error probability, the write-frequency of the time
equivalence �le can be increased, or random bus-resets can be generated.

3.2.3 Time equivalence computation between two clocks
Before we describe time equivalence between two clocks, it might be useful to present a �rst �gure illustrating
the interval notation used in subsequent �gures. Fig. 1 illustrates clock time estimation with intervals. The
X-axis represents a reference time, the reference for all other clock times. This time cannot be known exactly,
but it exists. Clock A's time progression is represented by the plain line. If the drift is considered constant, the
clock time progression is an a�ne function. Then, at times t1 and t2 clock A's time is estimated using interval
times, giving respectively [t′1] and [t′2]. Between t1 and t2, clock A's time progression can be estimated with an
upper and lower line, with an interpolation between t1 and t2, and an extrapolation outside (dashed lines in
the �gure).

[t’ ]
1

[t’ ]
2

t
1

t
2

Reference time

Clock A time progression

Clock A time

Clock A time progression estimation

Figure 1: Clock time estimation

When a time is estimated for a given clock,
Fig. 2 shows time equivalencies recorded in the time equivalence �le between clocks A, B and the network

clock. Interval times are represented and a possible progression line is represented for each clock. The objective



is to compute [TANB2
] for clock A when clock B has the value [TB2 ], using the network clock [TNB2 ] at time

[TB2 ] as seen by clock B.
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Figure 2: Timestamp correspondence for two time equivalence �les

To compute [TANB2
] the drift is assumed to be continuous and constant between [TA1 ] and [TA2 ] (there must

be no network time discontinuity between TNA1 and TNA2). The time correspondence in the network is known,
[TNB2 ]. The only computation necessary is the conversion of [TNB2 ] to [TANB2

]. If the network time is not
continuous between [TA1 ] and [TA2 ] (as in Fig. 3), this conversion is impossible.
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Figure 3: Bad timestamp correspondence computation for two time equivalence �les

In Fig. 3, network clock monotony is interrupted between [TA1 ] and [TA2 ], following the insertion of another
network: the two networks set their clocks to the same time, producing a break in monotony. The computation
has to be performed before or after the point of interruption.

In Fig. 4, minimum and maximum bound segments for the correspondence between the network and clock
A times are computed. We can see that in the network clock time segment under consideration, there are two
possible time segments for clock A. This results from a break in network time monotony, possibly following
the addition or removal of a network interface. The problem can be resolved through careful handling of time
monotony.
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We now consider the time segment giving [TA1 ] and [TA2 ]. [TANB2
] can be computed if the network clock is

continuous between TNA1 and TNA2 , and similarly for the lower bound

TANB2
= TA1 + (TA2 − TA1)×

TNB2 − TNA1

TNA2 − TNA1

, TNB2 ∈ [TNA1 , TNA2 ] (16)

and for the upper bound

TANB2
= TA1 + (TA2 − TA1)×

TNB2 − TNA1

TNA2 − TNA1

, TNB2 ∈ [TNA1 , TNA2 ] (17)

3.2.4 Computation of the clock correspondence function
A correspondence function can be computed using equivalence points. These enable time equivalencies to be
computed rapidly with the aid of an interpolation function. A su�cient number of time equivalencies between
clocks A and B need to be computed over time intervals where the drift is constant. Fig. 5 is an example of time
equivalence between clocks B and A, where the drift is constant between [TB1 ] and [TB2 ]. A time [TBα ] must
be converted from clock B to A reference time, giving [TATBα

]. This is quite similar to Fig. 4, except that the
function computation is between clock B and A, and not between the network clock and clock A. There cannot
therefore be several time correspondences between clock A and clock B times: these two clocks are monotonous.

For the lower bound (see Fig. 5) the computations are:

TATBα
= TA1 + (TA2 − TA1)×

TBα − TB1

TB2 − TB1

(18)

and for the upper bound:

TATBα
= TA1 + (TA2 − TA1)×

TBα − TB1

TB2 − TB1

(19)
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The sequence to convert is divided into intervals where the drift is constant: if the drift is constant over
the whole sequence, two equivalence points are enough. Otherwise, it is divided into smaller intervals. The
drift linearity hypothesis can be checked by analyzing the time equivalence �les: the interval drift is estimated
between all data records, and if the interval drift intersection is null, we may conclude that the drift estimations
are not the same at the di�erent times. The sequence therefore needs to be linearized in order to yield a constant
drift between the equivalence points.

