
Distributed data fusion: application to confidence 
management in vehicular networks 

 
Véronique  Cherfaoui, Thierry Denoeux  

Heudiasyc UMR CNRS 6599 
Université de Technologie de Compiègne, France 

veronique.cherfaoui@hds.utc.fr 
thierry.denoeux@hds.utc.fr 

 

Zohra Leïla Cherfi  
LTN INRETS  

Institut National de Recherche sur les 
Transports et leur Sécurité, Arcueil, France 

zohra.cherfi@inrets.fr 
 
 

Abstract – This paper presents a method for the 
management of information dissemination in a 
vehicular network (VANET). Due to the particularities 
of the application (ad hoc network, dynamical nodes, 
broadcast messages), an algorithm has been developed 
to fuse and combine data in distributed systems. 
Matching spatial information is made easier by the use 
of a numerical map as support of a database. A model 
of confidence management based on the belief function 
framework is then described considering spatial 
dispersion of data sources, delays due to the multi-hop 
transmission and dependency between sources. 
Preliminary results are presented based on simulated 
messages referenced on a real map data. 
 
Keywords: distributed data fusion, confidence, belief 
functions, ad hoc network application. 
 

1 Introduction 
In the last years, more and more communication devices 
have been embedded in vehicles. Many applications based 
on wireless communication have been developed in which 
the vehicles are the nodes of an ad hoc network called 
VANET. In the VANET, all vehicles broadcast messages 
and each vehicle has knowledge about its neighborhood 
only through the messages it receives. Most research 
papers deal with communication protocols, routing and 
congestion problems. Due to the nature of applications 
(driving assistance systems or emergency braking alert) 
recent works have been dedicated to the security 
mechanism in order to avoid malicious node intercepting, 
modifying or sending erroneous data [6][[8]. Supposing 
these problems to be (partially) solved, we propose a 
method to manage and exploit message information from 
the receiver node point of view.  
 
In this study we consider messages regarding safety such 
as accident, reduced visibility, traffic jam, etc., and we 
consider car-to-car (C2C) communications. It is the 
context of the Safespot project [18] [19] and the cognitive 
car [9]. Each car (node) is able to detect, localize, date and 
characterize an event and, if necessary, broadcast it in a 

message. Due to the multi-hop transmission protocol, the 
distance between sender and receiver nodes is not limited 
by the transmission power of antennas. In order to 
localize and date the content of a message, we assume that 
each node is equipped with a Global Positioning System 
(GPS) receiver. When a node receives a message, it 
updates its database and, if necessary it broadcasts its 
updated information. 
 
The problem of information dissemination, i.e., proposing 
a strategy to broadcast information is not addressed in this 
paper. Indeed, the road traffic can be high, the bandwidth 
is limited and the number of exchanging messages could 
have to be reduced. Different strategies have been 
proposed in the literature [5][1][16] concerning this 
problem. It should also be remarked that algorithms for 
combining and fuse data are very different from 
algorithms developed in infrastructure vehicle (V2I) 
communication applications. In this latter case, a 
centralized module combines collected data and 
disseminates global information.  
 
The objective of the work reported in this paper is to 
develop a methodology for combining data included in 
messages arriving from other nodes.   Since data are 
uncertain and could be the result of processing 
disseminated data, we focus on confidence management 
in a distributed and dynamical context. The confidence 
could be exploited to provide the driver with relevant 
information and/or to decide about the transmission of the 
result in the network. This contribution is intended to be a 
part of the information dissemination strategy to be 
developed in future work. 
 
This work is based on the use of belief functions to 
combine degrees of confidence about events reported in 
exchanged messages. We first define the attributes of each 
message and then describe the methodology to combine 
data coming from distributed, dynamical and 
asynchronous sources.  



2 Background on Belief Functions 
The transferable belief model TBM [14] is a model to 
represent quantified beliefs based on belief functions [13]. 
It has the advantage of being able to explicitly represent 
uncertainty about an event. It takes into account what 
remains unknown and represents what is already known.  

2.1 Knowledge Representation 
Let Ω be a finite set of all possible solutions of a problem. 
Ω is called the frame of discernment (also called state 
space); it is composed of mutually exclusive elements. 
The knowledge held by source can be quantified by a 
belief function defined from the power set 2Ω to [0, 1]. 
Belief functions can be expressed in several forms: the 
basic belief assignment (bba) denoted m, the credibility 
function bel, the plausibility function pl, and the 
commonality function q which are in one-to-one 
correspondence. We recall that m(A) quantifies the part of 
belief that is restricted to the proposition “the solution is 
in Ω⊆A ” and satisfies: 1)( =∑

Ω⊆A
Am . 

Thus, a bba can support a set Ω⊆A  without supporting 
any sub-proposition of A, which allows accounting for 
partial knowledge. The complete notation of a belief 
function is: { }[ ]( ) Ω⊆Ω AABCXm tStS   ,,  where S is the 
information source, t the time of the event, Ω the frame of 
discernment, X a parameter which takes value in Ω and 
BC the evidential corpus or knowledge base. This 
formulation represents the degree of belief allocated by 
the source S at time t to the hypothesis that X belong to A. 
The notation is simplified in the following paragraph to 
clarify the combination formulae. In Section 4, the 
complete notation including the time, source and 
parameter will be used. 
 
Smets introduced the notion of open world where Ω is not 
exhaustive; this is quantified by a non zero value of 
m(Ø).Other functions can be calculated from the bba m 
using the following formulas: 
Credibility function: ( ) ∑

⊆≠∅

ΩΩ =
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BmAbel )( , 

 
Plausibility function: ( ) ∑

∅≠∩
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Commonality function: ∑

⊇
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AB

BmAq )()( . 

Another function that can be computed from q is the 
conjunctive weight function [15] defined by: 
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The w function is well-defined if m is non dogmatic, i.e. if 
m(Ω) > 0. Functions bel, pl, w and m are in one-to-one 

correspondence. In particular, formula to recover m from 
w are given in [15] and [4]. 
 

2.2 Information Fusion 
Let n distinct pieces of evidence be defined over a 
common frame of discernment and quantified by bbas 

ΩΩ
nmm L1 . They may be combined using a suitable 

operator. The most common ones are the conjunctive and 
disjunctive rules of combination defined, respectively, as: 
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The resulting bbas should be normalized under the closed 
world assumption. Dempster’s rule [2] denoted by ⊕ 
normalises the result of the conjunctive rule with 

)(1
1
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K and sets the mass on the empty set to 0. 

The conjunctive and disjunctive rules of combination 
assume the independence of the data sources. In [3] and 
[4] Denoeux introduced the cautious rule of combination 
(denoted by ) to combine dependent data. This rule has 
the advantage of avoiding double-counting of common 
evidence when combining non distinct bbas. In particular, 
the combination of a bba with itself yields the same bba: 
m = m m (idempotence property). The cautious rule of 
combination can be easily computed by taking the 
minimum of conjunctive weights : with ovious notations, 

w1  2 = w1 ∧ w2, 
where ∧ denotes the minimum operator.  

 

2.3 Reliability and Discounting Factor 
The belief function framework makes it possible to model 
the user’s opinion about the reliability of a source [7]. The 
idea is to weight more heavily the opinions of the best 
source, and conversely for the less reliable ones. The 
result is a discounting of the bba mΩ produced by the 
source, resulting in a new bba α,Ωm  defined by: 
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The discounting factor α can be regarded as the degree of 
trust assigned to the sensor. 
 

3 Exchanged Data  

3.1 Level of Information  
Safety applications in VANET are being investigated in 
order to increase the vehicle visibility area and produce 
useful information in view of developing ADAS 



(Advanced Driver Assistance System) functions. The 
level of exchanged data depends of the applications: the 
concept of cognitive car [9] assumes that vehicles 
communicate in crossing roads to avoid collision. Traffic 
information applications are based on the vehicle 
positions and speed exchange [12].  
We propose to exchange data concerning a set of events 
in order to increase the “visibility” of the driver and to 
allow the anticipation of dangerous situations. These 
events are classified into three categories:  
- Static (or slowly evolving) and localized events such as 
Accident (AC), working area (WA), Dangerous Object 
(DO); 
- Dynamical (quickly evolving) and localized events such 
as an animal on the road (AN), a countersense vehicle 
(CV) or a dangerous vehicle (DV); 
- Slowly evolving and diffuse events such as low visibility 
(LV), traffic-jam or congestion zone (CZ), low adherence 
area (LA). These events concern a whole geographical 
area. 
In this work, it is assumed that vehicles are equipped with 
systems able to detect these events. 

3.2 Spatial and Temporal References  
When a node receives a message, it has to decide whether 
it is relevant according to the node location and the node 
itinerary.  Knowing that an event is geo-localized with 
GPS, and assuming the node has a numerical map, it is 
possible to associate an event with a road segment. A road 
segment is an entity in a Geographical Information 
System (GIS) database. Each road segment is determined 
by a unique Road-ID. Figure 1 describes the geometric 
definition of a road segment: it is connected with other 
segments at the origin and end extremities. 
 