If time equivalencies do not occur both before and after the time to be converted, an extrapolation is required,
as shown in Fig. 6. In this �gure, the time [TBβ

] to be converted is before the �rst equivalence point {[TA1 ], [TB1 ]},
so the computation is performed using the closest equivalence point {[TA1 ], [TB1 ]}, to which is added to the
time di�erence to this point, and the result is adjusted according to the drift estimation. In the �gure the drift
estimation is represented by the upper and lower straight lines to the left of the point {[TA1 ], [TB1 ]}.
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Figure 6: Example of extrapolation before the �rst found equivalent point

In Fig. 6, the �rst time equivalence found between the two clocks A and B is the couple {[TA1 ], [TB1 ]}. TBβ

does not have equivalence points occurring both before and after, but only one equivalence point after, and so
an extrapolation is required; the method is similar to the on-line time conversion described in Sect. 3.1.1, except
that one only step is required: the direct conversion from clock B to clock A, because some equivalencies of



clock B are known in relation to clock A's reference time.
The method works if the drift is more or less linear between the various times, as we have shown above,

and involves computing the equivalence time with the closest time equivalence, adding the time di�erence with
respect to the time to convert, and correcting using the drift. The drift is evaluated with two time equivalen-
cies between the clocks, where the drift is constant. In Fig. 6, these equivalent points are {[TB1 ], [TA1 ]} and
{[TB2 ], [TA2 ]}. So the drift is computed as:

[ ̂driftB_A(T1, T2)] =
([TB2 ]− [TA2 ])− ([TB1 ]− [TA1 ])

[TB2 ]− [TB1 ]
− 1 (20)

The computation is almost the same for timestamps before the �rst found equivalence time {[TA1 ], [TB1 ]} as
for timestamps after the last found equivalence time {[TAn

], [TBn
]}, except that [TA1 ] and [TB1 ] are respectively

replaced by [TAn
] and [TBn

]. So the computation gives

[TAβ
] = [TBβ

] + [TA1 ]− [TB1 ] + ([TBβ
]− [TB1 ])× [ ̂driftB_A(T1, T2)] (21)

Since interval notation is used, interval propagation may be used to improve the drift estimation. As the
drift is estimated in a particular manner and can be estimated at di�erent points (leading to di�erent interval
results), the intersection between the resulting intervals can be performed, giving a better drift estimation
interval. A null intersection implies that the drift is not linear over the period under consideration: this period
used for drift estimation must be lengthened, in order to linearize the drift.

4 Theoretical and experimental performances
Simulations and experiments were carried out to estimate the performances of the proposed methods. Com-
putations estimate the resulting interval timestamp width. This width depends on the various parameters
in�uencing the equations computing the resulting intervals explained in section 3.

To simulate and experiment the performances, a clock granularity of 1 µs is assumed.

4.1 The bus-network used
For our experiments we chose a FireWire bus network in preference to others (e.g., CAN, TTP, Flexray), for
several reasons. First, the application was not designed to be embedded in mass production cars, but to be
used in the development of data acquisition and data computation for new ADAS (Advanced Driver Assistance
Systems) functions, or for studying driver behavior, i.e., fast prototyping. Secondly, the network requires a large
bandwidth to be able to transmit video streams. Finally, the FireWire bus network is able to process dynamic
recon�gurations.

The FireWire bandwidth is 400 Mb/s for IEEE 1394a [Anderson, 1999]. It was originally designed for video
data transfer. It has two data transfer types, asynchronous and isochronous. The FireWire has a synchronous
bus network clock with a frequency of 24.576 MHz for IEEE 1394a. Each interface has a clock synchronized
with a precision of less than 5 µs for all interfaces, depending on the overall cable length.

The FireWire global clock is the clock of one of the interfaces forming the FireWire bus network, and
consequently a free-running clock. All interfaces are synchronized to this reference clock, whose frequency
is not modi�ed. The synchronous network clock is used by the computers to bring about the desired time
correspondence.

In spite of all its advantages, the FireWire clock (like all synchronous network clocks) is not monotonous for
two reasons. First, the FireWire clock has a counter capacity of approximately 128 s, and secondly, there is a
break in monotony at each bus reset, which can be a consequence of the plugging or unplugging of an interface.

To prevent over�ows we added a software counter to the interface counter. The synchronous network clock
with the addition a software counter is called the net-time in this paper. This software counter is a 32-bit
integer, which allows more than 17000 years to elapse before a bu�er over�ow occurs.

A second type of break in monotony may be caused by the plugging or unplugging of hardware. These events
lead to a new network con�guration: the FireWire clock can change (the FireWire clock is in fact one of the
interface clocks). This possibility must be taken into account when converting timestamps.

4.2 Theoretical performances
4.2.1 Theoretical performances of on-line timestamp conversion
On-line timestamp conversion depends on the parameters of Equ. (14) and (15).



Fig. 7 shows the in�uence of the various parameters on on-line interval width estimation. The graph is
plotted with the parameters of Tab. 2, with w[t] = t − t the interval width of [t]. To simplify the resulting
interval width estimation, it is assumed that varying parameters have values between 5 µs and 500 µs.

Curve Value Default value
(1) w[ρ̂n/s(tas , tbs)] 1 µs

= w[ρ̂c/n(tac
, tbc

)]
(2) w[hn(tcs)] = w[hn(tcc)] 6 µs
(3) w[hs(t)] 3 µs
(4) t− tcc = t− tcs 2.106 µs = 2s

Table 2: Values used for the graphs in Fig. 7
(1): Drift interval width

(2): Network interval width
(3): Original timestamp interval width

(4): Time delay between the timestamp and the data transfer

The value of the drift is also in�uent: this modi�es the last multiplication parameter in Equ. (14) and (15).
However, for values varying from -200 µs/s to +200 µs/s (maximum observed drifts), the theoretical in�uence
of the drift on the resulting timestamp is much lower than 1 µs, which is negligible in relation to the other
in�uent parameters.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

(3)

Varying parameters (µs)

R
es

ul
tin

g 
in

te
rv

al
s 

w
id

th
s 

(µ
s)

Influence of the time parameters on the resulting interval timestamping 

(2)

(1)

(4)

Figure 7: In�uences of the various parameters on the resulting timestamping interval width

The resulting timestamping interval width has an optimum value of about 45 µs, and the resulting interval
width varies linearly with respect to the various parameters.

It will be noticed that the least in�uent parameter is the delay between the timestamp and the data transfer,
because this parameter in�uences only the size of the multiplication factor at the end of the equations. It is not
very in�uent.
Neither is the original timestamping interval width particularly in�uent, because this value is taken into account
only once (at the �rst computation), and so the error is not cumulative through the di�erent equations.
The network interval width is approximately twice as in�uent as the original timestamping interval width,
because this error is taken into account twice in the equations, for the computation from the server time to the
network time, and from the network time to the client time.
Finally, the most in�uent error is the drift interval width of the di�erent clocks, approximately four times more
in�uent than the original timestamping interval width.

Fig. 8 shows the in�uence of the delay between the timestamp and the data transfer from 0 to 500 s.

4.2.2 Theoretical performances of post-processing timestamp conversion
Theoretical experiments were also carried out to estimate the loss of precision in post-processing timestamp
conversion. Post-processing timestamp conversion can be separated into two di�erent methods, depending on
the location of the timestamp to convert, implying interpolation or extrapolation. The �rst step is the same, see
Equ. (16) and (17), and then computations are di�erent for the two methods, see Equ. (18), (19) for interpolation
and (21) for extrapolation.
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Figure 8: In�uence of the time delay between the timestamp and the data transfer on the resulting timestamping
interval width

As mentioned in the previous section, some simpli�cations are made when determining the in�uence of the
various parameters. The main simpli�cation is that timestamping interval widths are assumed to be identical
for the server and the client computers at any acquisition time. The same assumption is made for network
timestamping widths. This simpli�cation implies that the two corresponding timestamp points at the beginning
and at the end of the recorded sequences have the same interval precision width.