 
Figure 1: definition on a road segment in GIS 

 
This approach has three main advantages: 
- The spatial data association between two events is made 
easier; 
- The space representation by roads is discrete. 
Consequently, two messages geo-localized on the same 
Road–ID concern the same event. 
- It is possible to assign prior knowledge to each road 
segment. For example, frequent fog reported in an area 
can be associated to segments in this area. 
 
As mentioned in the introduction, the time between the 
creation and reception of a message can be higher than 
transmission delay. This is due to the multi-hop and 

retransmission capabilities of communicating cars. 
Consequently, two attributes should be defined for dating 
an event: one for time stamping the event when it was 
detected and one for specifying the date of updating if the 
message was created from the combination of other 
messages.  

3.3 Confidence Attributes 
In order to analyze a road situation according to set of 
events, we study the confidence of these events according 
to the confidence assigned by the vehicle that has detected 
the event, the redundancy of messages concerning this 
event and the date and location attributes. 
We propose to model the confidence with belief functions 
in order to take into account the uncertainty of initial data. 
The operators defined in the belief function framework 
can be applied to compute a unique belief function by 
combining belief masses coming from many sources. A 
message describing the event ev is assumed to contain a 
mass function on  Ω = {0,1}. The value 0 represents ¬ev 
and 1 represents ev. The mass function m can then be 
represented as a quadruplet [m(∅), m({0}), m({1}), 
m(Ω)]. The value m(Ω) is interpreted as the degree of 
doubt and the value m(∅) represent the degree of conflict 
between sources.  
 
There are two ways to initialize the mass function. First, 
when a vehicle vehID detects an event ev at time t on road 
roadID, it computes a degree of certainty d. This value is 
used to define the bba { } ,, evm troadIDvehID

Ω as: 
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When a vehicle vehID predicts an event ev on a road 
segment roadID and it does not detect it, it assigns a 
confidence value d’ to ¬ev and builds the following mass 
function for ev: 
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The confidence values d and d’ are set based on the 
reliability of the detection system (driver observation, 
sensor processing). 
 
Our aim is to improve the level of knowledge from 
exchanged messages. The belief of the distributed sources 
is expressed by their mass functions. Distributed data 
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fusion then consists in combining these masses with the 
appropriate operator. The conjunctive rule will be used 
when assuming the independence of messages, whereas 
the cautious rule will be applied in case of dependent 
messages. To determine which operator should be applied 
when combining information contained in a message with 
other information, an attribute src is set to 1 when the 
message is original and set to 0 when it results from the 
combination of other messages.  
 
The content of message is summarized in Table 1.  
 

Table 1. Message attributes 
 

Attribute Description 
ev  Type of event 
roadID Road Id for localisation of event  
subSeg # of subsegments (for fine 

localization) 
coordgps GPS Coordinate   
vehID Vehicle ID having detected the 

event 
src Binary value indicating if the 

message content is the result of 
detection or the result of processing 
disseminated data. 

tAcquisition Time of event perception 
tLastUpdate Last updating date 
m Mass function  
 
Some specific attributes (subSeg) have been added for 
future developments. 

4 Message Combination 

4.1 Temporal Persistence 
The observed system is composed of events evolving in 
time and space. The delay between emission and 
reception can be small or large according to the routing 
and propagation algorithms. The confidence in a message 
also depends on of the age of the received event.  
 
Belief masses should thus be modified according to the 
delay between the date of data processing and the date of 
data emission.  The objective is to maintain data 
consistency with or without new messages. Indeed, in 
order to maintain a high level of confidence about an 
event, new messages confirming this event are needed. 
Without such confirmation, the confidence should 
decrease. We propose to define a discounting factor γ 
according to the time difference  lastUpdatecurrent ttt −=Δ  

and a value )(evρ  depending on the event ev: 
 ))(/exp( evt ργ Δ−= .   

The value )(evρ  characterizes the persistence of event ev. 
For example, )LV(ρ  is high while )AN(ρ  is shorter. 

Temporal extension is performed by a discounting 
operation: 

 
   )(1)(
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Notice that we have simplified the notation because the 
referential, event, road and source are constant in this part 
of the algorithm. 

4.2 Spatial Propagation 
Message combination in ad hoc networks should also take 
into account spatial properties of the observed events.  
We can assume that some events observed on road 
segment Si hold as well at positions close enough to Si. It 
is true, for example, for weather observations. The size of 
the neighborhood depends of the type of the diffuse event. 
A previous approach to plausible reasoning from spatial 
observations was proposed by Lang and Muller in [11].  
These authors consider an observation point o (for 
example, the current position of the vehicle) and try to 
infer beliefs about what holds in o from the properties of 
the other road segments xi (i=1 .. n). Their model of 
spatial persistence is based on an extrapolation of 
observation oxi

m →  calculated by discounting the mass 

function xim :  

 Ω≠⋅−=→ Am
oxd
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i
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where d(xi, o) is the distance between the focus point o 
and the road segment xi and λ represents the degree of 
persistence.  
The belief at the focus point o is then the Dempster 
combination of the oxi

m → : 

      
..1:

ox
ni

o i
mm →⊕= . 

However, the problem of the dispersion in space of points 
xi (i=1,…,n) has to be considered. Figure 2 shows two 
different situations. Since the points x1 and x2 are close in 
the second configurations, their influence on point o 
should be reduced.    

  
Figure 2: Dispersion configurations. 

 



To remedy this problem, Lang and Muller propose to 
introduce a discounting factor when combining mass 
assignments. The discount rate grows with the proximity 
and thus the dependency between the points where 
observations have been made. The discounting factors are 
calculated based on geometrical criteria.  
We propose in this paper to make use of the numerical 
map to define the dependency between points xi (defined, 
for example, by GPS coordinates). As previously 
mentioned, an event is localized on the numerical map 
and a road-ID is associated to it. The roadID attribute can 
thus be used to indicate if events are located on the same 
portion of road. In this case, the masses oxi

m → are 

considered as non independent and combined using the 
cautious rule. If the messages containing the masses come 
from roads with different roadIDs, they are combined 
with Dempster’s rule. The algorithm is then: 
 
 om = oxm →1

 

 )1( x  roadIDtabRoadID ←  
 for i: 2..n 
    if  roadID(xi) ∈ tabRoadID   
    om  = om oxi

m →  

 else     
    )( ix  roadIDtabRoadID ←  
    om = om ⊕ oxi

m → . 

Here again the notation has been simplified because the 
referential, parameter, time and source are constant. 

4.3 Prior Knowledge 
Using numerical map to support the database makes it 
easy to attach prior information to road segments. For 
example, a congestion zone can be identified in some 
urban area, frequent fog condition can be observed near 
the wet zone, etc. This information can be fused with 
extrapolated and combined data before a decision is made.  
 

4.4 Global Algorithm 
As the vehicle is moving continuously, two approaches 
can be considered for processing a received message. The 
first one is a message-triggered approach in which each 
message is processed when it arrives at the node. Since 
the frequency and number of messages are unknown, it is 
difficult to guarantee that all messages will be processed. 
We prefer the second approach, referred to as the road 
segment triggered approach, in which each received 
message is kept in memory. When the node moves on a 
road segment Sv, all messages in a specified 
neighborhood are processed to compute the belief in the 
situation on Sv. The neighborhood can be defined 
according to an area around the current position or 
according to the itinerary of the vehicle.  

 
In the context of VANET, it is unrealistic to assume that 
messages are independent. Information could be relayed 
and completed by the nodes in the network. As mentioned 
previously, some message attributes can determine if two 
messages are independent or not. We can consider that 
independence can be assumed in the following cases: 
- Two messages sent by two different nodes with attribute 
src equal to 1. (src = 1 means that information is acquired 
by the node) 
- Two messages sent by the same node at two different 
dates are regarded as independent if the node has made 
two distinct acquisitions: src equal to 1 and tAcquisition 
values are different. 
In the other cases, the messages are processed as coming 
from dependent sources. The global algorithm is 
described in Figure 3. The grey box has not been 
implemented yet and is left for future work. 
 
 

 
Figure 3. Algorithm for belief function processing 

 
The strategy to elaborate a decision concerning the 
segment and send the corresponding message is beyond 
the scope of this paper.   

5 Preliminary Results 
In order to test this approach, the above algorithm has 
been implemented in Matlab. The messages are simulated 
on the basis of a real numerical map (NavTeQ). A module 
extracts roads from the map in a specified area [10]. It 
uses the Benomad kit. Examples in this section are made 
with a map cache extracted from the GIS with a radius 
equal to 4 km. 
 

The vehicle is moving on 
segment Sv at time t 

Determine the segments {Si} 
in neighborhood map

For each type of event
messages

For  each message  

Time extension  (temporal 
discounting of m) 

Spatial persistence  
(spatial discounting of m) 

Combination with suitable rule  
 (according to Si and src)

Link between events 

Combine with prior 
knowledge 

Select messages on {Si} 



5.1 Spatial Extension 
To illustrate the spatial propagation we propose to 
simulate seven messages concerning the event “Low 
Visibility” (LV). Indeed, low visibility corresponds to 
weather conditions like fog or hard rain. These 
phenomena are spatially diffuse and can be spatially 
propagated. The first example shows the results of the 
combination of messages coming from seven distinct road 
segments situated in two distinct areas. The results 
reported in Figure 4 were calculated with normalized 
operators (mass on empty set was used to normalize). The 
attenuation factor computed from the distance between 
the current position of the vehicle and GPS data in 
messages discount efficiently the m({1}) values.  