We now distinguish between the parameters in�uencing post-processing interpolation and those in�uencing
post-processing extrapolation.

Theoretical performances of interpolation post-processing conversion: Various in�uent parameters
will be remarked in Equ. (18) and (19). Fig. 9 illustrates the graphs of interval width, depending on the
parameters of Tab 3. The parameters vary from 5 µs to 500 µs.

Line Value Default value
(1) w[TBα ] 3 µs
(2) w[TA1 ] =w [TA2 ] 3 µs

=w [TB1 ] =w [TB2 ]
(3) w[TNB1 ] =w [TNB2 ] 8 µs

Table 3: Values used for the graphs in Fig. 9
(1): Original timestamp interval width

(2): Local clocks interval width
(3): Network interval width
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Figure 9: In�uence of the various in�uent interval widths on the resulting interpolation post-processing times-
tamp interval width

In Fig. 9 the three lines describe almost identical trajectories, with a resulting interval width of about 15 µs
for the initial chosen parameters. This interval width varies linearly from 15 µs to about 520 µs for interval
widths of 500 µs. The result is almost identical for the three varying parameters, i.e., the resulting interval
width depends directly on the various interval widths of the formulae.

The interval width of the interpolation part of the post-processing conversion does not depend on any delays
with respect to equivalence points, because the drift is considered as linear during this stage, leading to lower
and upper interpolation bounds. That is to say, when the drift has been veri�ed as constant over the period in
question, an interpolation is su�cient to convert timestamps from one reference clock to another.

Theoretical performances of extrapolation post-processing conversion: We also provide some graphs
corresponding to the extrapolation part of the post-processing conversion. The in�uent parameters are the same
as for the interpolation part, plus the drift and the delay between the closest correspondence point and the time
to convert (see Equ. (21)), like in the case of on-line timestamp conversion, Sect. 4.2.1. Values vary from 5 µs
to 500 µs and are explained in Tab. 4 for Fig 10.

In Fig. 10, the most in�uent parameter is the drift interval width -line (1)-. It is responsible for approxi-
mately half the interval width error on the resulting timestamping interval width, when compared to Fig. 7.
The in�uence is smaller than in the case of on-line conversion, because in post-processing conversion the drift is
estimated directly between the two local computer clocks, whereas in on-line conversion the drift is estimated



Line Value Default value
(1) w[ ̂driftB_A(T1, T2)] 1 µs([100, 101] µs/s)
(2) w[TA1 ] =w [TA2 ] 3 µs

=w [TB1 ] =w [TB2 ]
(3) w[TNB1 ] =w [TNB2 ] 8 µs
(4) w[TBβ

] 3 µs
(5) w([TBβ

]− [TB1 ]) 2 s

Table 4: Values used for the graphs in Fig. 10
(1): Drift interval width

(2): Local clocks interval width
(3): Network interval width

(4): Original timestamp interval width
(5): Time delay
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Figure 10: In�uence of the various interval widths on the resulting extrapolation post-processing timestamp
interval width

between the server clock and the network clock, and then between the network clock and the client clock,
implying twice the drift error. For larger values we provide details in Fig. 11.
The middle lines (2), (3) and (4) have approximately the same in�uence as in Fig. 9, because of the similar
situation and because the in�uence of the drift interval width -line (1)- and the time delay -line (5)- is practically
non-existent.
Like in previous graphs, the delay between the reference time correspondence and the time to convert -line (5)-
is almost imperceptible for such short delays.

Fig. 11 illustrates the in�uence of the time delay between the closest correspondence points of the two clocks
which are to be set to the same time and the timestamp to be converted. The time delay varies from 5 to 500
seconds.
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Figure 11: In�uence of the various interval widths on the resulting extrapolation post-processing timestamping
interval width

In Fig. 11, it will be noticed that the interval width is approximately half that of the implied delay for on-line
timestamping, as shown in Fig. 8. The explanation is the same as for drift interval width.

In conclusion, every parameter is important if the best possible resulting timestamping interval widths are to
be obtained. The better the initial precision, the better the resulting precision. Furthermore, the drift between
the di�erent clocks is twice as signi�cant as regards the interval width for on-line timestamping (as opposed to



for post-processing timestamp conversion), given that in post-processing conversion the various parameters can
be analyzed to be optimized, whereas in on-line conversion, conversions cannot be analyzed.

4.3 In-lab experimental results
4.3.1 In-lab experimental results for on-line timestamp synchronization
We now present some on-line timestamp conversion experiments performed in the lab.

The system presented here, involving wired networks linked via synchronous bus-networks, and where inde-
pendent subnetworks are free to join or leave, is in fact unique. This solution is totally distributed, meaning
that there is no need for master and slave nodes, and there exist no orders regarding the addition of nodes or
networks. Experiments were carried out to show the in�uence and the consequence of the drift on the resulting
timestamping. These experiments showed that the resulting timestamping interval encompassed the original
interval. To perform these experiments, two computers were used, with the following scenario. The �rst com-
puter runs a client program which sends a request to the second computer running a server program. The
latter returns a timestamp to the client. The �rst computer converts the timestamp to its local clock base, as
explained in this paper. The timestamp is �xed and does not change: this enables the increase in timestamping
interval width to be visible as a timestamp ages.

The synchronous bus network used is FireWire, whose clock granularity is set to 5 µs. The global times-
tamping granularity is set to 1 µs. The data exchange and drift estimation is performed at a frequency of
3 Hz, and when the drift estimation is not performed (e.g. just after a bus reset), or when it is worse than
[−120, 120] µs/s, this interval is recorded. Some plugging and unplugging events are carried out to simulate
the connection and disconnection of synchronous bus network components. The operating system used for this
experiment was Linux RTAI-LXRT (Linux Real Time).

The protocol used was SCOOT-R, a middleware developed in the laboratory [Chaaban et al., 2003]1. SCOOT-
R stands for Server and Client Object Oriented for Real Time. It is a system designed for simple object ex-
changes, using either a client-server or a transmitter-receiver model, both in real time. This software can be
used either with Microsoft Windows (which is not hard real time) or Linux RTAI-LXRT (real time). It also
includes a function to generate the previously cited extended bus network time. In-house software could also
be used in place of SCOOT-R.

The experiment described was carried out over more than 6 minutes. The new computed timestamps were
recorded and are shown in Fig. 12.
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Figure 12: Timestamping interval width after a timestamp conversion

In Fig. 12, the X-axis is the elapsed time in seconds, and the Y-axis is the timestamping interval width.
A translation is performed to set the initial timestamp to 0. When an interval date is used to represent the
timestamp, the timestamp must be contained between the lower and upper bounds of the interval.

The timestamp conversions were performed both with and without drift estimations:
1SCOOT-R (for Linux RTAI or Windows) can be obtained by sending an e-mail to paul.crubille@hds.utc.fr. We plan to make

it available under a CeCILL free license.



• timestamp conversion without taking drift into account (one dash-dot straight line, in the center of the
graph, Fig. 12)

• timestamp conversion as described in this paper, with an estimated drift (two curved lines in the center
of Fig. 12, representing the interval with respect to the bottom and top lines)

The �rst thing to be noticed is that a drift exists, so that a precise timestamp conversion cannot be performed
without taking this drift into account (dash-dot straight line).
There are some increases in timestamping interval width, for example at approximately 60, 90, 170, and 220
seconds. These abrupt increases are due to a bus reset. The synchronous bus network clock time can change
at these points, so the drift estimation is recomputed. Before a �rst drift estimation, the approximation value
[−120, 120] µs/s is taken for the drift. Then, the drift interval diminishes progressively until it reaches the best
estimation.

The interval width increases with time, because the drift interval width has an in�uence on the converted
timestamp width: the greater the elapsed time between the clock time correspondence and the timestamp to
convert, the worse the estimated timestamping width.