 
 

a) Map for low visibility messages. The vehicle is on 
segment V. The fog area is localized in the grey area. 

RoadId of messages are shown. 
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b) bba contained in each message (left) and spatial 

discounting on segment V (right). 

 
c) Resulting belief function for LV event on segment V 

with normalized operators 
 

Figure 4. Example of spatial propagation for LV messages 
distributed on real map 

 
The next scenario concerns the problem of spatial 
dependency. To illustrate it, the mixed 
cautious/conjunctive rule was compared with conjunctive 
only combination in the case where messages are 
localized on the same segments. The results are shown in 
Figure 5. 
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a) Map messages. The vehicle is on segment V. RoadId of 

messages are shown. 
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b) bba contained in each message (left) and  spatial 
discounting on segment V according the RoadID 

localization (right).  
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c) Belief function on segment V. Comparison between two 
different strategies 

 
Figure 5. Example of spatial propagation for seven 

messages localized on only three segments on real map. 
 

The use of the cautious rule when messages are co-
localized limits the reinforcement of confidence values as 
compared to well distributed sources. The well distributed 
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sources are represented by the belief function resulting 
from the conjunctive rule only. This approach has lower 
computational complexity than the spatial dispersion 
method proposed in [11]. 
 
The main difficulty for the implementation of this method 
is the definition of parameter λ. The spatial diffusion of 
real events is never constant and depends on a lot of 
context-dependent conditions.  

5.2 Source Dependency  
The next scenario illustrates the global algorithm (Figure 
6). It simulates messages concerning an event LV coming 
from a group of vehicles exchanging data in an area. 
Messages are relayed by other vehicles (thanks to multi-
hop protocol). A subset of messages (localized at 11, 120 
and 30 RoadID) are labelled with src =0 (not original 
perception of event).   

 
 

a) Map messages. The vehicle is on segment V. RoadId of 
messages are shown. Messages localized on 11, 120 and 
30 RoadID are labelled with src=0 (not initial message).  
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b) bbas before and after spatial discounting on segment V 
according the RoadID localization and m.  
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c) Belief functions on segment V 

 
Figure 6. Scenario with redundant and dependent 

messages 
 
Figure 6 shows the belief functions on segment V. The 
result of our approach is compared with the use of the 
conjunctive rule only without tacking into consideration 
the dependence between messages. Thanks to the cautious 
rule, all messages can be processed according to their 
distinctness. The behaviour of the cautious rule is 
highlighted in this example. 
 

5.3 Temporal Discounting 
Figure 7 shows an example of global combination with a 
message localized on segment V (current road segment). 
The message were dated with tAcquisition = tCurrent- 3600s. 
The RoadID is the current segment V and src=1. 
Temporal discounting on m was performed on the bba of 
this message, before combining it with the result reported 
in figure 6c). 
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Figure 7. Belief functions on segment V. 

 
The implementation of this algorithm in real conditions 
can be envisaged provided GPS data (position and global 
clock) are available. The discounting factor based on the 
decay function can be roughly estimated for different 
kinds of dynamical events. However, like the spatial 
parameter λ, we can already assume that implementation 
in real conditions will require fine tuning of the γ 



parameter, as the life duration of an event is context-
dependent. 
 

6 Conclusion 
A distributed data fusion method for uncertain reasoning 
in ad hoc and dynamical networks has been presented. 
The method is based on belief functions and implements a 
strategy to combine confidence in messages. The 
preliminary results are promising and this approach is still 
in the process of being developed in order to validate the 
principle. A decision rule and a sending message strategy 
have to be defined before considering more complex 
simulations. Coupling this program with an ad hoc 
network simulator will be a real added value for 
validation.  
The method described in this paper is able to process only 
one type of event.  We will next consider the relation 
between events in order to take into consideration the link 
between some of them (for example, a congestion event is 
often the consequence of an accident event).  
Finally, future work will focus on coupling information 
reliability with node reliability, i.e., confidence in the 
sending vehicle. Indeed, one of possible Sybil attacks 
consists in multiplying false nodes relaying many times 
the same information and creating false data sources. In 
the future, the confidence management system under 
development will have to be robust against Sybil node 
attacks.  
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