Other methods taking drift into account, such as NTP [Mills, 1991], can also be used to convert interval
timestamping. However, these protocols need to exchange frequent messages to estimate the o�sets between
the various clocks, whereas the method proposed in this paper does not require explicit messages exchanges
between the di�erent computers.

Fig. 13 shows the increase in interval drift. The estimated drift interval uncertainty is 1 µs/s in the best
case, which corresponds to the time granularity. The value of 3 µs/s is obtained after about 4 s, whereas 5
µs/s is obtained after less than about 2.5 s.
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Figure 13: Timestamping uncertainty after a timestamp conversion: zoom on the timestamp conversion with
the estimated drift between 0 and 400 seconds

In the optimum case, i.e., when the drift estimation is the best and tc in equation (15) or (14) is close to
t, the timestamp uncertainty is slightly more than 40 µs, as in the simulations, Sect. 4.2.1. Moreover, after
400 seconds, a timestamping interval width of about 800 µs is observed, which is about the same as the result
simulated for theoretical performance evaluations, Fig. 8.

4.3.2 In-lab experimental results for post-processing timestamp synchronization
Some experiments were performed under Linux LXRT to validate the post-processing synchronization. They
involved two computers and one camera connected via FireWire, see Fig. 14.

Computer A

Computer B

WebCam
FireWire

FireWire Bus−Network

Figure 14: Experimental protocol for testing experimental post-processing conversion



Each computer has a di�erent time and records the arrival time of each video frame, as shown in Fig. 15.
In this �gure we see that an image i is produced at the camera time ti, and timestamped respectively at times
[tAi

] and [tBi
] for computers A and B. As the images are transmitted at the same time on the synchronous

bus-network, they are received at approximately the same time from computer A or computer B.

Computer BComputer A

t i+2

t i+1

t i

t
i+2A[        ]

i+1At[        ]

t
iA[      ]

t
i+2B[        ]

t
i+1B[        ]

t
iB[     ]

Camera

Image #i+2

Image #i+1

Image #i

Figure 15: Camera and computers timestamping diagram

A post-processing synchronization is then computed in order to obtain image timestamps with the same
reference time. As each computer receives each frame at the same time, the timestamps are the same in universal
time, so that the validity of the post synchronization can be checked. Fig. 16 illustrates the conversion from
computer A clock timestamps to computer B timestamps. Timestamps are known in the two reference times
(from clock A and clock B), and are converted from computer A's to computer B's clock using our method.
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Figure 16: Conversion of timestamps from computer A's clock to computer B's clock

A player was developed to visualize recorded images with their timestamps. When visualizing images with the
computers' particular timestamps, the same images are not present at the same time: the computer timestamps
are not synchronized. When visualizing images with timestamps converted to the same reference time, the same
images are present on the two screens at the same time, as shown in Fig. 17: this shows that the same images
are timestamped with the same timestamp.

Fig. 18 shows the timestamp synchronization errors in relation to the post-processing synchronization for
an approximately 8-minute sequence. The timestamps for the reference computer time are set to 0, and the
recomputed timestamps are set in relation to this 0. The correspondence computation was performed in two



Figure 17: Restamped image-visualization screenshot

stages, because the drifts between the computers are not linear. The �rst sequence is from 0 s to about 200 s
and the second from 200 s to the end.

This shows that the drift should be taken into account in certain cases, depending on the clocks: the
experiments described were performed just after the computer boot, so components were not at their optimum
temperature. A temperature variation implies a drift variation. The linearity of the drift can be checked by
analyzing the synchronization �les.
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Figure 18: Timestamping interval width after a restamping computation

Several clocks were checked, generally showing that the drift becomes constant after about 15 minutes.
Then, it is approximately constant, provided that the clock is subjected to a relatively constant temperature.
In fact, oscillators, and consequently drifts, change with age and are a�ected by environmental variables, such
as mechanical vibration, magnetic �elds, and especially temperature.

Other longer experiments were also carried out, all of them showing that the converted timestamping interval
encompassed the original interval.

Further experiments using a real system embedded in a vehicle were performed, including the on-line and
post-processing timestamping processes described in this paper. These experiments were designed to test an
ADAS (Advanced Driver Assistance Systems) function and formed part of the European Roadsense project
[for Driving a Strategy that Evaluates Numerous SystEms, 2004], in collaboration with Renault [Bezet et al., 2006].
They lasted about 2 hours, during which time data were recorded.

Timestamping precision estimation can be useful for dynamic applications: e.g., a timestamp correction
adjustment has been made for laser range scanner data, showing the in�uence of timestamping precision
for dynamic applications using several sensors and computing resources such as robotics applications, vehi-
cle and transport systems. The correction adjustment is very similar to computations shown in this paper,
[Bezet and Cherfaoui, 2006].

5 Conclusions and future work
This paper has described on-line and post-processing timestamp conversion methods using interval date times-
tamping, and has presented theoretical and experimental results. These methods use comparisons with a
common clock, the synchronous bus network clock, to perform precise on-line timestamp conversions and to
avoid speci�c exchanges through the network.

The �rst advantage is that everyday hardware is used: Firewire is now often integrated within new laptops,
for example. The timestamp conversion method presented here can be implemented with standard hardware,
and little engineering input: the middleware used can be freely obtained and we plan to make it available as
free software. The system developed is particularly suitable for fast prototyping of distributed applications and
developing experimental applications using standard low-cost hardware. It does not require large and expensive
systems which would be hard to implement. Estimating the timestamping uncertainty can be useful, particularly
for dynamic systems. Then, if necessary, the experimental system can be implemented on dedicated systems,
having better timestamping precision and better reliability.



A second advantage is that no clock is changed on any computer, which enables total parallelism, dynamic
recon�gurations and a complete independence of computers, without the requirement that they all be con-
nected together before the �rst timestamp conversion. Computers can therefore remain connected, and form
independent networks able to connect together without any disturbance. Moreover, instantaneously precise
on-line timestamping is possible, even after a network con�guration change. Timestamping uncertainty makes
it possible to evaluate precision, enabling timestamp values to be guaranteed.

Another advantage is that only a few simple calculations (interpolations) are required to perform the times-
tamp conversion. It is su�cient to compute the drift regularly and to record correspondences in a �le. The
conversion is direct: for on-line timestamping, very little memory is needed to store time equivalencies and
to �nd the closest to the timestamp. For post-processing timestamp conversion, time equivalencies are stored
in a �le. The period of recorded time equivalencies can vary depending on precision requirements, remaining
processor power and remaining capacity storage.

Last but not least, no exchanges are necessary among the di�erent computers to maintain the clock corre-
spondences. Time exchanges are only needed at data transmission: when a datum is sent, a �eld is added for
the time. There are no exchanges limiting the number of connected computers: there can be as many computers
as are required. One aim of this work is fast prototyping, where the optimum distribution of computation is
not necessarily known in advance. With the proposed method, all computers can be connected, even if there
are few data exchanges between computers.

Theoretical as well as practical experiments were performed to evaluate the performances and to validate
the proposed timestamp conversion method, both types of experiment yielding approximately the same results,
enabling us to predict the resulting timestamping interval widths depending on the application parameters,
which include latencies, computer and network clock granularities and the drift between the di�erent clocks.

Finally, applications including the proposed conversion methods have been implemented, and similar works
have shown the in�uence of the timestamping precision for dynamic situations.

Several interesting perspectives follow from this work. First, a study of interval timestamping for data fusion
should be done. This can be a problem when data are not all produced exactly synchronously. It might
be interesting to study the consequences of interval date timestamping. Most algorithms do not accommodate
interval timestamping. Interval dating takes account of timestamping uncertainty, leading to better data quality
estimations.

In addition, the desired timestamp conversion might be used in other synchronous bus networks, e.g., the
Time Triggered Protocol, TTP [Kopetz, 1997], where a network clock is available. However, some adaptations
would be necessary. For example, although the FireWire clock is an interface clock, the TTP clock is given by
an internal clock synchronization. This means that its drift is not exactly constant, but can vary slightly. In
this case it may be supposed that the synchronous bus network clock drift is constant over a given time period
which needs to be determined, and consequently a sliding window might be used to compute the drift.
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